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1 Extension to Other Metrics

In this section, we consider the extension of the proposed method to other metrics, in particular
Jaccard similarity coefficient, and Fβ measure.

Let us first consider Jaccard similarity coefficient (JAC) [2]:

JAC(f) =

∫
X η(x)f(x)dµ(x)

π +
∫
X f(x)dµ(x)−

∫
X η(x)f(x)dµ(x)

.

Then we have
1

JAC(f)
=
π +

∫
X f(x)dµ(x)∫

X η(x)f(x)dµ(x)
− 1 =

2

F (f)
− 1.

Therefore

JAC(f) =
F (f)

2− F (f)
.

If F (f) is maximized so is JAC(f). According to [2], the optimal threshold θJAC,∗ for maximizing
JCA(ηθ(x)) is given by θJAC,∗ = JAC∗

1+JAC∗
= F∗/2 = θF,∗, where θF,∗ is the optimal threshold

for F-measure maximization. Given an estimate of θF for F-measure optimization, we can set the
threshold for JAC maximization as θJAC = θF , and when θF → θF,∗, we have θJAC → θJAC,∗. As a
result, the proposed algorithm FOFO is still applicable.

Next, let us consider Fβ-measure:

Fβ(f) =
(1 + β2)

∫
X η(x)f(x)dµ(x)

β2π +
∫
X f(x)dµ(x)

.

Following the same analysis as in [3][Lemma 13, Lemma 14], we can have that Fβ(ηθ) is maximized
at a point θβ,∗ that is the root of the following equation:

πβ2θ − Ex [(η(x)− θ)+] = 0,

which is the optimal solution of the following strongly convex function

Q(θ) ,
1

2
Ex

[
(η(x)− θ)2+

]
+

1

2
πβ2θ2.
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For the optimal threshold θβ,∗ and optimal Fβ,∗, we have θβ,∗ =
Fβ,∗
1+β2 . Hence, we can search for

θβ,∗ by solving the following problem:

min
θ∈[0,1/(1+β2)]

Q(θ) ,
1

2
Ex

[
(η(x)− θ)2+

]
+

1

2
πβθ2.

We can modify FOFO a little to account for this change.

2 Missing Proofs

2.1 w∗ minimizes the expected logistic loss

Under the assumption that

η(x) = Pr(y = 1|x,w∗) =
1

1 + exp(−w>∗ φ(x))
,

we prove that w∗ is the minimizer of the following problem:

min
w∈Rd

L(w) , Ex,y log(1 + exp(−(2y − 1)w>φ(x))). (7)

Using variable change ỹ = 2y − 1, Pr(ỹ|x,w∗) = 1
1+exp(−ỹw>∗ φ(x))

, and L(w) = Ex,ỹ log(1 +

exp(−ỹw>φ(x))). Then,

L(w) = Ex,ỹ log(1 + exp(−ỹw>φ(x))) = −
∫
x

Eỹ|x[log Pr(ỹ|x,w)]dµ(x)

=

∫
x

−∑
ỹ

Pr(ỹ|x,w∗) log Pr(ỹ|x,w)

 dµ(x)

Note that the term in the square brackets is the KL divergence between two distributions Pr(ỹ|x,w∗)
and Pr(ỹ|x,w) plus a constant independent of w. Therefore w = w∗ minimizes this term and hence
minimizes L(w).

2.2 Proof of Lemma 1

We prove the strong convexity parameter here.

Q(θ) =
1

2

∫
η(x)≥θ

(θ2 − 2η(x)θ + η(x)2)dµ(x) +
1

2
πθ2

=
1

2
θ2(ρθ + π)− θ

∫
η(x)≥θ

η(x)dµ(x) + c

where ρθ =
∫
η(x)≥θ dµ(x), c is a constant independent of θ. Then we can see the strong convexity

parameter of Q(θ) over [0, 0.5] is π + minθ∈[0,0.5] ρθ.

2.3 Proof of Lemma 2

Proof. For A ⊆ X , define ρ(A) =
∫
x∈A 1 · dµ(x) = Pr(x ∈ A). Let X∗ = {x ∈ X |η(x) ≥ θ∗}

and X ′ = {x ∈ X |η(x) ≥ θ}, and note that ηθ(x) = I(η(x) ≥ θ), we have

1

2
F (ηθ) =

∫
X ′ η(x)dµ(x)

π + ρ(X ′)
(8)

According to [3], F (ηθ∗) = 2θ∗. Thus,

θ∗ =
1

2
F (ηθ∗) =

∫
X∗ η(x)dµ(x)

π + ρ(X∗)∫
X∗
η(x)dµ(x) = θ∗(π + ρ(X∗)) (9)

Then we consider two cases based on the relation between θ and θ∗.
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Case 1. 0 ≤ θ ≤ θ∗
Since X∗ ⊆ X ′, let A = X ′ −X∗ = {x ∈ X |θ ≤ η(x) < θ∗}. From (8),

1

2
F (ηθ) =

∫
X∗ η(x)dµ(x) +

∫
A
η(x)dµ(x)

π + ρ(X∗) + ρ(A)

On A, we have η(x) ≥ θ, thus
∫
A
η(x)dµ(x) ≥ θρ(A). From (9), we have

1

2
F (ηθ) ≥

θ∗(π + ρ(X∗)) + θρ(A)

π + ρ(X∗) + ρ(A)
=
θ∗(π + ρ(X∗)) + θ∗ρ(A)− θ∗ρ(A) + θρ(A)

π + ρ(X∗) + ρ(A)

=θ∗ −
(θ∗ − θ)ρ(A)

π + ρ(X∗) + ρ(A)
≥ θ∗ − (θ∗ − θ) = θ

Thus F (ηθ∗)− F (ηθ) ≤ 2(θ∗ − θ) ≤ 2
π |θ∗ − θ|.

Case 2. θ∗ < θ ≤ 0.5

Since X ′ ⊆ X∗, let A = X∗ −X ′ = {x ∈ X |θ∗ ≤ η(x) < θ}. From (8),

1

2
F (ηθ) =

∫
X∗ η(x)dµ(x)−

∫
A
η(x)dµ(x)

π + ρ(X∗)− ρ(A)

On A, we have η(x) < θ, thus
∫
A
η(x)dµ(x) ≤ θρ(A). From (9), we have

1

2
F (ηθ) ≥

θ∗(π + ρ(X∗))− θρ(A)

π + ρ(X∗)− ρ(A)
=
θ∗(π + ρ(X∗))− θ∗ρ(A) + θ∗ρ(A)− θρ(A)

π + ρ(X∗)− ρ(A)

=θ∗ −
(θ − θ∗)ρ(A)

π + ρ(X∗)− ρ(A)
≥ θ∗ −

1

π
(θ − θ∗).

The last step holds because ρ(A) < 1 and ρ(X∗) − ρ(A) = ρ(X ′) ≥ 0. Then we have F (ηθ∗) −
F (ηθ) ≤ 2

(
θ∗ − θ∗ + 1

π (θ − θ∗)
)

= 2
π (θ − θ∗) = 2

π |θ∗ − θ|.
We combine both cases and get the final result.

2.4 Proof of Theorem 2

Proof. Here we consider any stage k. Let τ denote the iteration index of SFO and t = T0 + τ denote
the global index. Define g(θ) = q(θ) = ∂Q(θ), z = (x, y),G(θ, z) = πθ−(η(x)−θ)+, Ĝt(θ, z) =

π̂tθ−(η̂t(x)−θ)+. It is clear that E[G(θ, z)] = g(θ), and max
(
|g(θτ )|, |G(θτ , zt)|, |Ĝt(θτ , zt)|

)
≤

2 for any τ . Following standard analysis of gradient descent, we have

1

T

T∑
τ=1

(θτ − θ∗)Ĝt(θτ , zt) ≤
|θ1 − θ∗|2

2γT
+
γmax(Ĝt(θτ , zt))

2

2

Then by the convexity of Q(θ), we have

Q(θ̄T )−Q(θ∗) ≤
‖θ1 − θ∗‖22

2γT
+

4γ

2
+

∑T
τ=1(θτ − θ∗)(g(θτ )−G(θτ , zt))

T

+

∑T
τ=1(θτ − θ∗)(G(θτ , zt)− Ĝt(θτ , zt))

T
=I + II + III + IV

Now we try to bound the four terms respectively. Note that I ≤ R2

2γT , II ≤ 2γ. To bound the third
term, we utilize the similar analysis of SGD (e.g. [4]). Define

θ̃1 = θ1 ∈ [0, 0.5] ∩ B(θ1, R),

θ̃τ+1 = Π[0,0.5]∩B(θ1,R)(θ̃τ − γ(g(θτ )−G(θτ , zt))).
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Then we have
T∑
τ=1

γ(θ̃τ − θ∗)(g(θτ )−G(θτ , zt)) ≤
‖θ̃1 − θ∗‖22

2
+

1

2

T∑
τ=1

γ2‖g(θτ )−G(θt, zt)‖22

≤R
2

2
+ 8γ2T.

(10)

Note that both θτ and θ̃τ are measurable with respect to Ft−1 = {z1, . . . , zt−1}, and {Sτ : γ(θτ −
θ̃τ )(g(θτ )−G(θτ , zt)), τ = 1, . . . , T} is a martingale difference sequence, and for any τ we have
|γ(θτ − θ̃τ )(g(θτ )−G(θτ , zt))| ≤ 4γ‖θτ − θ̃τ‖2 ≤ 4γ × 2R = 8γR. Then by Azuma-Hoeffding’s
inequality, we have with probability at least 1− δ

3 ,
T∑
τ=1

γ(θτ − θ̃τ )(g(θτ )−G(θτ , zt)) ≤ 8γR

√
2T ln(

3

δ
). (11)

Adding (10) and (11) together suffices to show that with probability at least 1− δ
3 , we have

III ≤ R2

2γT
+ 8γ +

8R
√

2 ln( 3
δ )

√
T

.

Next we bound IV according to the Lemma 3 introduced later. By union bound, we have with
probability at least 1− δ

3 , we have

IV ≤ 1

T

T∑
τ=1

(
sup
τ

(‖θτ − θ1‖2 + ‖θ1 − θ∗‖2) · sup
θ∈[0,0.5],z∈Z

‖Ĝt(θ, z)−G(θ, z)‖2

)

≤
2R · (1 + Cκ)×

∑T
t=1

√
ln(12T/δ)

t

T
≤

4R(1 + Cκ)
√

ln
(
12T
δ

)
√
T

,

where the last inequality holds since
∑T
t=1

1√
t
≤ 2
√
T . Combining these inequalities together, we

have with probability at least 1− δ, we have

Q(θ̄T )−Q(θ∗) ≤
R2

γT
+ 10γ +

R(20 + 4Cκ)
√

ln(12T/δ)√
T

.

Choosing γ = R√
10T

, we have

Q(θ̄T )−Q(θ∗) ≤

(
2
√

10 + (20 + 4Cκ)
√

ln(12T/δ)
)
R

√
T

.

Lemma 3. With probability at least 1− δ,

sup
θ∈[0,0.5],z∈Z

‖Ĝt(θ, z)−G(θ, z)‖2 ≤ (1 + Cκ)

√
ln(4/δ)

t
.

Proof. For any θ and any z, the following argument holds. By Hoeffding’s inequality, we have with
probability at least 1− δ

2 ,

|π̂t − π| ≤
√

ln(4/δ)

2t
.

By the Assumption 1, we have with probability at least 1− δ
2 ,

|η̂t(x)− η(x)| ≤ Cκ
√

ln(4/δ)

t
.

Note that 0 ≤ θ ≤ 0.5, and hence we know that with probability at least 1− δ,

LHS ≤ |π̂t − π| · θ + |η̂t(xt)− η(xt)| ≤ (1 + Cκ)

√
ln(4/δ)

t
.
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2.5 Proof of Theorem 3

Given Theorem 2, the proof of Theorem 3 follows similar as the analysis [1] by noting that the objec-
tive function Q(θ) is strongly convex which is a special case of uniformly convex. For completeness,
we give a proof here.

Proof. Define

δ̄ =
2δ

log2 n
, a(n, δ̄) =

2
√

10 + (20 + 4Cκ)
√

ln(12n/δ̄)√
n

.

µ0 =
2a(n0, δ̄)

R0
, µk = 2kµ0, Rk = R0/2

k

where k = 1, . . . ,m. Then we have µkR2
k = 2−kµ0R

2
0.

By definition of m in Algorithm 1 (FOFO), when n ≥ 100,

0 <
1

2
log2

2n

log2 n
− 2 ≤ m ≤ 1

2
log2

2n

log2 n
− 1 ≤ 1

2
log2 n, (12)

so we have

2m ≥ 1

4

√
2n

log2 n
. (13)

Define c =
√

2
σ , and note thatQ(θ) is σ-strongly convex, and hence ‖θ−θ∗‖2 ≤ c(Q(θ)−Q(θ∗))

1
2 ,

where θ∗ is the closest point to θ in [0, 0.5].

Without loss of generality, we assume c2 ≥ R0

2 , i.e., 1
c2 ≤

2
R0

. Now we prove that 2
R0
≤ µm. When

n ≥ 100, we have
µm = 2mµ0

≥ 1

4

√
2n

log2 n

4

R0

(√
10
√
n0

+
(10 + 2Cκ)

√
ln (12n0/δ̄)√

n0

)

≥ 2

R0
· 1

2

√
2n

log2 n

(√
10
√
n0

+
8
√

ln (6 log2 n)
√
n0

)

≥ 2

R0

√
2n

log2 n

√
(8
√

10)
√

ln(6 log2 n)

n0

≥ 2

R0
·

√
2n

log2 n

√
(8
√

10)
√

ln(3 log2 n)
n
m

≥ 2

R0
·

√
2n

log2 n

√√√√ (8
√

10)
√

ln(3 log2 n)
n

1
2 log2

2n
log2 n

−2

=
2

R0

√
(8
√

10)
√

ln(3 log2 n)

(
1− log2 log2 n+ 3

log2 n

)
≥ 2

R0
.

where the first inequality holds because of (13), the second inequality stems from the fact that
10 + 2Cκ > 8, 0 < δ < 1, n0 ≥ 1, and the definition of δ̄, the third inequality holds by employing
a + b ≥ 2

√
ab, the fourth inequality holds because 0 < n0 = bn/mc ≤ n/m, the fifth inequality

holds because of the lower bound of m in (12), and the last inequality holds since when n ≥ 100,
the function (8

√
10)
√

ln(3 log2 n)
(

1− log2 log2 n+3
log2 n

)
is monotonically increasing with respect to

n, and hence is greater than 1. So 2
R0
≤ µm. Recall that 1

c2 ≤
2
R0

, and thus, 1
c2 ≤ µm.

Given θ̂k, denote θ̂∗k by the closest optimal solution to θ̂k. We consider two cases.
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Case 1. If 1
c2 ≥ µ0, then µ0 ≤ 1

c2 ≤ µm. So there exists a k∗ such that µk∗ ≤ 1
c2 ≤ µk∗+1 = 2µk∗ ,

where 0 ≤ k∗ < m. To utilize this fact, we have the following lemma.

Lemma 4. Let k∗ satisfy µk∗ ≤ 1
c2 ≤ 2µk∗ . Then for any 1 ≤ k ≤ k∗, there exists a Borel set

Ak ⊂ Ω of probability at least 1− kδ̄, such that for ω ∈ Ak, the points {θ̂k}mk=1 generated by the
Algorithm 1 satisfy

‖θ̂k−1 − θ̂∗k−1‖2 ≤ Rk−1 = 2−k+1R0, (14)

Q(θ̂k)−Q∗ ≤ µkR2
k = 2−kµ0R

2
0. (15)

Moreover, for k > k∗ there is a Borel set Ck ⊂ Ω of probability at least 1− (k − k∗)δ̄ such that on
Ck, we have

Q(θ̂k)−Q(θ̂k∗) ≤ µk∗R2
k∗ . (16)

Proof. We prove (14) and (15) by induction. Note that (14) holds for k = 1. Assume it is true for
some k > 1 on Ak−1. According to the Theorem 2, there exists a Borel set Bk with Pr(Bk) ≥ 1− δ̄
such that

Q(θ̂k)−Q∗ ≤ Rk−1a(n0, δ̄) =
1

2
µk2−kR0Rk−1 = µkR

2
k,

which is (15). By the inductive hypothesis, ‖θ̂k−1 − θ̂∗k−1‖2 ≤ Rk−1 on the set Ak−1. Define
Ak = Ak−1 ∩ Bk. Note that

Pr(Ak) ≥ Pr(Ak−1) + Pr(Bk)− 1 ≥ 1− kδ̄,

and on Ak, by the strong-convexity of Q(θ) and the definition of k∗, we have

‖θ̂k − θ̂∗k‖22 ≤ c2(Q(θ̂k)−Q∗) ≤
Q(θ̂k)−Q∗

µk∗
≤ µkR

2
k

µk∗
≤ R2

k,

which is (14) for k + 1.

Now we prove (16). For k > k∗, one can apply the similar strategy as in Theorem 2. Specifically, at
the k-th stage with k > k∗, employing the similar proof of Theorem 2 by substituting all θ∗ to θ̂k−1,
the first term of RHS becomes zero and hence we get a tighter bound of Q(θ̂k)−Q(θ̂k−1), we here
relax the bound to be Rk−1a(n0, δ̄).

So there exists a Borel set Bk with Pr(Bk) ≥ 1− δ̄ such that

Q(θ̂k)−Q(θ̂k−1) ≤ Rk−1a(n0, δ̄) = 2k
∗−kRk∗−1a(n0, δ̄) = 2k

∗−kµk∗R
2
k∗ = µkR

2
k,

which implies that on Ck = ∩kj=k∗+1Bj , we have

Q(θ̂k)−Q(θ̂k∗) =
k∑

j=k∗+1

(
Q(θ̂j)−Q(θ̂j−1)

)
≤

k∑
j=k∗+1

2k
∗−jµk∗R

2
k∗ ≤ µk∗R2

k∗ .

By union bound, we have Pr(Ck) = Pr(∩kj=k∗+1Bj) ≥ 1− (k−k∗)δ̄. Here completes the proof.

Now we proceed the proof as follows. Note that µ0 ≤ 1
c2 ≤ µm. At the end of k∗-th stage, on the

Borel set Ak∗ of probability at least 1− k∗δ̄, we have

Q(θ̂k∗)−Q∗ ≤ µk∗R2
k∗ .

Then on the Borel set Dm = Cm ∩ Ak∗ = (∩mj=k∗+1Bj) ∩Ak∗ with Pr(Dm) ≥ 1−mδ̄, we have

Q(θ̂m)−Q∗ = Q(θ̂m)−Q(θ̂k∗) + (Q(θ̂k∗)−Q∗) ≤ 2µk∗R
2
k∗ ≤ 4(

µk∗

c−2
)µk∗R

2
k∗

= (4c · a(n0, δ̄))
2.

By the definition of m and δ̄, and the fact that m ≤ 1
2 log2 n, we have mδ̄ ≤ δ. So Pr(Dm) ≥ 1− δ.
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Table 1: Offline Testing F-measure (bold numbers represent the best performance)
Datasets FOFO OFO LR STAMP OMCSL
webspam .9348± .0003 .9348± .0004 .9347± .0005 .9312± .0014 .9282± .0046

a9a .6789± .0015 .6755± .0020 .6518± .0026 .6735± .0034 .6704± .0096
ijcnn1 .6412± .0020 .5776± .0039 .4441± .0040 .5987± .0328 .6050± .0225
w8a .7159± .0118 .6695± .0134 .6621± .0222 .6706± .0289 .6627± .0370

covtype (2 vs o) .7627± .0005 .7625± .0005 .7557± .0004 .7568± .0055 .7557± .0081
covtype (1 vs o) .7090± .0004 .7082± .0002 .6770± .0010 .7039± .0047 .7000± .0093

cov (3 vs o) .7277± .0009 .7257± .0005 .6914± .0039 .7213± .0050 .7210± .0050
covtype (7 vs o) .6723± .0022 .6521± .0025 .6140± .0037 .6417± .0197 .6513± .0150
covtype (6 vs o) .4468± .0015 .4251± .0014 .1258± .0072 .3971± .0516 .4237± .0142
covtype (5 vs o) .2648± .0036 .2488± .0027 .0000± .0000 .2218± .0246 .2362± .0304
covtype (4 vs o) .5512± .0035 .5228± .0083 .4123± .0130 .3682± .0724 .5139± .0256

Sensorless (1 vs o) .7549± .0047 .6732± .0022 .4774± .0156 .6243± .1394 .5401± .2360
Sensorless (2 vs o) .4698± .0178 .2388± .0083 .1667± .0000 .3284± .1485 .4689± .0330
Sensorless (3 vs o) .2138± .0047 .2254± .0048 .1345± .0709 .1819± .0812 .1804± .0413
Sensorless (4 vs o) .5895± .0055 .3117± .0102 .1360± .0717 .3778± .2152 .4530± .0813
Sensorless (5 vs o) .3089± .0049 .2343± .0047 .1009± .0868 .2264± .1186 .1782± .1228
Sensorless (6 vs o) .3607± .0062 .2789± .0078 .0993± .0854 .2772± .0702 .2266± .1503
Sensorless (7 vs o) .9994± .0002 .9996± .0001 .9986± .0010 .9988± .0009 .9982± .0017
Sensorless (8 vs o) .4085± .0017 .3158± .0047 .0496± .0799 .3185± .1159 .3484± .0583
Sensorless (9 vs o) .2783± .0037 .2069± .0039 .1346± .0710 .1749± .1352 .1902± .1251
Sensorless (10 vs o) .6025± .0080 .4897± .0113 .1659± .0000 .4089± .2345 .5170± .0566
Sensorless (11 vs o) .9997± .0000 .9997± .0002 .9998± .0002 .9997± .0001 .9998± .0002

protein (1 vs o) .5008± .0026 .5037± .0059 .4643± .0114 .4914± .0163 .4930± .0116
protein (2 vs o) .6849± .0035 .6835± .0040 .6390± .0053 .6787± .0069 .6735± .0144
protein (0 vs o) .7479± .0017 .7483± .0014 .7183± .0023 .7430± .0071 .7423± .0052

Case 2. If 1
c2 < µ0, then on A1 = B1,

Q(θ̂1)−Q∗ ≤ R0 · a(n0, δ̄) =
R0

a(n0, δ̄)
· a(n0, δ̄)

2 =
2

µ0
a(n0, δ̄)

2 ≤ 2
(
c · a(n0, δ̄)

)2
.

Hence on A1 ∩ Cm, by using Lemma 4 and a similar argument as in case 1, we have

Q(θ̂m)−Q∗ = Q(θ̂m)−Q(θ̂1) +Q(θ̂1)−Q∗ ≤ 2R0 · a(n0, δ̄) ≤ (2c · a(n0, δ̄))
2,

where Pr(A1 ∩ Cm) ≥ 1− δ.

Combining the two cases, we have with probability at least 1− δ,

Q(θ̂m)−Q∗ ≤ (4c ∨ 2c)2
(
a(n0, δ̄)

)2
= Õ

(
ln( 1

δ )

σn

)
.

3 More Experimental Results

More experimental results are reported in Table 1 (offline testing results) and Figure 1 (online
F-measure vs running time).

References
[1] Anatoli Juditsky and Yuri Nesterov. Deterministic and stochastic primal-dual subgradient

algorithms for uniformly convex minimization. Stoch. Syst., 2014.

[2] Nagarajan Natarajan, Oluwasanmi Koyejo, Pradeep Ravikumar, and Inderjit S. Dhillon. Consis-
tent binary classification with generalized performance metrics. In Neural Information Processing
Systems (NIPS), 2014.

7



0 0.2 0.4 0.6 0.8

time (second)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

F
-s

c
o

re

FOFO

OFO

LR

STAMP

OMCSL

(a) Sensorless (2 vs o)

0 0.2 0.4 0.6 0.8

time (second)

-0.05

0

0.05

0.1

0.15

0.2

0.25

F
-s

c
o

re

FOFO

OFO

LR

STAMP

OMCSL

(b) Sensorless (3 vs o)
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(c) Sensorless (4 vs o)

0 0.2 0.4 0.6 0.8

time (second)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
-s

c
o
re

FOFO

OFO

LR

STAMP

OMCSL

(d) Sensorless (5 vs o)
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(e) Sensorless (6 vs o)
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(f) Sensorless (7 vs o)
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(g) Sensorless (8 vs o)
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(h) Sensorless (9 vs o)
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(i) Sensorless (10 vs o)
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(j) Sensorless (11 vs o)
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(k) protein (1 vs o)
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(l) protein (2 vs o)
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(m) cov (4 vs o)

Figure 1: Online F-measure vs Running Time for more datasets
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