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Abstract

Learning how to act when there are many available actions in each state is a
challenging task for Reinforcement Learning (RL) agents, especially when many of
the actions are redundant or irrelevant. In such cases, it is sometimes easier to learn
which actions not to take. In this work, we propose the Action-Elimination Deep
Q-Network (AE-DQN) architecture that combines a Deep RL algorithm with an
Action Elimination Network (AEN) that eliminates sub-optimal actions. The AEN
is trained to predict invalid actions, supervised by an external elimination signal
provided by the environment. Simulations demonstrate a considerable speedup
and added robustness over vanilla DQN in text-based games with over a thousand
discrete actions.

1 Introduction

Learning control policies for sequential decision-making tasks where both the state space and the
action space are vast is critical when applying Reinforcement Learning (RL) to real-world problems.
This is because there is an exponential growth of computational requirements as the problem size
increases, known as the curse of dimensionality (Bertsekas and Tsitsiklis, 1995). Deep RL (DRL)
tackles the curse of dimensionality due to large state spaces by utilizing a Deep Neural Network
(DNN) to approximate the value function and/or the policy. This enables the agent to generalize
across states without domain-specific knowledge (Tesauro, 1995; Mnih et al., 2015).

Despite the great success of DRL methods, deploying them in real-world applications is still limited.
One of the main challenges towards that goal is dealing with large action spaces, especially when
many of the actions are redundant or irrelevant (for many states). While humans can usually detect
the subset of feasible actions in a given situation from the context, RL agents may attempt irrelevant
actions or actions that are inferior, thus wasting computation time. Control systems for large industrial
processes like power grids (Wen, O’Neill, and Maei, 2015; Glavic, Fonteneau, and Ernst, 2017; Dalal,
Gilboa, and Mannor, 2016) and traffic control (Mannion, Duggan, and Howley, 2016; Van der Pol
and Oliehoek, 2016) may have millions of possible actions that can be applied at every time step.
Other domains utilize natural language to represent the actions. These action spaces are typically
composed of all possible sequences of words from a fixed size dictionary resulting in considerably
large action spaces. Common examples of systems that use this action space representation include
conversational agents such as personal assistants (Dhingra et al., 2016; Li et al., 2017; Su et al., 2016;
Lipton et al., 2016b; Liu et al., 2017; Zhao and Eskenazi, 2016; Wu et al., 2016), travel planners
(Peng et al., 2017), restaurant/hotel bookers (Budzianowski et al., 2017), chat-bots (Serban et al.,
2017; Li et al., 2016) and text-based game agents (Narasimhan, Kulkarni, and Barzilay, 2015; He et
al., 2015; Zelinka, 2018; Yuan et al., 2018; Côté et al., 2018). RL is currently being applied in all of
these domains, facing new challenges in function approximation and exploration due to the larger
action space.
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(a) (b)
Figure 1: (a) Zork interface. The state in the game (observation) and the player actions are describe
in natural language. (b) The action elimination framework. Upon taking action at, the agent
observes a reward rt, the next state st+1 and an elimination signal et. The agent uses this information
to learn two function approximation deep networks: a DQN and an AEN. The AEN provides an
admissible actions set A′ to the DQN, which uses this set to decide how to act and learn.

In this work, we propose a new approach for dealing with large action spaces that is based on action
elimination; that is, restricting the available actions in each state to a subset of the most likely ones
(Figure 1(b)). We propose a method that eliminates actions by utilizing an elimination signal; a
specific form of an auxiliary reward (Jaderberg et al., 2016), which incorporates domain-specific
knowledge in text games. Specifically, it provides the agent with immediate feedback regarding taken
actions that are not optimal. In many domains, creating an elimination signal can be done using
rule-based systems. For example, in parser-based text games, the parser gives feedback regarding
irrelevant actions after the action is played (e.g., Player: "Climb the tree." Parser: "There are no trees
to climb"). Given such signal, we can train a machine learning model to predict it and then use it to
generalize to unseen states. Since the elimination signal provides immediate feedback, it is faster to
learn which actions to eliminate (e.g., with a contextual bandit using the elimination signal) than to
learn the optimal actions using only the reward (due to long term consequences). Therefore, we can
design an algorithm that enjoys better performance by exploring invalid actions less frequently.

More specifically, we propose a system that learns an approximation of the Q-function and concur-
rently learns to eliminate actions. We focus on tasks where natural language characterizes both the
states and the actions. In particular, the actions correspond to fixed length sentences defined over
a finite dictionary (of words). In this case, the action space is of combinatorial size (in the length
of the sentence and the size of the dictionary) and irrelevant actions must be eliminated to learn.
We introduce a novel DRL approach with two DNNs, a DQN and an Action Elimination Network
(AEN), both designed using a Convolutional Neural Network (CNN) that is suited to NLP tasks (Kim,
2014). Using the last layer activations of the AEN, we design a linear contextual bandit model that
eliminates irrelevant actions with high probability, balancing exploration/exploitation, and allowing
the DQN to explore and learn Q-values only for valid actions.

We tested our method in a text-based game called "Zork". This game takes place in a virtual world
in which the player interacts with the world through a text-based interface (see Figure 1(a)). The
player can type in any command, corresponding to the in-game action. Since the input is text-based,
this yields more than a thousand possible actions in each state (e.g., "open door", "open mailbox"
etc.). We demonstrate the agent’s ability to advance in the game faster than the baseline agents by
eliminating irrelevant actions.

2 Related Work

Text-Based Games (TBG): Video games, via interactive learning environments like the Arcade
Learning Environment (ALE) (Bellemare et al., 2013), have been fundamental to the development of
DRL algorithms. Before the ubiquitousness of graphical displays, TBG like Zork were popular in
the adventure gaming and role-playing communities. TBG present complex, interactive simulations
which use simple language to describe the state of the environment, as well as reporting the effects of
player actions (See Figure 1(a)). Players interact with the environment through text commands that
respect a predefined grammar, which must be discovered in each game.
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TBG provide a testbed for research at the intersection of RL and NLP, presenting a broad spectrum
of challenges for learning algorithms (Côté et al., 2018)1. In addition to language understanding,
successful play generally requires long-term memory, planning, exploration (Yuan et al., 2018),
affordance extraction (Fulda et al., 2017), and common sense. Text games also highlight major open
challenges for RL: the action space (text) is combinatorial and compositional, while game states
are partially observable since text is often ambiguous or under-specific. Also, TBG often introduce
stochastic dynamics, which is currently missing in standard benchmarks (Machado et al., 2017). For
example, in Zork, there is a random probability of a troll killing the player. A thief can appear (also
randomly) in each room.

Representations for TBG: To learn control policies from high-dimensional complex data such as
text, good word representations are necessary. Kim (2014) designed a shallow word-level CNN and
demonstrated state-of-the-art results on a variety of classification tasks by using word embeddings.
For classification tasks with millions of labeled data, random embeddings were shown to outperform
state-of-the-art techniques (Zahavy et al., 2018). On smaller data sets, using word2vec (Mikolov et
al., 2013) yields good performance (Kim, 2014).

Previous work on TBG used pre-trained embeddings directly for control (Kostka et al., 2017; Fulda
et al., 2017). Other works combined pre-trained embeddings with neural networks. For example, He
et al. (2015) proposed to use Bag Of Words features as an input to a neural network, learned separate
embeddings for states and actions, and then computed the Q function from autocorrelations between
these embeddings. Narasimhan et al. (2015) suggested to use a word level Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997) to learn a representation end-to-end, and Zelinka et al. (2018),
combined these approaches.

DRL with linear function approximation: DRL methods such as the DQN have achieved state-
of-the-art results in a variety of challenging, high-dimensional domains. This success is mainly
attributed to the power of deep neural networks to learn rich domain representations for approximating
the value function or policy (Mnih et al., 2015; Zahavy, Ben-Zrihem, and Mannor, 2016; Zrihem,
Zahavy, and Mannor, 2016). Batch reinforcement learning methods with linear representations, on
the other hand, are more stable and enjoy accurate uncertainty estimates. Yet, substantial feature
engineering is necessary to achieve good results. A natural attempt at getting the best of both
worlds is to learn a (linear) control policy on top of the representation of the last layer of a DNN.
This approach was shown to refine the performance of DQNs (Levine et al., 2017) and improve
exploration (Azizzadenesheli, Brunskill, and Anandkumar, 2018). Similarly, for contextual linear
bandits, Riquelme et al. showed that a neuro-linear Thompson sampling approach outperformed deep
(and linear) bandit algorithms in practice (Riquelme, Tucker, and Snoek, 2018).

RL in Large Action Spaces: Being able to reason in an environment with a large number of discrete
actions is essential to bringing reinforcement learning to a larger class of problems. Most of the
prior work concentrated on factorizing the action space into binary subspaces (Pazis and Parr, 2011;
Dulac-Arnold et al., 2012; Lagoudakis and Parr, 2003). Other works proposed to embed the discrete
actions into a continuous space, use a continuous-action policy gradient to find optimal actions in
the continuous space, and finally, choose the nearest discrete action (Dulac-Arnold et al., 2015;
Van Hasselt and Wiering, 2009). He et. al. (2015) extended DQN to unbounded (natural language)
action spaces. His algorithm learns representations for the states and actions with two different DNNs
and then models the Q values as an inner product between these representation vectors. While this
approach can generalize to large action spaces, in practice, they only considered a small number of
available actions (4) in each state.

Learning to eliminate actions was first mentioned by (Even-Dar, Mannor, and Mansour, 2003) who
studied elimination in multi-armed bandits and tabular MDPs. They proposed to learn confidence
intervals around the value function in each state and then use it to eliminate actions that are not
optimal with high probability. Lipton et al. (2016a) studied a related problem where an agent wants
to avoid catastrophic forgetting of dangerous states. They proposed to learn a classifier that detects
hazardous states and then use it to shape the reward of a DQN agent. Fulda et al. (2017) studied
affordances, the set of behaviors enabled by a situation, and presented a method for affordance
extraction via inner products of pre-trained word embeddings.

1See also The CIG Competition for General Text-Based Adventure Game-Playing Agents
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3 Action Elimination

We now describe a learning algorithm for MDPs with an elimination signal. Our approach builds
on the standard RL formulation (Sutton and Barto, 1998). At each time step t, the agent observes a
state st and chooses a discrete action at ∈ {1, .., |A|}. After executing the action, the agent obtains
a reward rt(st, at) and observes the next state st+1 according to a transition kernel P (st+1|st, at).
The goal of the algorithm is to learn a policy π(a|s) that maximizes the discounted cumulative return
V π(s) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s] where 0 < γ < 1 is the discount factor and V is the value
function. The optimal value function is given by V ∗(s) = maxπ V

π(s) and the optimal policy
by π∗(s) = arg maxπ V

π(s). The Q-function Qπ(s, a) = Eπ[
∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]
corresponds to the value of taking action a in state s and continuing according to policy π. The
optimal Q-function Q∗(s, a) = Qπ

∗
(s, a) can be found using the Q-learning algorithm (Watkins and

Dayan, 1992), and the optimal policy is given by π∗(s) = arg maxaQ
∗(s, a).

After executing an action, the agent also observes a binary elimination signal e(s, a), which equals 1
if action a may be eliminated in state s; that is, any optimal policy in state s will never choose action
a (and 0 otherwise). The elimination signal can help the agent determine which actions not to take,
thus aiding in mitigating the problem of large discrete action spaces. We start with the following
definitions:
Definition 1. Valid state-action pairs with respect to an elimination signal are state action pairs
which the elimination process should not eliminate.

As stated before, we assume that the set of valid state-action pairs contains all of the state-action pairs
that are a part of some optimal policy, i.e., only strictly suboptimal state-actions can be invalid.
Definition 2. Admissible state-action pairs with respect to an elimination algorithm are state action
pairs which the elimination algorithm does not eliminate.

In the following section, we present the main advantages of action elimination in MDPs with large
action spaces. Afterward, we show that under the framework of linear contextual bandits (Chu et al.,
2011), probability concentration results (Abbasi-Yadkori, Pal, and Szepesvari, 2011) can be adapted
to guarantee that action elimination is correct in high probability. Finally, we prove that Q-learning
coupled with action elimination converges.

3.1 Advantages in action elimination

Action elimination allows the agent to overcome some of the main difficulties in large action spaces,
namely: Function Approximation and Sample Complexity.

Function Approximation: It is well known that errors in the Q-function estimates may cause the
learning algorithm to converge to a suboptimal policy, a phenomenon that becomes more noticeable in
environments with large action spaces (Thrun and Schwartz, 1993). Action elimination may mitigate
this effect by taking the max operator only on valid actions, thus, reducing potential overestimation
errors. Another advantage of action elimination is that the Q-estimates need only be accurate for
valid actions. The gain is two-fold: first, there is no need to sample invalid actions for the function
approximation to converge. Second, the function approximation can learn a simpler mapping (i.e.,
only the Q-values of the valid state-action pairs), and therefore may converge faster and to a better
solution by ignoring errors from states that are not explored by the Q-learning policy (Hester et al.,
2018).

Sample Complexity: The sample complexity of the MDP measures the number of steps, during
learning, in which the policy is not ε-optimal (Kakade and others, 2003). Assume that there are A′
actions that should be eliminated and are ε-optimal, i.e., their value is at least V ∗(s)− ε. According
to lower bounds by (Lattimore and Hutter, 2012), We need at least ε−2(1− γ)−3 log 1/δ samples per
state-action pair to converge with probability 1− δ. If, for example, the eliminated action returns
no reward and doesn’t change the state, the action gap is ε = (1 − γ)V ∗(s), which translates to
V ∗(s)

−2
(1− γ)−5 log 1/δ ’wasted’ samples for learning each invalid state-action pair. For large γ,

this can lead to a tremendous number of samples (e.g., for γ = 0.99, (1−γ)−5 = 1010). Practically,
elimination algorithms can eliminate these actions substantially faster, and can, therefore, speed up
the learning process approximately by A/A′ (such that learning is effectively performed on the valid
state-action pairs).
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Embedding the elimination signal into the MDP is not trivial. One option is to shape the original
reward by adding an elimination penalty. That is, decreasing the rewards when selecting the wrong
actions. Reward shaping, however, is tricky to tune, may slow the convergence of the function
approximation, and is not sample efficient (irrelevant actions are explored). Another option is to
design a policy that is optimized by interleaved policy gradient updates on the two signals, maximizing
the reward and minimizing the elimination signal error. The main difficulty with this approach is that
both models are strongly coupled, and each model affects the observations of the other model, such
that the convergence of any of the models is not trivial.

Next, we present a method that decouples the elimination signal from the MDP by using contextual
multi-armed bandits. The contextual bandit learns a mapping from states (represented by context vec-
tors x(s)) to the elimination signal e(s, a) that estimates which actions should be eliminated. We start
by introducing theoretical results on linear contextual bandits, and most importantly, concentration
bounds for contextual bandits that require almost no assumptions on the context distribution. We will
later show that under this model we can decouple the action elimination from the learning process in
the MDP, allowing us to learn using standard Q-learning while eliminating actions correctly.

3.2 Action elimination with contextual bandits

Let x(st) ∈ Rd be the feature representation of state st. We assume (realizability) that under this
representation there exists a set of parameters θ∗a ∈ Rd such that the elimination signal in state st is
et(st, a) = θ∗a

Tx(st)+ηt, where ‖θ∗a‖2 ≤ S. ηt is anR-subgaussian random variable with zero mean
that models additive noise to the elimination signal. When there is no noise in the elimination signal,
then R = 0. Otherwise, as the elimination signal is bounded in [0, 1], it holds that R ≤ 1. We’ll also
relax our previous assumptions and allow the elimination signal to have values 0 ≤ E[et(st, a)] ≤ `
for any valid action and u ≤ E[et(st, a)] ≤ 1 for any invalid action, with ` < u. Next, we denote
by Xt,a (Et,a) the matrix (vector) whose rows (elements) are the observed state representation
vectors (elimination signals) in which action a was chosen, up to time t. For example, the ith row
in Xt,a is the representation vector of the ith state on which the action a was chosen. Denote the
solution to the regularized linear regression ‖Xt,aθt,a − Et,a‖22 + λ‖θt,a‖22 (for some λ > 0) by
θ̂t,a = V̄ −1t,a X

T
t,aEt,a where V̄t,a = λI +XT

t,aXt,a.

Similarly to Theorem 2 in (Abbasi-Yadkori, Pal, and Szepesvari, 2011)2, for any state history
and with probability of at least 1 − δ, it holds for all t > 0 that

∣∣∣θ̂Tt,ax(st)− θ∗a
Tx(st)

∣∣∣ ≤√
βt(δ)x(st)T V̄

−1
t,a x(st), where

√
βt(δ) = R

√
2 log(det(V̄t,a)1/2det(λI)−1/2/δ) + λ1/2S. If

∀s, ‖x(s)‖2 ≤ L, then βt can be bounded by
√
βt(δ) ≤ R

√
d log

(
1+tL2/λ

δ

)
+ λ1/2S. Next,

we define δ̃ = δ/k and bound this probability for all the actions, i.e., ∀a, t > 0

Pr
{∣∣∣θ̂Tt−1,ax(st)− θ∗t−1,a

Tx(st)
∣∣∣ ≤√βt(δ̃)x(st)T V̄

−1
t−1,ax(st)

}
≥ 1− δ (1)

Recall that any valid action a at state s satisfies E[et(s, a)] = θ∗a
Tx(st) ≤ `. Thus, we can eliminate

action a at state st if

θ̂Tt−1,ax(st)−
√
βt−1(δ̃)x(st)T V̄

−1
t−1,ax(st) > ` (2)

This ensures that with probability 1 − δ we never eliminate any valid action. We emphasize that
only the expectation of the elimination signal is linear in the context. The expectation does not have
to be binary (while the signal itself is). For example, in conversational agents, if a sentence is not
understood by 90% of the humans who hear it, it is still desirable to avoid saying it. We also note that
we assume ` is known, but in most practical cases, choosing ` ≈ 0.5 should suffice. In the current
formulation, knowing u is not necessary, though its value will affect the overall performance.

2Our theoretical analysis builds on results from (Abbasi-Yadkori, Pal, and Szepesvari, 2011), which can be
extended to include Generalized Linear Models (GLMs). We focus on linear contextual bandits as they enjoy
easier implementation and tighter confidence intervals in comparison to GLMs. We will later combine the bandit
with feature approximation, which will approximately allow the realizability assumption even for linear bandits.
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3.3 Concurrent Learning

We now show how the Q-learning and contextual bandit algorithms can learn simultaneously, resulting
in the convergence of both algorithms, i.e., finding an optimal policy and a minimal valid action
space. The challenge here is that each learning process affects the state-action distribution of the
other. We first define Action Elimination Q-learning.

Definition 3. Action Elimination Q-learning is a Q-learning algorithm which updates only admissible
state-action pairs and chooses the best action in the next state from its admissible actions. We allow
the base Q-learning algorithm to be any algorithm that converges to Q∗ with probability 1 after
observing each state-action infinitely often.

If the elimination is done based on the concentration bounds of the linear contextual bandits, we can
ensure that Action Elimination Q-learning converges, as can be seen in Proposition 1 (See Appendix
A for a full proof).

Proposition 1. Assume that all state action pairs (s, a) are visited infinitely often unless eliminated

according to θ̂Tt−1,ax(s)−
√
βt−1(δ̃)x(s)T V̄ −1t−1,ax(s) > `. Then, with a probability of at least 1− δ,

action elimination Q-learning converges to the optimal Q-function for any valid state-action pairs. In
addition, actions which should be eliminated are visited at most Ts,a(t) ≤ 4βt/(u− `)2 + 1 times.

Notice that when there is no noise in the elimination signal (R = 0), we correctly eliminate actions
with probability 1, and invalid actions will be sampled a finite number of times. Otherwise, under
very mild assumptions, invalid actions will be sampled a logarithmic number of times.

4 Method

Using raw features like word2vec, directly for control, results in exhaustive computations. Moreover,
raw features are typically not realizable, i,.e., the assumption that et(st, a) = θ∗a

Tx(st) + ηt does not
hold. Thus, we propose learning a set of features φ(st) that are realizable, i.e., e(st, a) = θ∗a

Tφ(st),
using neural networks (using the activations of the last layer as features). A practical challenge here
is that the features must be fixed over time when used by the contextual bandit, while the activations
change during optimization. We therefore follow a batch-updates framework (Levine et al., 2017;
Riquelme, Tucker, and Snoek, 2018), where every few steps we learn a new contextual bandit model
that uses the last layer activations of the AEN as features.

Algorithm 1 deep Q-learning with action elimination

Input: ε, β, `, λ, C, L,N
Initialize AEN and DQN with random weights
ω, θ respectively, and set target networks
Q−, E− with a copy of θ, ω
Define φ(s)← LastLayerActivations(E(s))
Initialize Replay Memory D to capacity N
for t = 1,2,. . . , do

at = ACT(st, Q,E
−, V −1, ε, `, β)

Execute action at and observe {rt, et, st+1}
Store transition {st, at, rt, et, st+1} in D
Sample transitions

{sj , aj , rj , ej , sj+1}mj=1 ∈ D
yj = Targets

(
sj+1, rj , γ,Q

−, E−, V −1, β, `
)

θ = θ −∇θ
∑
j (yj −Q(sj , aj ; θ))

2

ω = ω −∇ω
∑
j (ej − E(sj , aj ;ω))

2

If (t mod C) = 0 : Q− ← Q
If (t mod L) = 0 :

E−, V −1 ←AENUpdate(E, λ,D)
end for

function ACT(s,Q,E, V −1, ε, β, `)

A′ ← {a : E(s)a −
√
βφ(s)TV −1a φ(s) < `}

With probability ε, return Uniform(A′)
Otherwise, return arg max

a∈A′
Q(s, a)

end function
function TARGETS(s, r, γ,Q,E, V −1, β, `)

if s is a terminal state then return r end if
A′ ← {a : E(s)a −

√
βφ(s)TV −1a φ(s) < `}

return (r + γmax
a∈A′

Q(s, a))

end function
function AENUPDATE(E−, λ,D)

for a ∈ A do
V −1a =

(∑
j:aj=a

φ(sj)φ(sj)
T + λI

)−1
ba =

∑
j:aj=a

φ(sj)
T ej

Set LastLayer(E−a )← V −1a ba
end for
return E−, V −1

end function
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Our Algorithm presents a hybrid approach for DRL with Action Elimination (AE), by incorporating
AE into the well-known DQN algorithm to yield our AE-DQN (Algorithm 1 and Figure 1(b)).
AE-DQN trains two networks: a DQN denoted by Q and an AEN denoted by E. The algorithm
uses E, and creates a linear contextual bandit model from it every L iterations with procedure
AENUpdate(). This procedure uses the activations of the last hidden layer of E as features, φ(s)←
LastLayerActivations(E(s)), which are then used to create a contextual linear bandit model (Va =
λI +

∑
j:aj=a

φ(sj)φ(sj)
T , ba =

∑
j:aj=a

φ(sj)
T ej). AENUpdate() proceeds by solving this

model, and plugging the solution into the target AEN (LastLayer(E−a )← V −1a ba). The contextual
linear bandit model (E−, V ) is then used to eliminate actions (with high probability) via the ACT()
and Targets() functions. ACT() follows an ε−greedy mechanism on the admissible actions set

A′ = {a : E(s)a −
√
βφ(s)TV −1a φ(s) < `}. If it decides to exploit, then it selects the action with

highest Q-value by taking an arg max on Q-values among A′, and if it chooses to explore, then,
it selects an action uniformly from A′. Targets() estimates the value function by taking max over
Q-values only among admissible actions, hence, reducing function approximation errors.
Architectures: The agent uses an Experience Replay (Lin, 1992) to store information about states,
transitions, actions, and rewards. In addition, our agent also stores the elimination signal, provided by
the environment (Figure 1(b)). The architecture for both the AEN and DQN is an NLP CNN, based
on (Kim, 2014). We represent the state as a sequence of words, composed of the game descriptor
(Figure 1(a), "Observation") and the player’s inventory. These are truncated or zero-padded (for
simplicity) to a length of 50 (descriptor) + 15 (inventory) words and each word is embedded into
continuous vectors using word2vec in R300. The features of the last four states are then concatenated
together such that our final state representations s are in R78,000. The AEN is trained to minimize the
MSE loss, using the elimination signal as a label. We used 100 (500 for DQN) convolutional filters,
with three different 1D kernels of length (1,2,3) such that the last hidden layer size is 300. 3

5 Experimental Results

Grid World Domain: We start with an evaluation of action elimination in a small grid world domain
with 9 rooms, where we can carefully analyze the effect of action elimination. In this domain, the
agent starts at the center of the grid and needs to navigate to its upper-left corner. On every step,
the agent suffers a penalty of (−1), with a terminal reward of 0. Prior to the game, the states are
randomly divided into K categories. The environment has 4K navigation actions, 4 for each category,
each with a probability to move in a random direction. If the chosen action belongs to the same
category as the state, the action is performed correctly with probability pTc = 0.75. Otherwise, it will
be performed correctly with probability pFc = 0.5. If the action does not fit the state category, the
elimination signal equals 1, and if the action and state belong to the same category, then it equals
0. An optimal policy only uses the navigation actions from the same type as the state, as the other
actions are clearly suboptimal. We experimented with a vanilla Q-learning agent without action
elimination and a tabular version of action elimination Q-learning. Our simulations show that action
elimination dramatically improves the results in large action spaces. In addition, we observed that
the gain from action elimination increases as the amount of categories grows, and as the grid size
grows, since the elimination allows the agent to reach the goal earlier. We have also experimented
with random elimination signal and other modifications in the domain. Due to space constraints, we
refer the reader to the appendix for figures and visualization of the domain.

Zork domain: "This is an open field west of a white house, with a boarded front door. There is a
small mailbox here. A rubber mat saying ’Welcome to Zork!’ lies by the door". This is an excerpt
from the opening scene provided to a player in “Zork I: The Great Underground Empire”; one of the
first interactive fiction computer games, created by members of the MIT Dynamic Modeling Group
in the late 70s. By exploring the world via interactive text-based dialogue, the players progress in the
game. The world of Zork presents a rich environment with a large state and action space (Figure 2).
Zork players describe their actions using natural language instructions. For example, in the opening
excerpt, an action might be ‘open the mailbox’ (Figure 1(a)). Once the player describes his/her action,
it is processed by a sophisticated natural language parser. Based on the parser’s results, the game
presents the outcome of the action. The ultimate goal of Zork is to collect the Twenty Treasures of

3Our code, the Zork domain, and the implementation of the elimination signal can be found at:
https://github.com/TomZahavy/CB_AE_DQN
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Figure 2: Left: the world of Zork. Right: subdomains of Zork; the Troll (green) and Egg (blue)
Quests. Credit: S. Meretzky, The Strong National Museum of Play. Larger versions in Appendix B.

Zork and install them in the trophy case. Finding the treasures require solving a variety of puzzles
such as navigation in complex mazes and intricate action sequences. During the game, the player is
awarded points for performing deeds that bring him closer to the game’s goal (e.g., solving puzzles).
Placing all of the treasures into the trophy case generates a total score of 350 points for the player.
Points that are generated from the game’s scoring system are given to the agent as a reward. Zork
presents multiple challenges to the player, like building plans to achieve long-term goals; dealing
with random events like troll attacks; remembering implicit clues as well as learning the interactions
between objects in the game and specific actions. The elimination signal in Zork is given by the Zork
environment in two forms, a "wrong parse" flag, and text feedback (e.g. "you cannot take that"). We
group these two signals into a single binary signal which we then provide to our learning algorithm.
Before we started experimenting in the “Open Zork“ domain, i.e., playing in Zork without any
modifications to the domain, we evaluated the performance on two subdomains of Zork. These
subdomains are inspired by the Zork plot and are referred to as the Egg Quest and the Troll Quest
(Figure 2, right, and Appendix B). For these subdomains, we introduced an additional reward signal
(in addition to the reward provided by the environment) to guide the agent towards solving specific
tasks and make the results more visible. In addition, a reward of −1 is applied at every time step to
encourage the agent to favor short paths. When solving “Open Zork“ we only use the environment
reward. The optimal time that it takes to solve each quest is 6 in-game timesteps for the Egg quest, 11
for the Troll quest and 350 for “Open Zork”. The agent’s goal in each subdomain is to maximize
its cumulative reward. Each trajectory terminates upon completing the quest or after T steps are
taken. We set the discounted factor during training to γ = 0.8 but use γ = 1 during evaluation 4. We
used β = 0.5, ` = 0.6 in all the experiments. The results are averaged over 5 random seeds, shown
alongside error bars (std/3).

(a) A1,T=100 (b) A2,T=100 (c) A2,T=200
Figure 3: Performance of agents in the egg quest.

The Egg Quest: In this quest, the agent’s goal is to find and open the jewel-encrusted egg, hidden on
a tree in the forest. The agent is awarded 100 points upon successful completion of this task. We
experimented with the AE-DQN (blue) agent and a vanilla DQN agent (green) in this quest (Figure
3). The action set in this quest is composed of two subsets. A fixed subset of 9 actions that allow it to
complete the Egg Quest like navigate (south, east etc.) open an item and fight; And a second subset
consists of NTake “take” actions for possible objects in the game. The “take” actions correspond to
taking a single object and include objects that need to be collected to complete quests, as well as

4We adopted a common evaluation scheme that is used in the ALE. During learning and training we use
γ < 1 but evaluation is performed with γ = 1. Intuitively, during learning, choosing γ < 1 helps to learn, while
during evaluation, the sum of cumulative returns (γ = 1) is more interpretable (the score in the game).
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other irrelevant objects from the game dictionary. We used two versions of this action set, A1 with
NTake = 200 and A2 with NTake = 300. Robustness to hyperparameter tuning: We can see that
for A1, with T=100, (Figure 3a), and for A2, with T=200, (Figure 3c) Both agents solve the task well.
However, for A2, with T=100, (Figure 3b) the AE-DQN agent learns considerably faster, implying
that action elimination is more robust to hyperparameters settings when there are many actions.

Figure 4: Results in the Troll Quest.

The Troll Quest: In this quest, the agent must find a
way to enter the house, grab a lantern and light it, expose
the hidden entrance to the underworld and then find the
troll, awarding him 100 points. The Troll Quest presents
a larger problem than the Egg Quest, but smaller than
the full Zork domain; it is large enough to gain a useful
understanding of our agents’ performance. The AE-DQN
(blue) and DQN (green) agents use a similar action set to
A1 with 200 take actions and 15 necessary actions (215
in total). For comparison, We also included an "optimal
elimination" baseline (red) that consists of only 35 actions
(15 essential, and 20 relevant take actions). We can see in
Figure 5 that AE-DQN significantly outperforms DQN, achieving compatible performance to the
"optimal elimination" baseline. In addition, we can see that the improvement of the AE-DQN over
DQN is more significant in the Troll Quest than the Egg quest. This observation is consistent with
our tabular experiments.

Table 1: Experimental results in Zork

|A| cumulative
reward

Kostka et al. 2017 ≈ 150 13.5

Ours,A3 131 39

Ours,A3, 2M steps 131 44

Fulda et al. 2017 ≈ 500 8.8

Ours,A4 1227 16
Ours,A4, 2M steps 1227 16

“Open Zork“: Next, we evaluated our agent in the “Open
Zork“ domain (without hand-crafting reward and termina-
tion signals). To compare our results with previous work,
we trained our agent for 1M steps: each trajectory termi-
nates after T = 200 steps, and a total of 5000 trajectories
were executed 5. We used two action sets: A3, the “Min-
imal Zork“ action set, is the minimal set of actions (131)
that is required to solve the game (comparable with the
action set used by Kostka et al. (2017)). The actions are
taken from a tutorial for solving the game. A4, the “Open
Zork“ action set, includes 1227 actions (comparable with Fulda et al. (2017)). This set is created
from action "templates", composed of {Verb, Object} tuples for all the verbs (19) and objects (62)
in the game (e.g, open mailbox). In addition, we include a fixed set of 49 actions of varying length
(but not of length 2) that are required to solve the game. Table 1 presents the average (over seeds)
maximal (in each seed) reward obtained by our AE-DQN agent in this domain while using action sets
A3 and A4, showing that our agent achieves state-of-the-art results, outperforming all previous work.
In the appendix, we show the learning curves for both AE-DQN and DQN agents. Again, we can see
that AE-DQN outperforms DQN, learning faster and achieving more reward.

6 Summary

In this work, we proposed the AE-DQN, a DRL approach for eliminating actions while performing
Q-learning, for solving MDPs with large state and action spaces. We tested our approach on the
text-based game Zork, showing that by eliminating actions the size of the action space is reduced,
exploration is more effective, and learning is improved. We provided theoretical guarantees on the
convergence of our approach using linear contextual bandits. In future work, we plan to investigate
more sophisticated architectures, as well as learning shared representations for elimination and control
which may boost performance on both tasks. In addition, we aim to investigate other mechanisms for
action elimination, e.g., eliminating actions that result from low Q-values (Even-Dar, Mannor, and
Mansour, 2003). Another direction is to generate elimination signals in real-world domains. This can
be done by designing a rule-based system for actions that should be eliminated, and then, training an
AEN to generalize these rules for states that were not included in these rules. Finally, elimination
signals may be provided implicitly, e.g., by human demonstrations of actions that should not be taken.

5The same amount of steps that were used in previous work on Zork (Fulda et al., 2017; Kostka et al., 2017).
For completeness, we also report results for AE-DQN with 2M steps, where learning seemed to converge.
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Appendix A Proof of Proposition 1

Proposition 1. Assume that all state action pairs (s, a) are visited infinitely often unless eliminated

according to θ̂Tt−1,ax(s)−
√
βt−1(δ̃)x(s)T V̄ −1t−1,ax(s) > `. Then, with a probability of at least 1− δ,

action elimination Q-learning converges to the optimal Q-function for any valid state-action pairs. In
addition, actions which should be eliminated are visited at most Ts,a(t) ≤ 4βt/(u− `)2 + 1 times.

Proof. We start by proving the convergence of the algorithm and then prove the bound on the number
of visits of invalid actions.

Denote the MDP as M . According to Equation 1, with probability of at least 1− δ, elimination by
Equation 2 never eliminates a valid action, and thus all of these actions are visited infinitely often.
If all of the state-action pairs are visited infinitely often even after the elimination, the Q-learning
will converge at all state-action pairs. Otherwise, there are some invalid actions, which are strictly
suboptimal, and are visited a finite number of times. In this case, there exists some time T <∞ such
that all of these actions are never played for any t > T . Define a new MDP M̃ , as M without any
of the eliminated actions. As these actions are strictly suboptimal, the value of M̃ will be identical
to the value of M in all states, and so are the Q-values for any action that survived the elimination.
Furthermore, M̃ contains all of the valid states, and their Q-values will be identical those of M , as
they only depend on the reward in the valid state-action pairs and the value in the next state, both
which exist in M̃ . For any t > T , M is equivalent to M̃ , and all of its state-actions are visited
infinitely often. Therefore, the Q-function will converge to the optimal Q-function with probability 1
in all of M̃ ’s state-action pairs. Specifically, it will converge in all of valid state-action pairs (s, a),
which concludes the first part of the proof.

We’ll now prove the sample complexity of any invalid actions. First, note that the confidence bound
is strongly related to the number of visits in a state-action pair:

x(st)
T V̄ −1

t−1,ax(st) = x(st)
T

λI + Ts,a(t− 1)x(st)x(st)
T +

∑
s′ 6=st

Ts′,a(t− 1)x(s′)x(s′)T


−1

x(st)

(1)

≤ x(st)
T
{
λI + Ts,a(t− 1)x(st)x(st)

T
}−1

x(st)

(2)
=
‖x(st)‖2

λ
−

Ts,a(t− 1) ‖x(st)‖
4

λ2

1 + Ts,a(t− 1) ‖x(st)‖
2

λ

=
‖x(st)‖2

λ+ Ts,a(t− 1)‖x(st)‖2
≤ 1

Ts,a(t− 1)
(3)

(1) is correct due to the fact that for any positive definite A and positive semidefinite B, the difference
A−1 − (A + B)−1 is positive semidefinite. (2) is correct due to the Sherman–Morrison formula
(Bartlett, 1951). We note that this bound is not tight because it does not use the correlations between
different contexts. In fact, the same bound can be probably achieved by placing a multi-armed bandit
algorithm in each state. Deriving a tighter bound that utilizes the correlation between contexts is
hard, as it is possible to observe a state that its context is not correlated with other states’ contexts.
Nevertheless, the confidence bounds for contextual bandits can be used in the non-tabular case, in
contrast to a MAB formulation.

This implies that a satisfactory condition for correct elimination is

x(st)
T θ̂t−1,a −

√
βt−1(δ̃)x(st)T V̄

−1
t−1,ax(st)

(1)

≥ u− 2
√
βt−1(δ̃)x(st)T V̄

−1
t−1,ax(st)

(2)

≥ u− 2

√
βt−1(δ̃)

Ts,a(t− 1)
> `
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where (1) is correct due to Equation 2 with E[e(st, a)] = θ∗a
Tx(st) ≥ u, with probability 1− δ, and

(2) is correct due to Equation 3. Therefore, if Ts,a(t) ≥ 4 βt
(u−`)2 then action a in state s is correctly

eliminated. We emphasize that the bound does not depend on the algorithm that chooses state-actions,
except for the dependency of βt, through V̄t,a, in the history. Using the fact that βt is monotonically
increasing with t, with probability 1− δ, all of the invalid actions are sampled no more than

Ts,a(t) ≤
t∑

τ=1

1

{
Ts,a(τ) ≤ 4

βτ
(u− `)2

}

≤
t∑

τ=1

1

{
Ts,a(τ) ≤ 4

βt
(u− `)2

}
≤ 4

βt
(u− `)2

+ 1

If the sub-gaussianity parameter is R = 0, we have βt = λS2 < ∞, and therefore an arm will
be sampled at most a finite number of times T0 = 4 λS2

(u−`)2 + 1 < ∞. Otherwise, if the state
representations are bounded, i.e. ∀s, ‖x(s)‖2 ≤ L, then, using the simpler form of βt, the bound can
be written as limt→∞

Ts,a(t)

log( tδ )
≤ 4R2d

(u−`)2 , which means an invalid action is sampled a logarithmic

number of times.

Appendix B Grid world simulations

In this Section, we experimented with action elimination in a grid world domain with a tabular
Q-learning algorithm. We start with the following default configuration (Figure 5). The grid size is
30x30, the number of state categories is K = 10, and the maximal episode length is T = 150. If the
chosen action is from the same category as the current state, it is performed correctly in probability
pTc = 0.75, and if the state and action types are different, the probability is pFc = 0.5. We also study
the effect of the domain’s parameters on the performance of action elimination, by changing these
parameters one at a time.

Figure 5: 30x30 Grid World - the agent starts at the center (green) and needs to navigate to the
upper-left corner (blue) while avoiding walls (yellow).

On each of the simulations, the results were filtered by a moving average filter of length 200, which
is needed due to the stochastic nature of the domain. The results are averaged over 5 random seeds,
shown alongside error bars (std/3).

Since the problem is tabular, we use confidence intervals in the spirit of UCT (Kocsis and Szepesvári,
2006) - denote the empirical mean of the elimination signal by ē(s, a) and the number of visits in a

state-action pair by N(s, a). An action will be eliminated if ē(s, a)−
√

2
∑
aN(s,a)

N(s,a) > ` , 0.5. The
Q-function was initially set to 0, the learning rates were chosen according to (Even-Dar and Mansour,
2003), and we set γ = 1.
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We start with comparison between vanilla Q-learning without action elimination (green) and a
tabular version of the action elimination Q-learning (blue) (Figure 6). We also include an "optimal
elimination" baseline, i.e., a Q-learning agent with one category (red), i.e., only 4 basic navigation
actions, which forms an upper bound on performance with multiple categories. In Figure 6(a),6(c),
the episode length is T = 150, and in Figure 6(b) it is T = 300, to allow sufficient exploration for
the vanilla Q-Learning.

(a) 30x30,K=1,10 (b) 30x30,K=1,25 (c) 20x20,K=1,10
Figure 6: Performance of agents in grid world.

We can see that action elimination significantly improves the Q-learning algorithm (blue) over the
baseline (green). In Figure 6(b), we increased the number of state categories. We can see that
in this case, the action elimination dramatically improves in comparison to the vanilla algorithms,
since there are more invalid actions (compare Figure 6(a) with Figure 6(b)). Figure 7(a) present the
simulation results with a 40x40 grid world. When compared to Figures 6(a),6(c), with grid of 30x30
and 20x20, respectively, we can conclude that action elimination becomes more effective as the grid
size increases. Intuitively, it is relatively easy to reach the goal state on small grids, even if the action
space is large, and therefore even random exploration will bring the agent to the goal quickly. From
the moment the agent reaches the goal, its policy will be biased towards the goal’s direction, and it
becomes easier to distinguish between valid and invalid actions.

Next, we make a small modification in the domain and consider a random elimination signal, i.e., if
the action does not fit the state category, an elimination signal will be equal 1 in probability pFe . If the
action and state belong to the same category, the probability is pTe . Specifically, we let pFe change
between 1 to 0.6 in invalid actions, and pTe between 0 to 0.4 in valid actions. Inspecting Figure 7(b),
we observe that only when the elimination signal is almost completely random, the action elimination
algorithm does not present superior performance.

Finally, Figure 7(c) present a scenario where valid actions has almost no randomness (pTc = 0.9),
while invalid actions are almost completely random (pFc = 0.1). Thus, it is easier to identify the
invalid actions, and specifically, understand that these actions are suboptimal. The results indeed show
that while action elimination Q-learning converges faster than the vanilla Q-learning, the difference
between the convergence rates is smaller.

(a) 40x40,K=1,10, T=300 (b) 30x30,different elimination prob-
ability

(c) 30x30, different random step
probability

Figure 7: Performance of agents in grid world.

In summary, the tabular simulations showed a significant improvement due to action elimination,
especially when the action space is large, the optimal and suboptimal actions are hard to distinct, and
the horizon required to reach the goal is large.
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Appendix C Additional figures

(a) A3 (b) A4

Figure 8: Results in "Open Zork".
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Appendix D Maps of Zork

Figure 9: The world of Zork

Figure 10: Subdomains of Zork; the Troll (green) and Egg (blue) Quests. Credit: S. Meretzky, The
Strong National Museum of Play.
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