
6 Appendix

6.1 Manifold

Proposition 10. If S(x, θ) is differentiable with respect to x and∇xS(x, θ) 6= 0 throughout Bθ, Bθ
is an (d− 1)-dimensional differentiable manifold and has measure zero.

Proof. For any point b ∈ Bθ, since ∇xS(x, θ) 6= 0, there is some direction where ∇xS(x, θ) is
non-zero. By the implicit function theorem, this means that there is a differentiable mapping from a
subset of Rd−1 to a neighborhood of b within Bθ. Thus, Bθ is a (d− 1)-dimensional differentiable
manifold. Further, in Rd, every open cover has a countable subcover. Thus, there is a countable
family of local patches (with local differentiable charts). Since each local patch is a continuous
mapping from a measure zero set Rd−1, the local patches have measure zero. Since a countable union
of measure zero sets has measure zero, Bθ has measure zero.

6.2 Important Lemma

Lemma 11. Suppose θ ∈ Θregular and Assumption 7 holds. If g(x) is smooth and has bounded
support,

F (s) =

∫
S(x,θ)<s

g(x)dx (15)

is smooth at 0.

Proof. For this proof, we rely heavily on the arguments in Hoveijn (2007)

Since g(x) has bounded support, for ‖x‖ ≥Mx, g(x) = 0. Intuitively, this means we can define a
function that is equal to S(x, θ) for ‖x‖ ≤Mx and is a small value ‖x‖ ≥Mx and mollify to make
it smooth. More precisely, let Smin = min(−2,min‖x‖<2Mx

S(x, θ)). Define f(x) to be equal to
S(x, θ) inside a ball of radius 2Mx and equal to Smin outside. Then mollify the function between
balls of radiusMx and 2Mx. If we shift the function by Smin, the function is smooth, always positive,
and vanishes at infinity. Thus, it satisfies the Shifted class C functions of Definition 2 of Hoveijn
(2007).

Then, we can examine the function

G(s) =

∫
−1<f(x)<s

g(x)dx, (16)

which will have the same derivatives (if they exist) as F (s) around 0. Note that Smin ≤ −2 < −1,
so the integration between the level sets is well-defined.

0 is a regular value because θ ∈ Θregular. Further, we don’t need the non-degeneracy conditions of
Hoveijn (2007) because ∇xS(x, θ) is continuous (Assumption 7) on a compact set (the support of
g(x)) and thus is bounded below. And thus, a neighborhood around 0 are regular values.

We can use the flow box and diffeomorphism argument from Hoveijn (2007) to express the volume
function as an integral with h as the upper limit (see Proposition 7 of Hoveijn (2007)). While Hoveijn
(2007) uses 1 as the integrand, the same argument holds for g(x) as the integrand, and we recover
that since g(x) is smooth, the integral is smooth.

6.3 Decision Boundary Density

Proposition 12. If θ ∈ Θregular and Assumptions 5, 6 and 7 hold, then b(θ) exists.

11



Proof. The existence of b(θ) will follow from Lemma 11.

Define

F (s) =

∫
S(x,θ)<s

p∗(x)dx (17)

= Pr
x∼p∗

[S(x, θ) < s] (18)

then b(θ) = F ′(0) which exists by Lemma 11.

6.3.1 Gradient of Z

Lemma 13.

∇Z(θ) = −1

2
lim
s→0

1

s

∫
|S(x,θ)|≤s

∇θS(x, θ)E[y|x]p(x)dx (19)

Proof. The model classifies correctly when S(x, θ)y > 0 and classifies incorrectly when S(x, θ)y <
0

∇Z(θ) · a = lim
h→0

1

2h
(Z(θ + ha)− Z(θ − ha)) (20)

= lim
h→0

1

2h
[

∫
S(x,θ+ha)>0

Pr[y = −1|x]dp(x) +

∫
S(x,θ+ha)<0

Pr[y = 1|x]dp(x)−

(21)

−
∫
S(x,θ−ha)>0

Pr[y = −1|x]dp(x)−
∫
S(x,θ−ha)<0

Pr[y = 1|x]dp(x)] (22)

= lim
h→0

1

2h
[

∫
S(x,θ+ha)<0,S(x,θ−ha)<0

(Pr[y = 1|x]− Pr[y = 1|x])dp(x)+ (23)

+

∫
S(x,θ+ha)>0,S(x,θ−ha)<0

(Pr[y = −1|x]− Pr[y = 1|x])dp(x)+ (24)

+

∫
S(x,θ+ha)<0,S(x,θ−ha)>0

(Pr[y = 1|x]− Pr[y = −1|x])dp(x)+ (25)

+

∫
S(x,θ+ha)>0,S(x,θ−ha)>0

(Pr[y = −1|x]− Pr[y = −1|x])dp(x)] (26)

= lim
h→0

1

2h
[

∫
S(x,θ+ha)<0,S(x,θ−ha)>0

E[y|x]dp(x)−
∫
S(x,θ+ha)>0,S(x,θ−ha)<0

E[y|x]dp(x)]

(27)

Applying Taylor’s theorem,

∇Z(θ) · a = lim
h→0

1

2h
[

∫
|S(x,θ)|<−ha·∇θS(x,θ)+O(h2)

E[y|x]dp(x)−
∫
|S(x,θ)|<ha·∇θS(x,θ)+O(h2)

E[y|x]dp(x)]

(28)

Because h→ 0,

∇Z(θ) · a = lim
h→0

1

2h
[

∫
|S(x,θ)|<−ha·∇θS(x,θ)

E[y|x]dp(x)−
∫
|S(x,θ)|<ha·∇θS(x,θ)

E[y|x]dp(x)]

(29)
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∇Z(θ) · a = lim
h→0

∫
|S(x,θ)|<|ha·∇θS(x,θ)|

−sgn(ha · ∇θS(x, θ))

2h
E[y|x]dp(x) (30)

∇Z(θ) · a = −1

2
lim
h→0

∫
|S(x,θ)|<|ha·∇θS(x,θ)|

1

|ha · ∇θS(x, θ)|
a · ∇θS(x, θ)E[y|x]dp(x) (31)

∇Z(θ) · a = −1

2
lim
s→0

∫
|S(x,θ)|<s

1

s
a · ∇θS(x, θ)E[y|x]dp(x) (32)

∇Z(θ) · a = a · −1

2
lim
s→0

1

s

∫
|S(x,θ)|<s

∇θS(x, θ)E[y|x]dp(x) (33)

(34)

And thus,

∇Z(θ) = −1

2
lim
s→0

1

s

∫
|S(x,θ)|<s

∇θS(x, θ)E[y|x]dp(x) (35)

6.4 Expected gradient of loss for uncertainty sampling

Theorem 8. If Assumptions 2, 5, 6, and 7 hold and θ ∈ Θregular and b(θ) 6= 0, then if z(t) is chosen
via uncertainty sampling with the parameters θ,

lim
nminipool→∞

E[∇`(z(t), θ)] =
−ψ′(0)

b(θ)
∇Z(θ). (36)

Proof. We can decompose drawing the closest point as first drawing an absolute value of the score
s2 that is the second closest to 0 and then drawing the closest point conditioned on that score, which
will be according to p∗(x, y) among the x with |S(x, θ)| ≤ s2.

Let r(s) = E|S(x,θ)|≤s[Ey|x[∇θ`((x, y), θ)]]. As long as s > 0 and P (|S(x, θ)| ≤ s) > 0, it is
well-defined quantity since ∇θ`(z(t); θ) < M`. However, if P (|S(x, θ)| ≤ s) = 0 for s > 0, then
b(θ) = 0 (which we assumed is not the case). Thus, for s > 0, r(s) is defined.

lim
nminipool→∞

E[∇`(z(t); θ)] = lim
nminipool→∞

E[r(s2)] (37)

For any s > 0, P (|S(x, θ)| ≤ s) > 0 (from above) which implies that as nminipool → ∞, P (s2 ≥
s)→ 0. Thus,

s2 →P 0 (38)

Thus, since∇θ`(z(t); θ) < M`, r(s2) is bounded, so if the limit lims→0 r(s) exists, then:

lim
nminipool→∞

E[r(s2)] = lim
s→0

r(s) (39)

13



lim
s→0

r(s) = lim
s→0

E|S(x,θ)|≤s[∇θ`(z, θ)] (40)

= lim
s→0

∫
|S(x,θ)|≤s∇θ`((x, y), θ)dp∗(x, y)∫

|S(x,θ)|≤s dp
∗(x, y)

(41)

= lim
s→0

∫
|S(x,θ)|≤s∇θψ(yS(x, θ))dp∗(x, y)∫

|S(x,θ)|≤s dp
∗(x, y)

(42)

= lim
s→0

∫
|S(x,θ)|≤s ψ

′(yS(x, θ))y∇θS(x, θ)dp∗(x, y)∫
|S(x,θ)|≤s dp

∗(x, y)
(43)

= ψ′(0) lim
s→0

∫
|S(x,θ)|≤s y∇θS(x, θ)dp∗(x, y)∫

|S(x,θ)|≤s dp
∗(x, y)

(44)

lim
s→0

r(s) = ψ′(0)
lims→0

1
s

∫
|S(x,θ)|≤s y∇θS(x, θ)dp∗(x, y)

lims→0
1
s

∫
|S(x,θ)|<s p(x)dx

(45)

The bottom limit exists by 12 and the top limit exists by an adaption of Proposition 12 with replacing
the integrand p∗(x) with ∇θS(x, θ)(p∗(x, y = 1)− p∗(x, y = −1)) (which is smooth). This can be
done by Lemma 11.

The bottom is exactly 2b(θ),

lim
s→0

r(s) =
ψ′(0)

2b(θ)
lim
s→0

1

s

∫
|S(x,θ)|≤s

y∇θS(x, θ)dp∗(x, y) (46)

=
−ψ′(0)

b(θ)

[
−1

2
lim
s→0

1

s

∫
|S(x,θ)|≤s

y∇θS(x, θ)dp∗(x, y)

]
(47)

=
−ψ′(0)

b(θ)
∇Z(θ) (48)

The last line follows from Lemma 13.

6.5 Descent Direction

Theorem 9. Assume that Assumptions 1, 2, 5, 6, and 7 hold, and assume ψ′(0) < 0. For any
b0 > 0, ε > 0, and n, for any sufficiently large λ ≥ 2M

3/2
` b

1/2
0 (−ψ′(0))−1/2ε−1/2n2/3, for all

iterates of uncertainty sampling {θt} where θt−1 ∈ Θregular, ‖∇Z(θt−1)‖ ≥ ε, and b(θt−1) ≤ b0, as
nminipool →∞,

∇Z(θt−1) · E[θt − θt−1|θt−1] < 0. (49)

Proof. The first thing to note is that if ‖∇Z(θt−1)‖ > 0, then b(θt−1) > 0.

‖∇Z(θt−1)‖ > 0 (50)

‖ − 1

2
lim
s→0

1

s

∫
|S(x,θt−1)|≤s

∇S(x, θt−1)E[y|x]p(x)dx‖ > 0 (51)

lim
s→0

1

s

∫
|S(x,θt−1)|≤s

‖∇S(x, θt−1)‖|E[y|x]|p(x)dx > 0 (52)

lim
s→0

1

s

∫
|S(x,θt−1)|≤s

M`p(x)dx > 0 (53)

M`b(θt−1) > 0 (54)
b(θt−1) > 0 (55)

(56)
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This will allow us to use Theorem 8 later in the proof.

As in the main text, we have

Lt(θ) =

t∑
i=1

`(z(i), θ) + λ‖θ‖22 (57)

Thus, Lt(θ) = Lt−1(θ) + `(z(t), θ) and further ∇Lt(θt) = 0. Together, this implies that
∇Lt(θt−1) = ∇`(z(t), θt−1).

Using the Taylor expansion, for some value θ′ on the line segment between θt and θt−1,

0 = ∇Lt(θt) = ∇`(z(t), θt−1) +∇2Lt(θ
′)(θt − θt−1) (58)

θt − θt−1 = −[∇2Lt(θ
′)]−1∇`(z(t), θt−1) (59)

‖θt − θt−1‖ ≤
M`

λ
(60)

Further, we can do another larger Taylor expansion,

0 = ∇Lt(θt) = ∇`(z(t), θt−1) +∇2Lt(θt−1)(θt − θt−1) +Q (61)

where

Qi = (θt − θt−1)T [∇3Lt(θ
′′)]i(θt − θt−1) (62)

|Qi| ≤
M`

λ
‖[∇3Lt(θ

′′)]i‖F
M`

λ
(63)

‖Q‖ ≤ M3
` n

λ2
(64)

For simplicity, define g = ∇Z(θt−1).

From the three-term Taylor expansion,

θt − θt−1 = −[∇2Lt(θt−1)]−1(∇`(z(t), θt−1) +Q) (65)

−g · (θt − θt−1) = gT [∇2Lt(θt−1)]−1(∇`(z(t), θt−1) +Q) (66)

= gT [∇2Lt(θt−1)]−1∇`(z(t), θt−1) + gT [∇2Lt(θt−1)]−1Q (67)

≥ gT [∇2Lt(θt−1)]−1∇`(z(t), θt−1)− ‖g‖ 1

λ

M3
` n

λ2
(68)

≥ gT [∇2Lt(θt−1)]−1∇`(z(t), θt−1)− ‖g‖M
3
` n

λ3
(69)

Noting that (A+B)−1 = A−1 −A−1B(A+B)−1, we can expand

[∇2Lt(θt−1)]−1 = [∇2Lt−1(θt−1)]−1 −R (70)

where R = [∇2Lt−1(θt−1)]−1∇2`(z(t), θt−1)[∇2Lt(θt−1)]−1 and thus ‖R‖ ≤ M`

λ2

−g · (θt − θt−1) ≥ gT [∇2Lt−1(θt−1)]−1`(z(t), θt−1)− ‖g‖M
2
`

λ2
− ‖g‖M

3
` n

λ3
(71)
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On the right side, the only thing that depends on the randomness at iteration t is `(z(t), θt−1) whose
expectation is given by Theorem 8 (this is where we use that θ ∈ Θregular and b(θ) > 0). So taking
the expectation for uncertainty sampling and noting nminipool →∞,

−g · E[θt − θt−1|θt−1] ≥ gT [∇2Lt−1(θt−1]−1
−ψ′(0)

b(θt−1)
g − ‖g‖M

2
`

λ2
− ‖g‖M

3
` n

λ3
(72)

≥ −ψ
′(0)

b(θt−1)

‖g‖2

(t− 1)M`
− ‖g‖M

2
`

λ2
− ‖g‖M

3
` n

λ3
(73)

≥ −ψ
′(0)

b(θt−1)

‖g‖2

nM`
− ‖g‖M

2
`

λ2
− ‖g‖M

3
` n

λ3
(74)

≥ ‖g‖
M`n

[
−ψ′(0)

b(θt−1)
‖g‖ − M3

` n

λ2
− M4

` n
2

λ3

]
(75)

≥ ε

M`n

[
−ψ′(0)

b0
ε− M3

` n

λ2
− M4

` n
2

λ3

]
(76)

(77)

Therefore, for λ ≥ 2M
3/2
` b

1/2
0 (−ψ′(0))−1/2ε−1/2n2/3 (and ensuring each power is at least 1),

−g · E[θt − θt−1|θt−1] > 0 (78)

Flipping the sign and plugging in g, we get the result.
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