6 Appendix

6.1 Manifold

Proposition 10. *If* $S(x, \theta)$ *is differentiable with respect to* x and $\nabla_x S(x, \theta) \neq 0$ *throughout* B_θ , B_θ *is an* (d − 1)*-dimensional differentiable manifold and has measure zero.*

Proof. For any point $b \in B_\theta$, since $\nabla_x S(x, \theta) \neq 0$, there is some direction where $\nabla_x S(x, \theta)$ is non-zero. By the implicit function theorem, this means that there is a differentiable mapping from a subset of \mathbb{R}^{d-1} to a neighborhood of b within B_{θ} . Thus, B_{θ} is a $(d-1)$ -dimensional differentiable manifold. Further, in \mathbb{R}^d , every open cover has a countable subcover. Thus, there is a countable family of local patches (with local differentiable charts). Since each local patch is a continuous mapping from a measure zero set \mathbb{R}^{d-1} , the local patches have measure zero. Since a countable union of measure zero sets has measure zero, B_{θ} has measure zero. \Box

6.2 Important Lemma

Lemma 11. *Suppose* $\theta \in \Theta_{\text{regular}}$ *and Assumption* 7 *holds. If* $g(x)$ *is smooth and has bounded support,*

$$
F(s) = \int_{S(x,\theta) < s} g(x) \, dx \tag{15}
$$

is smooth at 0*.*

Proof. For this proof, we rely heavily on the arguments in Hoveijn (2007)

Since $g(x)$ has bounded support, for $||x|| \ge M_x$, $g(x) = 0$. Intuitively, this means we can define a function that is equal to $S(x, \theta)$ for $||x|| \leq M_x$ and is a small value $||x|| \geq M_x$ and mollify to make it smooth. More precisely, let $S_{min} = \min(-2, \min_{\|x\| < 2M_x} S(x, \theta))$. Define $f(x)$ to be equal to $S(x, \theta)$ inside a ball of radius $2M_x$ and equal to S_{min} outside. Then mollify the function between balls of radius M_x and $2M_x$. If we shift the function by S_{min} , the function is smooth, always positive, and vanishes at infinity. Thus, it satisfies the Shifted class C functions of Definition 2 of Hoveijn (2007).

Then, we can examine the function

$$
G(s) = \int_{-1 < f(x) < s} g(x) dx,\tag{16}
$$

which will have the same derivatives (if they exist) as $F(s)$ around 0. Note that $S_{min} \leq -2 < -1$, so the integration between the level sets is well-defined.

0 is a regular value because $\theta \in \Theta_{\text{regular}}$. Further, we don't need the non-degeneracy conditions of Hoveijn (2007) because $\nabla_x S(x, \theta)$ is continuous (Assumption 7) on a compact set (the support of $g(x)$) and thus is bounded below. And thus, a neighborhood around 0 are regular values.

We can use the flow box and diffeomorphism argument from Hoveijn (2007) to express the volume function as an integral with h as the upper limit (see Proposition 7 of Hoveijn (2007)). While Hoveijn (2007) uses 1 as the integrand, the same argument holds for $g(x)$ as the integrand, and we recover that since $g(x)$ is smooth, the integral is smooth.

 \Box

6.3 Decision Boundary Density

Proposition 12. *If* $\theta \in \Theta$ _{regular} and Assumptions 5, 6 and 7 hold, then $b(\theta)$ exists.

Proof. The existence of $b(\theta)$ will follow from Lemma [11.](#page-0-0) Define

$$
F(s) = \int_{S(x,\theta) < s} p^*(x) dx \tag{17}
$$

$$
=\Pr_{x \sim p^*}[S(x,\theta) < s] \tag{18}
$$

then $b(\theta) = F'(0)$ which exists by Lemma [11.](#page-0-0)

$$
\qquad \qquad \Box
$$

6.3.1 Gradient of Z

Lemma 13.

$$
\nabla Z(\theta) = -\frac{1}{2} \lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| \le s} \nabla_{\theta} S(x,\theta) \mathbb{E}[y|x] p(x) dx \tag{19}
$$

Proof. The model classifies correctly when $S(x, \theta)y > 0$ and classifies incorrectly when $S(x, \theta)y <$ 0

$$
\nabla Z(\theta) \cdot a = \lim_{h \to 0} \frac{1}{2h} (Z(\theta + ha) - Z(\theta - ha))
$$
\n
$$
= \lim_{h \to 0} \frac{1}{2h} \left[\int_{S(x,\theta + ha) > 0} \Pr[y = -1 | x] dp(x) + \int_{S(x,\theta + ha) < 0} \Pr[y = 1 | x] dp(x) - \int_{S(x,\theta + ha) < 0} \Pr[y = 1 | x] dp(x) \right]
$$
\n(20)

$$
-\int_{S(x,\theta-ha)>0} \Pr[y=-1|x]dp(x) - \int_{S(x,\theta-ha)<0} \Pr[y=1|x]dp(x)] \tag{22}
$$

$$
= \lim_{h \to 0} \frac{1}{2h} \left[\int_{S(x,\theta + ha) < 0, S(x,\theta - ha) < 0} (\Pr[y=1|x] - \Pr[y=1|x]) dp(x) + \right] \tag{23}
$$

+
$$
\int_{S(x,\theta+ha)>0,S(x,\theta-ha)<0} (\Pr[y=-1|x]-\Pr[y=1|x])dp(x)+
$$
 (24)

$$
+\int_{S(x,\theta+ha)<0,S(x,\theta-ha)>0} (\Pr[y=1|x]-\Pr[y=-1|x])dp(x)+\tag{25}
$$

$$
+\int_{S(x,\theta+ha)>0,S(x,\theta-ha)>0} (\Pr[y=-1|x]-\Pr[y=-1|x])dp(x)] \tag{26}
$$

$$
= \lim_{h \to 0} \frac{1}{2h} \left[\int_{S(x,\theta + ha) < 0, S(x,\theta - ha) > 0} \mathbb{E}[y|x] dp(x) - \int_{S(x,\theta + ha) > 0, S(x,\theta - ha) < 0} \mathbb{E}[y|x] dp(x) \right]
$$
\n(27)

Applying Taylor's theorem,

$$
\nabla Z(\theta) \cdot a = \lim_{h \to 0} \frac{1}{2h} \left[\int_{|S(x,\theta)| < -ha \cdot \nabla_{\theta} S(x,\theta) + O(h^2)} \mathbb{E}[y|x] dp(x) - \int_{|S(x,\theta)| < ha \cdot \nabla_{\theta} S(x,\theta) + O(h^2)} \mathbb{E}[y|x] dp(x) \right]
$$
\n(28)

Because $h \to 0$,

$$
\nabla Z(\theta) \cdot a = \lim_{h \to 0} \frac{1}{2h} \left[\int_{|S(x,\theta)| < -ha \cdot \nabla_{\theta} S(x,\theta)} \mathbb{E}[y|x] dp(x) - \int_{|S(x,\theta)| < ha \cdot \nabla_{\theta} S(x,\theta)} \mathbb{E}[y|x] dp(x) \right]
$$
\n(29)

$$
\nabla Z(\theta) \cdot a = \lim_{h \to 0} \int_{|S(x,\theta)| < |ha \cdot \nabla_{\theta} S(x,\theta)|} \frac{-\text{sgn}(ha \cdot \nabla_{\theta} S(x,\theta))}{2h} \mathbb{E}[y|x] dp(x) \tag{30}
$$

$$
\nabla Z(\theta) \cdot a = -\frac{1}{2} \lim_{h \to 0} \int_{|S(x,\theta)| < |ha \cdot \nabla_{\theta} S(x,\theta)|} \frac{1}{|ha \cdot \nabla_{\theta} S(x,\theta)|} a \cdot \nabla_{\theta} S(x,\theta) \mathbb{E}[y|x] dp(x) \tag{31}
$$

$$
\nabla Z(\theta) \cdot a = -\frac{1}{2} \lim_{s \to 0} \int_{|S(x,\theta)| < s} \frac{1}{s} a \cdot \nabla_{\theta} S(x,\theta) \mathbb{E}[y|x] dp(x)
$$
 (32)

$$
\nabla Z(\theta) \cdot a = a \cdot -\frac{1}{2} \lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| < s} \nabla_{\theta} S(x,\theta) \mathbb{E}[y|x] dp(x)
$$
\n(33)

$$
(34)
$$

And thus,

$$
\nabla Z(\theta) = -\frac{1}{2} \lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| < s} \nabla_{\theta} S(x,\theta) \mathbb{E}[y|x] dp(x)
$$
 (35)

6.4 Expected gradient of loss for uncertainty sampling

Theorem 8. If Assumptions 2, 5, 6, and 7 hold and $\theta \in \Theta_{regular}$ and $b(\theta) \neq 0$, then if $z^{(t)}$ is chosen *via uncertainty sampling with the parameters* θ*,*

$$
\lim_{n_{minpool} \to \infty} \mathbb{E}[\nabla \ell(z^{(t)}, \theta)] = \frac{-\psi'(0)}{b(\theta)} \nabla Z(\theta).
$$
\n(36)

Proof. We can decompose drawing the closest point as first drawing an absolute value of the score s² that is the *second closest* to 0 and then drawing the closest point conditioned on that score, which will be according to $p^*(x, y)$ among the x with $|\overline{S}(x, \theta)| \leq s_2$.

Let $r(s) = \mathbb{E}_{|S(x,\theta)|\leq s}[\mathbb{E}_{y|x}[\nabla_{\theta} \ell((x,y),\theta)]].$ As long as $s > 0$ and $P(|S(x,\theta)| \leq s) > 0$, it is well-defined quantity since $\nabla_{\theta} \ell(z^{(t)}; \theta) < M_{\ell}$. However, if $P(|S(x, \theta)| \le s) = 0$ for $s > 0$, then $b(\theta) = 0$ (which we assumed is not the case). Thus, for $s > 0$, $r(s)$ is defined.

$$
\lim_{n_{\text{minpool}} \to \infty} \mathbb{E}[\nabla \ell(z^{(t)}; \theta)] = \lim_{n_{\text{minpool}} \to \infty} \mathbb{E}[r(s_2)] \tag{37}
$$

For any $s > 0$, $P(|S(x, \theta)| \le s) > 0$ (from above) which implies that as $n_{\text{minpool}} \to \infty$, $P(s_2 \ge$ $s) \rightarrow 0$. Thus,

$$
s_2 \to_P 0 \tag{38}
$$

Thus, since $\nabla_{\theta} \ell(z^{(t)}; \theta) < M_{\ell}$, $r(s_2)$ is bounded, so if the limit $\lim_{s\to 0} r(s)$ exists, then:

$$
\lim_{n_{\text{minpool}} \to \infty} \mathbb{E}[r(s_2)] = \lim_{s \to 0} r(s)
$$
\n(39)

$$
\lim_{s \to 0} r(s) = \lim_{s \to 0} \mathbb{E}_{|S(x,\theta)| \le s} [\nabla_{\theta} \ell(z,\theta)] \tag{40}
$$

$$
= \lim_{s \to 0} \frac{\int_{|S(x,\theta)| \le s} \nabla_{\theta} \ell((x,y), \theta) dp^*(x,y)}{\int_{|S(x,\theta)| \le s} dp^*(x,y)} \tag{41}
$$

$$
= \lim_{s \to 0} \frac{\int_{|S(x,\theta)| \le s} \nabla_{\theta} \psi(yS(x,\theta)) dp^*(x,y)}{\int_{|S(x,\theta)| \le s} dp^*(x,y)}
$$
(42)

$$
= \lim_{s \to 0} \frac{\int_{|S(x,\theta)| \le s} \psi'(yS(x,\theta)) y \nabla_{\theta} S(x,\theta) dp^*(x,y)}{\int_{|S(x,\theta)| \le s} dp^*(x,y)}
$$
(43)

$$
= \psi'(0) \lim_{s \to 0} \frac{\int_{|S(x,\theta)| \le s} y \nabla_{\theta} S(x,\theta) dp^*(x,y)}{\int_{|S(x,\theta)| \le s} dp^*(x,y)} \tag{44}
$$

$$
\lim_{s \to 0} r(s) = \psi'(0) \frac{\lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| \le s} y \nabla_{\theta} S(x,\theta) dp^*(x,y)}{\lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| \le s} p(x) dx}
$$
(45)

The bottom limit exists by [12](#page-0-1) and the top limit exists by an adaption of Proposition [12](#page-0-1) with replacing the integrand $p^*(x)$ with $\nabla_\theta S(x,\theta)(p^*(x,y=1)-p^*(x,y=-1))$ (which is smooth). This can be done by Lemma [11.](#page-0-0)

The bottom is exactly $2b(\theta)$,

$$
\lim_{s \to 0} r(s) = \frac{\psi'(0)}{2b(\theta)} \lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| \le s} y \nabla_{\theta} S(x,\theta) dp^*(x,y) \tag{46}
$$

$$
= \frac{-\psi'(0)}{b(\theta)} \left[-\frac{1}{2} \lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta)| \le s} y \nabla_{\theta} S(x,\theta) dp^*(x,y) \right]
$$
(47)

$$
=\frac{-\psi'(0)}{b(\theta)}\nabla Z(\theta)\tag{48}
$$

The last line follows from Lemma [13.](#page-1-0)

6.5 Descent Direction

Theorem 9. Assume that Assumptions 1, 2, 5, 6, and 7 hold, and assume $\psi'(0) < 0$. For any $b_0 > 0$, $\epsilon > 0$, and n, for any sufficiently large $\lambda \ge 2 M_\ell^{3/2}$ $\int_{\ell_0}^{3/2} b_0^{1/2} (-\psi'(0))^{-1/2} \epsilon^{-1/2} n^{2/3}$, for all *iterates of uncertainty sampling* $\{\theta_t\}$ *where* $\theta_{t-1} \in \Theta_{regular}$, $\|\nabla Z(\theta_{t-1})\| \geq \epsilon$, and $b(\theta_{t-1}) \leq b_0$, as $n_{minipool} \rightarrow \infty$,

$$
\nabla Z(\theta_{t-1}) \cdot \mathbb{E}[\theta_t - \theta_{t-1} | \theta_{t-1}] < 0. \tag{49}
$$

Proof. The first thing to note is that if $\|\nabla Z(\theta_{t-1})\| > 0$, then $b(\theta_{t-1}) > 0$.

$$
\|\nabla Z(\theta_{t-1})\| > 0\tag{50}
$$

$$
\| - \frac{1}{2} \lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta_{t-1})| \le s} \nabla S(x,\theta_{t-1}) \mathbb{E}[y|x] p(x) dx \| > 0
$$
\n(51)

$$
\lim_{s \to 0} \frac{1}{s} \int_{|S(x, \theta_{t-1})| \le s} \|\nabla S(x, \theta_{t-1})\| \|\mathbb{E}[y|x] \| p(x) dx > 0 \tag{52}
$$

$$
\lim_{s \to 0} \frac{1}{s} \int_{|S(x,\theta_{t-1})| \le s} M_{\ell} p(x) dx > 0
$$
\n(53)

$$
M_{\ell}b(\theta_{t-1}) > 0 \tag{54}
$$

$$
b(\theta_{t-1}) > 0 \tag{55}
$$

(56)

 \Box

This will allow us to use Theorem 8 later in the proof.

As in the main text, we have

$$
L_t(\theta) = \sum_{i=1}^t \ell(z^{(i)}, \theta) + \lambda ||\theta||_2^2
$$
 (57)

Thus, $L_t(\theta) = L_{t-1}(\theta) + \ell(z^{(t)}, \theta)$ and further $\nabla L_t(\theta_t) = 0$. Together, this implies that $\nabla L_t(\theta_{t-1}) = \nabla \ell(z^{(t)}, \theta_{t-1}).$

Using the Taylor expansion, for some value θ' on the line segment between θ_t and θ_{t-1} ,

$$
0 = \nabla L_t(\theta_t) = \nabla \ell(z^{(t)}, \theta_{t-1}) + \nabla^2 L_t(\theta')(\theta_t - \theta_{t-1})
$$
\n(58)

$$
\theta_t - \theta_{t-1} = -[\nabla^2 L_t(\theta')]^{-1} \nabla \ell(z^{(t)}, \theta_{t-1})
$$
\n(59)

$$
\|\theta_t - \theta_{t-1}\| \le \frac{M_\ell}{\lambda} \tag{60}
$$

Further, we can do another larger Taylor expansion,

$$
0 = \nabla L_t(\theta_t) = \nabla \ell(z^{(t)}, \theta_{t-1}) + \nabla^2 L_t(\theta_{t-1})(\theta_t - \theta_{t-1}) + Q
$$
\n(61)

where

$$
Q_i = (\theta_t - \theta_{t-1})^T [\nabla^3 L_t(\theta'')]_i (\theta_t - \theta_{t-1})
$$
\n(62)

$$
|Q_i| \le \frac{M_\ell}{\lambda} \| [\nabla^3 L_t(\theta'')]_i \|_F \frac{M_\ell}{\lambda}
$$
\n(63)

$$
||Q|| \le \frac{M_{\ell}^3 n}{\lambda^2} \tag{64}
$$

For simplicity, define $g = \nabla Z(\theta_{t-1})$. From the three-term Taylor expansion,

$$
\theta_t - \theta_{t-1} = -[\nabla^2 L_t(\theta_{t-1})]^{-1} (\nabla \ell(z^{(t)}, \theta_{t-1}) + Q) \tag{65}
$$

$$
-g \cdot (\theta_t - \theta_{t-1}) = g^T [\nabla^2 L_t(\theta_{t-1})]^{-1} (\nabla \ell(z^{(t)}, \theta_{t-1}) + Q)
$$
\n(66)

$$
= g^T [\nabla^2 L_t(\theta_{t-1})]^{-1} \nabla \ell(z^{(t)}, \theta_{t-1}) + g^T [\nabla^2 L_t(\theta_{t-1})]^{-1} Q \tag{67}
$$

$$
\geq g^T [\nabla^2 L_t(\theta_{t-1})]^{-1} \nabla \ell(z^{(t)}, \theta_{t-1}) - ||g|| \frac{1}{\lambda} \frac{M_t^3 n}{\lambda^2} \tag{68}
$$

$$
\geq g^T [\nabla^2 L_t(\theta_{t-1})]^{-1} \nabla \ell(z^{(t)}, \theta_{t-1}) - \frac{\|g\| M_\ell^3 n}{\lambda^3} \tag{69}
$$

Noting that $(A + B)^{-1} = A^{-1} - A^{-1}B(A + B)^{-1}$, we can expand

$$
[\nabla^2 L_t(\theta_{t-1})]^{-1} = [\nabla^2 L_{t-1}(\theta_{t-1})]^{-1} - R
$$
\n(70)

where $R = [\nabla^2 L_{t-1}(\theta_{t-1})]^{-1} \nabla^2 \ell(z^{(t)}, \theta_{t-1}) [\nabla^2 L_t(\theta_{t-1})]^{-1}$ and thus $||R|| \leq \frac{M_{\ell}}{\lambda^2}$

$$
-g \cdot (\theta_t - \theta_{t-1}) \ge g^T [\nabla^2 L_{t-1}(\theta_{t-1})]^{-1} \ell(z^{(t)}, \theta_{t-1}) - \frac{\|g\| M_{\ell}^2}{\lambda^2} - \frac{\|g\| M_{\ell}^3 n}{\lambda^3} \tag{71}
$$

On the right side, the only thing that depends on the randomness at iteration t is $\ell(z^{(t)}, \theta_{t-1})$ whose expectation is given by Theorem 8 (this is where we use that $\theta \in \Theta_{\text{regular}}$ and $b(\theta) > 0$). So taking the expectation for uncertainty sampling and noting $n_{\text{minipool}} \rightarrow \infty$,

$$
-g \cdot \mathbb{E}[\theta_t - \theta_{t-1} | \theta_{t-1}] \ge g^T [\nabla^2 L_{t-1}(\theta_{t-1})^{-1} \frac{-\psi'(0)}{b(\theta_{t-1})} g - \frac{\|g\| M_\ell^2}{\lambda^2} - \frac{\|g\| M_\ell^3 n}{\lambda^3} \tag{72}
$$

$$
\geq \frac{-\psi'(0)}{b(\theta_{t-1})} \frac{\|g\|^2}{(t-1)M_{\ell}} - \frac{\|g\|M_{\ell}^2}{\lambda^2} - \frac{\|g\|M_{\ell}^3 n}{\lambda^3} \tag{73}
$$

$$
\geq \frac{-\psi'(0)}{b(\theta_{t-1})} \frac{\|g\|^2}{nM_{\ell}} - \frac{\|g\|M_{\ell}^2}{\lambda^2} - \frac{\|g\|M_{\ell}^3 n}{\lambda^3} \tag{74}
$$

$$
\geq \frac{\|g\|}{M_{\ell}n} \left[\frac{-\psi'(0)}{b(\theta_{t-1})} \|g\| - \frac{M_{\ell}^3 n}{\lambda^2} - \frac{M_{\ell}^4 n^2}{\lambda^3} \right] \tag{75}
$$

$$
\geq \frac{\epsilon}{M_{\ell}n} \left[\frac{-\psi'(0)}{b_0} \epsilon - \frac{M_{\ell}^3 n}{\lambda^2} - \frac{M_{\ell}^4 n^2}{\lambda^3} \right]
$$
(76)

(77)

Therefore, for $\lambda \ge 2M_{\ell}^{3/2}$ $\int_{\ell}^{3/2} b_0^{1/2} (-\psi'(0))^{-1/2} \epsilon^{-1/2} n^{2/3}$ (and ensuring each power is at least 1),

$$
-g \cdot \mathbb{E}[\theta_t - \theta_{t-1} | \theta_{t-1}] > 0 \tag{78}
$$

Flipping the sign and plugging in q , we get the result.

 \Box