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1 Supplemental Materials

1.1 Proof of Theorem 6.1

We prove the theorem by verifying Condition (11) and (12), setting Fn = F(L?,p?, s?). First, we
need to verify the entropy condition and show that

sup
ε>εn

log E
(
ε
36 , {f

DL
B ∈ F(L?,p?, s?) : ‖f − f0‖n < ε}, ‖.‖n

)
≤ n ε2n. (1)

We can upper-bound the local entropy (1) with the global metric entropy. In addition, because

{fDLB ∈ F(L?,p?, s?) : ‖f‖∞ ≤ ε} ⊂ {fDLB ∈ F(L?,p?, s?) : ‖f‖n ≤ ε},
we can upper-bound (1) with

log E
(
εn
36 , f

DL
B ∈ F(L?,p?, s?), ‖.‖∞

)
≤ (s? + 1) log

(
72

εn
(L? + 1)(12pN + 1)2(L

?+2)

)
. np/(2α+p) log(n) log

(
n/ logδ(n)

)
. np/(2α+p) log2(n) . nε2n

for δ > 1, where we used Lemma 10 of Schmidt-Hieber (2017) and the fact that s? . np/(2α+p) and
N � np/(2α+p)/ log(n). This verifies the entropy Condition (11).

Next, we want to show that the prior concentrates enough mass around the truth in the sense that

Π(fDLB ∈ F(L?,p?, s?) : ‖fDLB − f0‖n ≤ εn) ≥ e−dn ε
2
n (2)

for some d > 2. Choosing N? = CN bnp/(2α+p)/ log(n)c in Lemma 5.1, there exists a neural
network f̂ B̂ ∈ F(L?,p?, s?) consisting of p? nodes aligned in L? . log(n) layers and indexed by
‖B̂‖0 = s? . np/(2α+p) log(n) nonzero parameters such that

‖f̂ B̂ − f0‖n ≤ C∞n−α/(2α+p) logδα/p(n) . εn/2,

where the last inequality follows from α < p, absorbing C∞ in the concentration rate. The approx-
imation f̂ B̂ sits on a network architecture characterized by a specific pattern γ̂ of nonzero links
among B̂, i.e. Ŵ l and âl for 1 ≤ l ≤ L + 1. We denote by F(γ̂, L?,p?, s?) ⊂ F(L?,p?, s?) all
the functions supported on this particular architecture. These functions differ only in the size of the
s? nonzero coefficients amongB, denoted by β ∈ Rs? . With β̂, we denote the s?-vector associated
with the nonzero elements in B̂.

Note that there are
(
T
s?

)
≤ (12 pN)(L

?+1) s? combinations to pick s? the nonzero coefficients and
each one, according to prior (9), has an equal prior probability of occurrence 1

( Ts?)
.

To continue, we note (from the triangle inequality) that

{fDLB ∈ F(L?,p?, s?) : ‖fDLB − f0‖n ≤ εn} ⊃ {fDLB ∈ F(γ̂) : ‖fDLB − f̂ B̂‖∞ ≤ εn/2}.
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Next, we denote with {β ∈ Rs? : ‖β‖∞ ≤ 1 and ‖β − β̂‖∞ ≤ εn} the set of coefficients
that are at most ε-away from the best approximating coefficients β̂ of the neural network f̂ B̂ ∈
F(γ̂, L?,p?, s?). From the proof of Lemma 10 of Schmidt-Hieber (2017), it follows that{

fDLB ∈ F(γ̂) : ‖fDLB − f̂ B̂‖∞ ≤
εn
2

}
⊃{

β ∈ Rs
?

: ‖β‖∞ ≤ 1 and ‖β − β̂‖∞ ≤
εn

2V (L? + 1)

}
,

where V =
∏L?+1
l=0 (p?l + 1). Now we have all the pieces needed to find a lower bound to the

probability in (2). We can write, for some suitably large C > 0,

Π
(
fDLB ∈ F(L?,p?, s?) : ‖fDLB − f0‖n ≤ εn

)
>

Π(fDLB ∈ F(γ̂, L?,p?, s?) : ‖fB − f̂ B̂‖∞ ≤ εn/2)(
T
s?

)
> e−(L

?+1)s? log(12 pN?)Π

(
β ∈ Rs

?

: ‖β‖∞ ≤ 1 and ‖β − β̂‖∞ ≤
εn

2V (L? + 1)

)
.

To continue to lower-bound the expression above, we note that

e−(L
?+1)s? log(12 pN?) > e−C log2(n)np/(2α+p)

for some C > 0. Under the uniform prior distribution on a cube [−1, 1]s
?

we can write

Π

(
β ∈ Rs

?

: ‖β‖∞ ≤ 1 and ‖β − β̂‖∞ ≤
εn

2V (L? + 1)

)
=

(
εn

2V (L? + 1)

)s?
≥ e−s

?(L?+2) log(12 p n/ logδ(n)) ≥ e−Dnp/(2α+p) log2(n)

for some D > 0. We can combine this bound with the preceding expressions to conclude that
e−(C+D)np/(2α+p) log2(n) ≥ e−dn ε

2
n for δ > 1 and d > C +D. This concludes the proof of (17).

1.2 Proof of Theorem 6.2

First we show that the sieve Fn defined in (20) is still reasonably small in the sense that the log
covering number can be upper-bounded by a constant multiple of np/(2α+p) log2δ(n). It follows
from the proof of Theorem 6.1 that the global metric entropy satisfies

E
(
εn
36 ,Fn, ‖.‖n

)
≤

Nn∑
N=1

sn∑
s=0

e
(s+1) log

(
72
εn

(L?+2)(12pN+1)2(L
?+2)

)

. Nn sn eC (L?+1)(sn+1) log(pNnL
?/εn)

for some C > 0 and thereby

log E
(
εn
36 ,Fn, ‖.‖n

)
. logNn + log sn + n ε2n . n ε2n.

This verifies Condition (11).

Next, we need to show that the prior charges the sieve in the sense that Π[Fcn] = o(e(d+2)nε2n) for
some d > 2 (determined below). We have

Π[Fcn] < Π(N > Nn) + Π(s > sn).

We apply the Chernoff bound to find that

Π(N > Nn) < e−t (Nn+1)E etN ∝ e−t (Nn+1)
(

ee
tλ − 1

)
(3)

for any t > 0. With our choice Nn = bC̃Nnp/(2α+p) log2δ−1 nc and with t = logNn we obtain

Π(N > Nn)e(d+2)nε2n . e−(Nn+1) logNn+λNn+(d+2)nε2n → 0

for a large enough constant C̃N . Next, we find that

Π(s > sn)e(d+2)nε2n . e−Cs(bL
?Nnc+1)+(d+2)nε2n → 0
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for some suitably large C̃N > 0. This verifies Condition (13).

Finally, we verify the prior concentration Condition (12). For N? < Nn and s? < sn we know from
the proof of Theorem 6.1 that

Π(fDLB ∈ F(L?,p?, s?) : ‖fDLB − f0‖n ≤ εn) ≥ e−D1 n ε
2
n

for some D1 > 2. Our priors put enough mass at the “right choices" (N?, s?) in the sense that
π(N?) & e−Nn log(Nn/λ) & e−Dnε2n and π(s?) & e−Dnε2n for some suitable D > 0. Then we can
write

Π(fDLB ∈ Fn : ‖fDLB − f0‖n ≤ εn)

≥ π(N?)π(s?)Π(fDLB ∈ F(L?,p?, s?) : ‖fDLB − f0‖n ≤ εn) ≥ e−(2D+D1)nε
2
n .

With these considerations, we conclude the proof of Theorem 6.2.
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