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1 Supplemental Materials

1.1 Proof of Theorem [6.1]

We prove the theorem by verifying Condition (T1)) and (T2)), setting F,, = F(L*, p*, s*). First, we
need to verify the entropy condition and show that

sup log € (55, {f5" € F(L*,p",s") : |f = folln < b [l In) < e (D

e>Ep

We can upper-bound the local entropy (I)) with the global metric entropy. In addition, because
{f6" e F(L*.p"s") || flle <} C {fB" € F(L*,p".8") : || flln < €},
we can upper-bound (T]) with
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g€ (5. B (L0 5", e) < (57 + o (T2 4 1)(1200 + 120742

< nP/(22FP) Jog(n) log (n/ log‘s(n)) < P/ 29FP) Jog?(n) < ne?
for § > 1, where we used Lemma 10 of Schmidt-Hieber (2017) and the fact that s* < nP/(20+p) and

N = nP/(2a4P) /1og(n). This verifies the entropy Condition (TT)).

Next, we want to show that the prior concentrates enough mass around the truth in the sense that
DL DL —dne?
I(fg" € F(L*,p",s") : IfB" = folln < en) > e7"% 2)

for some d > 2. Choosing N* = C |n?/(2**P) /log(n)| in Lemma 5.1 there exists a neural
network f g € F(L*,p*, s*) consisting of p* nodes aligned in L* < log(n) layers and indexed by
|Blo = s* < nP/(22+P) Jog(n) nonzero parameters such that

1B — folln < Coon™/@atP) 10g?/P(n) < ¢, /2,

where the last inequality follows from o < p, absorbing C in the concentration rate. The approx-
imation fg sits on a network architecture characterized by a specific pattern 4 of nonzero links
among B, i.e. W;and @; for 1 <1 < L + 1. We denote by F (5, L*, p*, s*) C F(L*,p*,s*) all
the functions supported on this particular architecture. These functions differ only in the size of the
s* nonzero coefficients among B, denoted by 3 € RS". With 3, we denote the s*-vector associated
with the nonzero elements in B.

Note that there are () < (12p N)(Z" 15" combinations to pick s* the nonzero coefficients and

s*

each one, according to prior (9), has an equal prior probability of occurrence ﬁ

To continue, we note (from the triangle inequality) that

{fB" € F(L*,p*,8) : |fB" = folln < e} D{FB" € FA) : If8" = FBlloe <n/2}.
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Next, we denote with {3 € R*" : [|B]|cc < 1 and |3 — BHoo,\S e, } the set of coefficients
that are at most e-away from the best approximating coefficients 3 of the neural network fg €
F (5, L*, p*, s*). From the proof of Lemma 10 of Schmidt-Hieber (2017), it follows that
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where V = + 1). Now we have all the pieces needed to find a lower bound to the
probability in @[} We can write, for some suitably large C' > 0,

N(fB" € F(A,L*,p*,s") : | /B = [Blloc < €n/2)

I(fp" € F(L*p*s) | f5" = folln < €n) >

()

_ * s* lo * s* -~ En
S o~ (L +1)s* log(12p N) 1 <5 ER®* 1 |Blloo <1 and ||B — Blo < 2V(L*+1)> .

To continue to lower-bound the expression above, we note that

o (L' +1)s" log(12p N*) e—Clogz(n)nP/(2“+p)

for some C' > 0. Under the uniform prior distribution on a cube [—1,1]°" we can write

s* . Ny En o En <
BeR 18l <1 a0d 18- Bl < gty ) = ()

> e—s*(L*+2) log(12pn/log®(n)) > e—D nP/(2atP) 1092 (n)

for some D > 0. We can combine this bound with the preceding expressions to conclude that
e~ (CHD)n? E* P 10g%(n) > o=dnel for § > 1 and d > C + D. This concludes the proof of (7).

1.2 Proof of Theorem [6.2]

First we show that the sieve F,, defined in (20) is still reasonably small in the sense that the log
covering number can be upper-bounded by a constant multiple of n?/(2«+p) log%(n). It follows
from the proof of Theorem [6.1] that the global metric entropy satisfies
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for some C' > 0 and thereby
10g € (2, Fus ||-lIn) Slog Ny, +1og s, +nep S nes.
This verifies Condition (TT).

Next, we need to show that the prior charges the sieve in the sense that II[F¢] = o(e (d+2)ne;, n) for
some d > 2 (determined below). We have

I[Fy] <II(N > N,) 4+ II(s > sp).
We apply the Chernoff bound to find that

II(N > N,) < e tWNnt DR ot N o o=t (Nnt1) (eetA — 1) 3)
for any ¢t > 0. With our choice N,, = Léan/(zaer) log?~! n| and with ¢ = log N,, we obtain
H(N > Nn)e(d+2)nsfl <e —(Ny+1) log N+ ANy, +(d+2) ne2 =0

for a large enough constant Cn. Next, we find that

H(S > Sn)e(dJr2) ne? /S efcs([L*Nanrl)Jr(quZ) ne2 50



for some suitably large Cy > 0. This verifies Condition (T3).

Finally, we verify the prior concentration Condition (I2). For N* < N,, and s* < s,, we know from
the proof of Theorem [6.1] that

(5% € F(L*,p*,8*) : | fBF = folln < en) > e Prmen

for some D; > 2. Our priors put enough mass at the “right choices" (N*, s*) in the sense that
7(N*) = e Nolog(Na/X) > o=Dnel and 7(s%) > e~ for some suitable D > 0. Then we can
write

H(fgL € Fn: ||fgL - f0||n < En)
2
> m(N)m(s)(fg" € F(L*p",s") : [lf5" = folln < &n) > e”BPHPIRE,

With these considerations, we conclude the proof of Theorem @
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