
Appendix

A Extended Related Works

Potential Outcomes with Cross-sectional Data. A simpler instantiation of the problem is to
estimate the effect of a treatment applied to subjects in a (static) cross-sectional dataset. This problem
has recently attracted a lot of attention in the machine learning community, and various interesting
ideas were proposed to account for selection bias [3, 41, 44]. Unfortunately, most of these works cast
the treatment effect estimation problem as one of learning under "covariate shift", where the goal is
to learn a model for the outcomes that generalizes well to a population were treatments are randomly
assigned to the subjects. Because of the sequential nature of the treatment assignment process in our
setup, estimating treatment effects under time-dependent confounding cannot be similarly framed as
a covariate shift problem, and hence the ideas developed in those works cannot be straightforwardly
applied to our setup.

Off-policy Evaluation. A closely related problem in the area of reinforcement learning is the
problem of off-policy evaluation using retrospective observational data, also known as "logged bandit
feedback" [38, 37, 18, 27, 28]. In this problem, the goal is to use sequences of states, actions and
rewards generated by a decision-maker that operates under an unknown policy in order to estimate
the expected reward of a given policy. In our setting, we focus on estimating a trajectory of outcomes
given an application of a treatment (or a sequence of treatments) rather than estimating the average
reward of a policy, and hence the "counterfactual risk minimization" framework in [37] would not
result in optimal estimates in our setup. However, our learning model – with a different objective
function– can be applied for the problem of off-policy evaluation.

B Background on Marginal Structural Models

In this section, we summarize the key relevant points from the seminal paper of Robins [31]. Without
loss of generality, we consider the case of univariate treatments, response variables and baseline
covariates here for simplicity.

Marginal structural models are typically considered in the context of follow-up studies, for example
in patients with HIV [31]. Time in the study is typically measured in relation to a fixed starting point,
such as the first follow-up date or time of diagnosis (i.e. t = 1). In such settings, marginal structural
models are used to measure the average treatment effect conditioned on a series of potential actions
and baseline covariate V taken at the start of the study, expressed in the form:

E [Yτ |a1, . . . , aτ , V ] = r(a1, . . . , aτ , X; Θ) (10)

where r(.) is a generic, typically linear, function with parameters Θ.

Time-Dependent Confounding. A full description of time-varying confounding can be found in
[23], with formal definitions in [14]. Time-dependent confounding in observational studies arises
as confounders have values which change over time - for example in cases where treatments are
moderated based on the patient’s response. A causal graph for 2-step study can be found in Figure 5,
where U denotes unmeasured factors. Note that U0, U1 do not have arrows to actions assignments,
reflecting the assumption of no unmeasured confounding.

Inverse Probability of Treatment Weighting From [31], under assumptions of no unmeasured
confounding, positivity, and correct model specification, the stabilized IPTWs can be expressed as:

SW (τ) =

τ∏
n=0

f(An|Ān−1)

f(An|Ān−1, L̄n, X)
(11)

Noting that V is defined to be a subset of L0 in [31]. Informally, they note the denominator to be
conditional probability of a treatment assignment given past observations of treatment assignments
and covariates and the numerator being that of treatment assignments alone, with the stabilized
weights representing the incremental adjustment between the two.
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Figure 5: Causal Graph of Time-dependent Confounding for 2-step Study

In real clinical settings, it is often desirable to determine the treatment response in relation to the
current follow up time, given past information. As such, we consider trajectories in relation to the
last follow-up time t, retaining the form of the stabilized weights of the MSM and using all past
observations, i.e.

SW (t, τ) =

t+τ∏
n=t

f(An|Ān−1)

f(An|Ān−1, L̄n, X)
(12)

C Additional Results for Experiments with Cancer Growth Simulation

Table 2 documents the full list of comparison for one-step-ahead predictions when tested for various
γ, using different combinations of prediction and IPTW models.

γ = 0 1 2 3 4 5
Linear (No IPTWs) 5.55% 4.81% 4.09% 3.44% 2.86% 2.42%
MSM 4.84% 4.19% 3.56% 3.00% 2.51% 2.15%
MSM (LSTM IPTWs) 4.26% 3.68% 3.13% 2.64% 2.22% 1.95%

Seq2Seq (No IPTWs) 1.52% 1.39% 1.28% 1.23% 1.17% 1.17%
Seq2Seq (Logistic IPTWs) 4.34% 3.28% 2.42% 1.83% 1.43% 1.23%
R-MSN 0.92% 0.89% 0.85% 0.84% 0.79% 0.84%

BTRC 2.73% 2.59% 2.42% 2.28% 2.11% 2.07%
R-BTRC 1.91% 1.81% 1.72% 1.69% 1.63% 1.71%

γ = 6 7 8 9 10
Linear (No IPTWs) 2.09% 1.80% 1.70% 1.65% 1.66%
MSM 1.90% 1.68% 1.64% 1.64% 1.67%
MSM (LSTM IPTWs) 1.77% 1.61% 1.62% 1.64% 1.69%

Seq2Seq (No IPTWs) 1.13% 1.07% 1.07% 1.09% 1.08%
Seq2Seq (Logistic IPTW) 1.12% 1.04% 1.04% 1.05% 1.04%
R-MSN 0.88% 0.88% 0.94% 1.00% 1.02%

BTRC 2.05% 2.01% 2.10% 2.16% 2.19%
R-BTRC 1.77% 1.79% 1.93% 2.02% 2.09%
Table 2: One-step-ahead Prediction Performance for Models Calibrated on γ = 10
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D Marginal Structural Models for Cancer Simulation

The probabilities required for the IPTWs of the standard MSM in Section 5.2 can be described using
logistic regression models with equations below:

f(At(k)|Āt) = σ
(
ω

(k)
1 (

t∑
n=0

Āc(n− 1)) + ω
(k)
2 (

t∑
n=0

Ād(n− 1))
)

(13)

f(At(k)|H̄t) = σ
(
ω

(k)
5 (

t∑
n=0

Āc(n− 1)) + ω
(k)
6

t∑
n=0

(Ād(n− 1))

+ω
(k)
7 V (t) + ω

(k)
8 V (t− 1) + ω

(k)
9 S

) (14)

f(Ct = 0|T > n, Ān−1) = σ
(
ω10 (

t∑
n=0

Āc(n− 1)) + ω11

t∑
n=0

(Ād(n− 1))
)

(15)

f(Ct = 0|T > n, L̄n−1, Ān−1,X) = σ
(
ω12 (

t∑
n=0

Āc(n− 1)) + ω13 (

t∑
n=0

Ād(n− 1))

+ω14 V (t− 1) + ω15 S
) (16)

where σ(.) the sigmoid function and ω∗ are regression coefficients.

The regression model for prediction is given by:

g(τ, a(t, τ − 1), H̄t) = β1 (

t∑
n=0

Āc(n− 1)) + β2 (

t∑
n=0

Ād(n− 1))

+β3 V (t) + β4 V (t− 1) + β5 S

(17)

E Algorithm Description for R-MSNs

To provide additional clarity on the relationship between the propensity networks and the Seq2Seq
model, the pseudocode in Algorithm 1 describes the training process mentioned in Section 4.3.

We first define function r(.)

(
.;θθθ(.)

)
to be RNN outputs given a vector of weights and hyperparameters

θθθ(.). We refer the reader to Section 3 for more information on the functions in the MSM framework
approximated by RNNs.

Propensity Networks Components of the propensity networks are used to compute the IPTWs
SW(t, τ) and SW ∗(t, τ) as defined in Equations 2 and 3 respectively. The probabilities in the
numerators and denominators are taken to be outputs of the propensity networks as below:

f(An|Ān−1) = rA1(An|Ān−1;θθθA1) (18)

f(An|H̄n) = rA2(An|H̄n;θθθA2) (19)

f(Cn = 0|T > n, Ān−1) = rC1(Ān−1;θθθC1) (20)

f(Cn = 0|T > n, L̄n−1, Ān−1,X) = rC1(L̄n−1, Ān−1,X;θθθC2) (21)

Encoder The encoder is also defined in a similar fashion below, with an additional function to
output the internal states of the LSTM g̃E1(L̄t, Āt,X;θθθE1). The encoder also computes the one-
step-ahead predictions, i.e. g(1, a(t, 0), H̄t) as per Equation 1, which is to define the prediction error
e(i, t, 1) and encoder loss Lencoder – i.e.Equations 4 and 5 respectively.

g(1, a(t, 0), H̄t) = rE(L̄t, Āt,X;θθθE) (22)

ht = r̃E(L̄t, Āt,X;θθθE) (23)
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Decoder The decoder then uses the seq2seq architecture to project encoder states ht forwards in
time, incorporating planned future actions at+τ . This is also combined with the IPTWs to define the
decoder loss Ldecoder in Equation 5.

g(τ, a(t, τ − 1), H̄t) = rD(ht, at+1, . . . , at+τ ;θθθD),∀τ > 1 (24)

Algorithm 1 Training Process for R-MSN
Input: Training/Validation Data L̄1:T , Ā1:T , X
Output: Neural network weights and hyperparameters for:

1) SW(t, τ) networks: θθθA1, θθθA2

2) SW ∗(t, τ) networks: θθθC1, θθθC2

3) Encoder network: θθθE1, θθθE2

4) Decoder network: θθθD1, θθθD2

1:
2: Step 1: Fit Propensity Networks

3: θθθA1 ← optimize

(∑
n,i binary_x_entropy(rA1(An(i)|Ān−1(i);θθθA1), An(i))

)
4: θθθA2 ← optimize

(∑
n,i binary_x_entropy(rA2(An(i)|H̄n(i);θθθA2), An(i))

)
5: θθθC1 ← optimize

(∑
n,i binary_x_entropy(rC1(Ān−1(i);θθθC1(i)), Cn(i))

)
6: θθθC2 ← optimize

(∑
n,i binary_x_entropy(rC2(L̄n−1(i), Ān−1(i),X(i);θθθC2), Cn(i))

)
7:
8: Step 2: Generate IPTWs
9: for patient i = 1 to I do

10: for t = 1 to T do
11: for τ = 1 to τmax do
12: SWi(t, τ)←

∏t+τ
n=t rA1(An(i)|Ān−1(i);θθθA1) / rA2(An(i)|H̄n(i);θθθA2)

13: SW ∗i (t, τ)←
∏t+τ
n=t rC1(Ān−1(i);θθθC1(i)) / rC2(L̄n−1(i), Ān−1(i),X(i);θθθC2)

14: end for
15: end for
16: end for
17:
18: Step 3: Fit Encoder
19: θθθE ← optimize

(
Lencoder

)
, as per Equation 5a

20:
21: Step 4: Compute Encoder States {Used to Initialize Decoder}
22: for patient i = 1 to I do
23: for t = 1 to T do
24: ht(i)← g̃E(L̄t(i), Āt(i),X(i);θθθE)
25: end for
26: end for
27:
28: Step 5: Fit Decoder
29: θθθD ← optimize

(
Ldecoder

)
, as per Equation 5b
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F Hyperparameter Optimization for R-MSN

For the R-MSN, 10,000 simulated paths were used for backpropagation of the network (training data),
and 1,000 simulated paths for hyperparameter optimization (validation data) - with another 1,000 for
out-of-sample testing. Given the differences in state initialization requirements and data batching
of the decoder, we report the hyperparameter optimization settings separately for the decoder. The
optimal parameters of all networks can be found in Table 5.

Settings for Propensity Networks and Encoder Hyperparameter optimization was performed
using 50 iterations of random search, using the hyperparameter ranges in Table 3, and networks
were trained using the ADAM optimizer [20]. For each set of sampled, simulation trajectories were
grouped into B minibatches and networks were trained for a maximum of 100 epochs. LSTM state
sizes were also defined in relation to the number of inputs for the network C.

Table 3: Hyperparameter Search Range for Propensity Networks and Encoder

Hyperparameter Search Range
Hyperparameter Search Iterations 50
Dropout Rate 0.1 , 0.2 , 0.3, 0.4, 0.5
State Size 0.5C, 1C, 2C, 3C, 4C
Minibatch Size 64, 128, 256
Learning Rate 0.01, 0.005, 0.001
Max Gradient Norm 0.5, 1.0, 2.0

Settings for Decoder To train the decoder, the data was reformatted into sequences of
(ht, {Lt+1, . . . ,Lt+τmax

}, {At, . . . ,At+τmax
,X}), such that each patient i max Ti contributions

to the training dataset. Given the T -fold increase in the number of rows in the overall dataset, we
made a few modifications to the range of hyperparameter search, including increasing the size of
minibatches and reducing the learning rate and number of iterations of hyperparameter search. The
full range of hyperparameter search can be found in Table 4 and networks are trained for maximum
of 100 epochs as well.

Table 4: Hyperparameter Search Range for Decoder

Hyperparameter Search Range
Iterations of Hyperparameter Search 20
Dropout Rate 0.1 , 0.2 , 0.3, 0.4, 0.5
State Size 1C, 2C, 4C, 8C, 16C
Minibatch Size 256, 512, 1024
Learning Rate 0.01, 0.005, 0.001, 0.0001
Max Gradient Norm 0.5, 1.0, 2.0, 4.0

Table 5: Optimal Hyperparameters for R-MSN

Dropout Rate State Size Minibatch Size Learning Rate Max Norm
Propensity Networks
f(An|Ān−1) 0.1 6 (3C) 128 0.01 2.0
f(An| ¯̂Hn) 0.1 16 (4C) 64 0.01 1.0
f(Cn = 0|T > n, Ān−1) 0.2 4 (2C) 128 0.01 0.5
f(Ct = 0|T > n, L̄n−1, Ān−1,X) 0.1 16 (4C) 64 0.01 2.0

Prediction Networks
Encoder 0.1 16 (4C) 64 0.01 0.5
Decoder + Memory Adapter 0.1 16 (8C) 512 0.001 4.0
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G Hyperparameter Optimization for BTRC

The parameters of the BTRC were optimized using the maximum-a-posteriori (MAP) estimation,
using the same prior for global parameters and approach defined in [35]. While the model was
replicated as faithfully to the specifications as possible, two slight modifications were made to adapt
it to our problem. Firstly, the sparse GP approximations were avoided to ensure that we had as
much accuracy as possible - using Gaussian Process with full covariance matrices for the random
effects components. Secondly, as our dataset was partitioned to ensure that patient observed in the
training set were not present in the test set, this means that any patient-specific parameters learned
would not be used in the testing set itself. As such, to avoid optimizing on the test set, we adopt
the standard approach for prediction in generalized linear mixed models [25], using the average
population parameters, i.e. the global MAP estimate, for prediction.

Hyperparameter optimization was performed using grid search on the optimizer settings defined in 6,
and was performed for a maximum of 5000 epochs per configuration. As convergence was observed
to be slow for a number of settings, we also trained a reduced form of the full BTRC model without
the "shared" parameters (indicated by ’-’ in Table7) to reduce the number of parameters of the model.
The optimal global hyperparameters and optimizer settings can be found in Table 7.

Table 6: Hyperparameter Grid for BTRC

Hyperparameter Search Range
Minibatch Size 2, 5, 10, 100, 500
Learning Rate 10−1, 10−2, 10−3, 10−4, 10−5

Table 7: MAP Estimates for BTRC

BTRC R-BTRC
χ̄chemo, χ̄radio (-1.3729433, 0.065) (-1.162, 0.007)
ᾱchemo, ᾱradio,
ᾱ

(0)
chemo, ᾱ

(0)
radio

(0.760, 0.367),
(0.207, 0.490)

(0.547, 0.367),
( -, -)

β̄chemo,β̄radio,
β̄

(0)
chemo, β̄

(0)
radio

(0.595, 0.367),
(0.204, 0.368)

(0.429, 0.368),
( -, -)

γ̄ -0.27 -0.262
ω̄ -0.928 -
l̄g 1.223 -
κ̄ 0.786 0.867
l̄v 1.092 1.151
σ̄2 0.036 0.042
Learning Rate 0.001 0.001
Minibatch Size 100 100
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