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Appendix A Proof of Proposition 1

Proposition 1. Let V∗λ be the optimal value function of the POMDP with scalarized reward function
R(b, a)− λ>C(b, a). Then, V∗λ(b0) + λ>ĉ is a piecewise-linear and convex (PWLC) function over
λ.

Proof. We give a proof by induction. For all b,

V(0)
λ (b) = max

a

[
R(b, a)− λ>C(b, a)

]
is a piecewise-linear and convex function over λ since the max of linear functions is piecewise linear
and convex. Now, assume the following induction hypothesis: V(k)

λ (b) is piecewise-linear and convex
function over λ for all b. Then, for all b,

V(k+1)
λ (b) = max

a

[
R(b, a)− λ>C(b, a)︸ ︷︷ ︸

linear in λ

+γ
∑
o,s,s′

Zp(o|s′, a)Tp(s
′|s, a)b(s)V(k)

λ (bao)︸ ︷︷ ︸
PWLC in λ

]
is also PWLC since the summation of PWLC functions is PWLC and max over PWLC functions is
again PWLC. As a consequence, V∗λ(b0) = limk→∞ V(k)

λ (b0) is PWLC over λ and so is V∗λ(b0) +

λ>ĉ.
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Figure 3: V∗λ(b0) + λ>ĉ for a simple CPOMDP, which is piecewise-linear and convex. Red
line represents the trajectory of λ starting from λ = [0, 0]> and sequentially updated by λ ←
λ + αn(V

π∗λ
C (b0)− ĉ).

Appendix B Proof of Lemma 1

Lemma 1. Let M1 = 〈B,A, T,R1, γ〉 and M2 = 〈B,A, T,R2, γ〉 be two (belief-state) MDPs
differing only in the reward function, and V π1 and V π2 be the value functions ofM1 andM2 with
a fixed policy π. Then, the value function of the new MDPM = 〈B,A, T, pR1 + qR2, γ〉 with the
policy π is V π(b) = pV π1 (b) + qV π2 (b) for all b ∈ B.

Proof. We give a proof by induction. For all b,

V (0)(b) =
∑
a

π(a|b) [pR1(b, a) + qR2(b, a)]

= p
∑
a

π(a|b)R1(b, a) + q
∑
a

π(a|b)R2(b, a)

= pV
(0)
1 (b) + qV

(0)
2 (b)
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Then, assume the induction hypothesis V (k)(b) = pV
(k)
1 (b) + qV

(k)
2 (b). For all b,

V (k+1)(b)

=
∑
a

π(a|b)
[
pR1(b, a) + qR2(b, a) + γ

∑
b′

T (b′|b, a)V (k)(b′)

]
= p

∑
a

π(a|b)
[
R1(b, a) + γ

∑
b′

T (b′|b, a)V
(k)
1 (b′)

]
+ q

∑
a

π(a|b)
[
R2(b, a) + γ

∑
b′

T (b′|b, a)V
(k)
2 (b′)

]
= pV

(k+1)
1 (b) + qV

(k+1)
2 (b)

As a consequence, V π(b) = limk→∞ V (k)(b) = limk→∞(V
(k)
1 (b) + V

(k)
2 (b)) = V π1 (b) + V π2 (b).

Appendix C Proof of Theorem 1

Theorem 1. For any λ, V π
∗
λ

C (b0)− ĉ is a negative subgradient that decreases the objective in Eq. (3),
where π∗λ is the optimal policy with respect to the scalarized reward function R(b, a)− λ>C(b, a).
Also, if V π

∗
λ

C (b0)− ĉ = 0 then λ is the optimal solution of Eq. (3).

Proof. For any λ0 and λ1,

(V∗λ1
(b0) + λ>1 ĉ)− (V∗λ0

(b0) + λ>0 ĉ)

=(V
π∗λ1

R (b0)− λ>1 V
π∗λ1

C (b0))− (V
π∗λ0

R (b0)− λ>0 V
π∗λ0

C (b0)) + (λ1 − λ0)>ĉ (Lemma 1)

≥(V
π∗λ0

R (b0)− λ>1 V
π∗λ0

C (b0))− (V
π∗λ0

R (b0)− λ>0 V
π∗λ0

C (b0)) + (λ1 − λ0)>ĉ

(∵ π∗λ1
is optimal w.r.t. R− λ>1 C)

=(λ1 − λ0)>(ĉ− V
π∗λ0

C (b0)) (11)

Therefore, ĉ− V
π∗λ0

C (b0) is a subgradient of V∗λ(b0) + λ>ĉ at point λ = λ0, which concludes that

V
π∗λ0

C (b0)− ĉ is a negative subgradient at point λ = λ0.

In addition, suppose λ1 = λ0 + α(V
π∗λ0

C (b0) − ĉ). Then, for sufficiently small α > 0, the new
reward function R − λ>1 C which is slightly changed from the old reward R − λ>0 C still satisfies
the reward optimality condition with respect to policy π∗λ0

[15]. In this situation, π∗λ0
= π∗λ1

and we
obtain:

(V∗λ0
(b0) + λ>0 ĉ)− (V∗λ1

(b0) + λ>1 ĉ) ≥ (λ0 − λ1)>(ĉ− V
π∗λ1

C (b0))
(
by result of (11)

)
= −α(V

π∗λ0

C (b0)− ĉ)>(ĉ− V
π∗λ1

C (b0))

= α‖ĉ− V
π∗λ1

C (b0))‖22
≥ 0

Also, if V π
∗
λ

C (b0)− ĉ = 0, then the dual objective in Eq. (4) becomes V π
∗
λ

R (b0). By the weak duality
theorem, V π

∗
λ

R (b0) ≥
∑
b,aR(b, a)y∗(b, a) = V ∗R(b0; ĉ) holds where y∗(b, a) is the optimal solution

of the primal LP (1). Assuming that V π
∗
λ

C (b0) = ĉ, π∗λ is a feasible policy that satisfies the cost
constraints, and V π

∗
λ

R (b0) cannot be larger than V ∗R(b0; ĉ). That is, V π
∗
λ

R (b0) = V ∗R(b0; ĉ) and the
duality gap is zero, which means that λ is the optimal solution.
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Appendix D Recursive Update of Admissible Cost

As an alternative to using V ∗C(ht+1), we can also do recursive update of the admissible cost at time
step t+ 1 to depend only on the current expected immediate cost at (ht, at) and the current optimal
cost value Qπ

∗

C (ht, at) by the following relationship.

ĉt = V π
∗

C (ht) =
∑
a

π∗(a|ht)Qπ
∗

C (ht, a)

= π∗(at|ht)Qπ
∗

C (ht, at) +
∑
a 6=at

π∗(a|ht)Qπ
∗

C (ht, a)

= π∗(at|ht)
[
C(ht, at) + γ E[V π

∗

C (ht+1)|ht, at]︸ ︷︷ ︸
=ĉt+1

]
+
∑
a 6=at

π∗(a|ht)Qπ
∗

C (ht, a)

∴ ĉt+1 =
ĉt − π∗(at|ht)C(ht, at)−

∑
a 6=at π

∗(a|ht)Qπ
∗

C (ht, a)

γπ(at|bt)
(12)

We used Eq. (12) to update the admissible cost in the experiments.

Appendix E Equality Test for Collecting Optimal Action Candidates

Algorithm 2 SEARCH of CC-POMCP

1: function SEARCH(h0)
2: λ is randomly initialized
3: for n = 1, 2, . . . do
4: for t = 1, 2, . . . , f(n) do # f(n) is any monotonically increasing sequence w.r.t. n.
5: if h = ∅ then
6: s ∼ b0
7: else
8: s ∼ B(h0)
9: end if

10: SIMULATE(s, h0, 0)
11: end for
12: a ∼ GREEDYPOLICY(h0, 0, 0)
13: λ← λ+ αn [QC(h0, a)− ĉ]
14: Clip λk to range [0, Rmax−Rmin

τ(1−γ) ] ∀k = {1, 2, ...K}
15: Reset entire search tree T (h0)
16: end for
17: return GREEDYPOLICY(h0, 0, ν)
18: end function

To compute a stochastic optimal policy, we first need to collect the candidates of the support of the
optimal actions. Since there always exists some error for estimating Qλ(h, a) due to the randomness
of Monte-Carlo sampling, we need an explicit criterion to determine whether an action â can be
treated as an optimum (i.e. Qλ(h, â) ' Qλ(h, a∗)). The following theorem provides the equality
test criterion to collect optimal action candidates and its validity.
Theorem 3. LetQλ be the scalarized action-value estimated by CC-POMCP using SEARCH in Algo-
rithm 2, and a∗ = arg maxaQ⊕λ (h, a). For any ν > 0, suppose we use the following equality test cri-

terion for the optimal action selection: |Qλ(h, a∗)−Qλ(h, â)| ≤ ν
[√

logN(h,a∗)
N(h,a∗) +

√
logN(h,â)
N(h,â)

]
.

Then it accepts all of the optimal actions (with respect to MDP with the scalarized reward function
R(s, a)− λ>C(s, a)) while rejecting all of the suboptimal actions with probability 1 as t→∞.

To prove Theorem 3, we first introduce a lemma from [13]:
Lemma 2 (Theorem 7 in [13]). When the UCT algorithm is running on a tree with depth D, the bias
of expected payoff is O((|A|D log t+ |A|D)/t) after t iteration. Moreover, the probability that UCT
algorithm fails to select optimal action at root converges to zero as t→∞.
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By Lemma 2, there exists M > 0 such that the following holds:

Pr

(
|Q∗λ(h, a)−Qλ(h, a)| ≥M logN(h, a)

N(h, a)

)
→ 0 as N(h, a)→∞, (13)

whereQ∗λ = Qπ
∗
λ

λ (true optimal value function of MDP with the scalarized reward function). In order
to prove Theorem 3, we first provide the following two lemmas based on Eq. (13).
Lemma 3. Let a∗ = arg maxaQ⊕λ (h, a), and â be a suboptimal action (with respect to MDP with
the scalarized reward functionR(s, a)−λ>C(s, a)). For the given λ, if a∗ is an optimal action, then

Pr
(
|Qλ(h, a∗)−Qλ(h, â)| ≤ ν

[√
logN(h,a∗)
N(h,a∗) +

√
logN(h,â)
N(h,â)

])
→ 0 as t → ∞. In other words,

all of the suboptimal actions are rejected asymptotically by the proposed equality test criterion.

Proof. LetQ∗λ(h, a∗)−Q∗λ(h, â) = ∆ > 0, whereQ∗λ = Qπ
∗
λ

λ . Then using the fact that Pr(A+B <
C +D) ≤ Pr(A < C) + Pr(B < D), we can derive the following inequality:

Pr

(
Qλ(h, a∗)−Qλ(h, â) ≤ ν

[√
logN(h, a∗)

N(h, a∗)
+

√
logN(h, â)

N(h, â)

])

≤ Pr

(
Qλ(h, a∗)−Q∗λ(h, a∗) +

∆

2
≤ ν

√
logN(h, a∗)

N(h, a∗)

)

+ Pr

(
Q∗λ(h, â)−Qλ(h, â) +

∆

2
≤ ν

√
logN(h, â)

N(h, â)

)
. (14)

Therefore, it is enough to show that both of two terms in the right-hand side of (14) converge to 0 as
t→∞. It is obvious that the first term converges to probability 0 sinceQλ(h, a∗)−Q∗λ(h, a∗)→ 0

by Eq. (13) and
√

logN(h,a∗)
N(h,a∗) → 0 as N(h, a∗)→∞. The second term also converges to probability

0 by the same reasoning.

Lemma 4. Let a∗ = arg maxaQ⊕λ (h, a), and â be another optimal action (with respect to MDP
with the scalarized reward function R(s, a)−λ>C(s, a)). For the given λ, if a∗ is an optimal action,

then Pr
(
|Qλ(h, a∗)−Qλ(h, â)| > ν

[√
logN(h,a∗)
N(h,a∗) +

√
logN(h,â)
N(h,â)

])
→ 0 as t → ∞. In other

words, all of the optimal actions are accepted asymptotically by the proposed equality test criterion.

Proof. Without loss of generality, assume that Qλ(h, a∗) ≥ Qλ(h, â) at time t. Then, we can derive
the following inequality, similarly to Lemma 3:

Pr

(
Qλ(h, a∗)−Qλ(h, â) > ν

[√
logN(h, a∗)

N(h, a∗)
+

√
logN(h, â)

N(h, â)

])

≤ Pr

(
Qλ(h, a∗)−Q∗λ(h, a∗) > ν

√
logN(h, a∗)

N(h, a∗)

)

+ Pr

(
Q∗λ(h, â)−Qλ(h, â) > ν

√
logN(h, â)

N(h, â)

)
(15)

where Q∗λ = Qπ
∗
λ

λ . Note that Q∗λ(h, a∗) = Q∗λ(h, â) since the both actions a∗ and â are optimal. It
is sufficient to show that both of two terms in the right-hand side of Eq. (15) converge to 0 as t→∞.
For any M > 0, the inequality

ν

√
logN(h, a∗)

N(h, a∗)
≥M logN(h, a∗)

N(h, a∗)

holds as N(h, a∗) → ∞. Therefore, by Eq. (13), the first term converges to probability 0. The
second term also converges to probability 0 by the same reasoning.
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Finally, we are now ready to provide the proof of Theorem 3:

Proof of Theorem 3. Let B the event that the proposed equality test accepts all of the optimal actions
while rejecting all of the suboptimal actions. Let a∗ = arg maxaQ⊕λ (h, a). Then, for B not to be
satisfied, one of the following three cases should be hold:

1. B1: a∗ is not optimal action (i.e. a∗ /∈ arg maxQ
π∗λ
λ (h, a)) with respect to the scalarized

reward R− λ>C.

2. B2: â is a suboptimal action but it is accepted as an equally optimal action while a∗ is an
optimal action.

3. B3: â is an optimal action but it is rejected while a∗ is an optimal action.

Then,

Pr(B) ≥ 1− Pr(B1)− Pr(¬B1 ∩B2)− Pr(¬B1 ∩B3).

Here, Pr(B1), Pr(B2), and Pr(B3) converge to zero as t→∞ by Lemma 2, 3, and 4 respectively,
which concludes the proof.

Appendix F Proof of Theorem 2

To facilitate formal analysis, we assume that SEARCH of CC-POMCP is given by Algorithm 2. We
first introduce the following lemma.
Lemma 5. For any real numbers V ∗, V , and c > 0, if there is M > 0 such that |V ∗ − V | ≤M and
|V ∗ − c| > M , then (V ∗ − c)(V − c) > 0.

Proof.

(V ∗ − c)(V − c) = (V ∗ − c)2 + (V ∗ − c)(V − V ∗)
≥ (V ∗ − c)2 − |V ∗ − c| · |V − V ∗|
= |V ∗ − c|

(
|V ∗ − c| − |V − V ∗|

)
> |V ∗ − c| (M −M)

= 0.

Now, we are ready to provide the proof of the following theorem, which guarantees that λ is improved
until it converges to the optimal solution of Eq. (3), λ∗.
Theorem 2. Suppose λ is updated with increasing simulation step t, and the search tree is reset at
the end of λ’s update as outlined in Algorithm 2. If the asymptotic bias of UCT holds for all types of
cost values (i.e. ∃M > 0, ∀k, |V π

∗
λ

Ck
(h0)− VCk(h0)| ≤M log t

t ), then either sign(V
π∗λ
Ck

(h0)− ĉk) =

sign(VCk(h0)− ĉk) or |V π
∗
λ

Ck
(h0)− ĉk| ≤M log t

t holds with probability 1 as t→∞, where VCk(h0)
is an averaged Monte-Carlo return for k-th cost at the root node h0.

Proof. If |V π
∗
λ

Ck
(h0)− ĉk| ≤M log t

t , the statement trivially holds. If |V π
∗
λ

Ck
(h0)− ĉk| > M log t

t , then

by Lemma 5 and the assumption |V π
∗
λ

Ck
(h0)− VCk(h0)| ≤M log t

t ,

(V
π∗λ
Ck

(h0)− ĉk)(VCk(h0)− ĉk) > 0

which concludes sign(V
π∗λ
Ck

(h0)− ĉk) = sign(VCk(h0)− ĉk).

Even though Theorem 2 asymptotically guarantees that λ is near-optimal or it is updated by the
direction of the negative subgradient, it requires resetting the entire search tree as described in
Algorithm 2, which significantly degrades the sample efficiency of the algorithm. Fortunately, we can
further show that the policy ordering is locally preserved even when λ is changed slightly, which
justifies the use of practical Algorithm 1 that does not reset the tree and accumulates experiences on
different lambda into single search tree.
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Theorem 4. For any λ0, there exists ε > 0 such that if ‖λ1 − λ0‖1 < ε then ∀b,Vπ1

λ0
(b) > Vπ0

λ0
(b)

⇒ ∀b,Vπ1

λ1
(b) > Vπ0

λ1
(b). In other words, for a sufficiently small change of λ, the ordering of the

policies is preserved.

Proof. Let ∆λ = λ1 − λ0. Then, for any b and π,

Vπλ1
(b) = V πR (b)− λ>1 V

π
C(b) (Lemma 1)

= V πR (b)− (λ0 + ∆λ)>V πC(b)

= Vπλ0
(b)−∆λ>V πC(b)

Now assume ∀b, Vπ1

λ0
(b) > Vπ0

λ0
(b), let ε = minb

[
1−γ
Cmax

(Vπ1

λ0
(b)− Vπ0

λ0
(b))

]
> 0, and suppose

‖∆λ‖1 = ‖λ1 − λ0‖1 < ε. Then, for any b,

Vπ1

λ1
(b)− Vπ0

λ1
(b) = Vπ1

λ0
(b)− Vπ0

λ0
(b)−∆λ>(V π1

C (b)− V π0

C (b))

≥ Vπ1

λ0
(b)− Vπ0

λ0
(b)− ‖∆λ‖1‖V

π1

C (b)− V π0

C (b)‖∞ (Hölder’s inequality)

> Vπ1

λ0
(b)− Vπ0

λ0
(b)− εCmax

1− γ
= Vπ1

λ0
(b)− Vπ0

λ0
(b)−min

b′

[
(Vπ1

λ0
(b′)− Vπ0

λ0
(b′))

]
≥ 0

Appendix G Analytic Solution of LP (10) (when K = 1)

When K = 1 and λ > 0, LP (10) can be rewritten as:

min
{wi,ξ+,ξ−}

(ξ+ + ξ−)

s.t.
∑

i:a∗i∈A∗
wiQC(h, a∗i ) = ĉ+ (ξ+ − ξ−)

s.t.
∑

i:a∗i∈A∗
wi = 1 and wi, ξ

+, ξ− ≥ 0

Let amin = arg mina∗i∈A∗ QC(h, a∗i ) and amax = arg maxa∗i∈A∗ QC(h, a∗i ). Then, the analytic
solution is given by:

π(amin|h) =


0 if QC(h, amax) ≤ ĉ
1 if QC(h, amin) ≥ ĉ

QC(h,amax)−ĉ
QC(h,amax)−QC(h,amin)

if QC(h, amin) < ĉ < QC(h, amax)

and

π(amax|h) =


1 if QC(h, amax) ≤ ĉ
0 if QC(h, amin) ≥ ĉ

ĉ−QC(h,amin)
QC(h,amax)−QC(h,amin)

if QC(h, amin) < ĉ < QC(h, amax)

This has only O(|A|) time complexity, which is identical to that of UCB1 action selection.

Appendix H Experimental Setup

We used the following experimental parameters for each domain.
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Domain Toy Rocksample Atari Pong
κ 1 20 0.1
τ ĉ = 0.95 ĉ = 1 ĉ ∈ {20, 30, 50, 100, 200}
αn 1/n 1/n 1/n
ν 1 1 1

# of runs 1000 100 (*) 40
# of simulations from 23 to 220 from 23 to 220 1000

maximum-depth d γd = 0.001 γd = 0.001 d = 100
Table 2: (*) We report the result averaged over 100 runs or 12 hours of total computation time.

Appendix I Experimental results on Rocksample (15, 15)
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Note that the baseline agent (red) is violating the cost constraint, so its return is not meaningful at all.
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