
Beyond Grids: Learning Graph Representations
for Visual Recognition

Yin Li ∗
Department of Biostatistics & Medical Informatics

Department of Computer Sciences
University of Wisconsin–Madison

yin.li@wisc.edu

Abhinav Gupta
The Robotics Institute

School of Computer Science
Carnegie Mellon University
abhinavg@cs.cmu.edu

Abstract

We propose learning graph representations from 2D feature maps for visual recog-
nition. Our method draws inspiration from region based recognition, and learns
to transform a 2D image into a graph structure. The vertices of the graph define
clusters of pixels (“regions”), and the edges measure the similarity between these
clusters in a feature space. Our method further learns to propagate information
across all vertices on the graph, and is able to project the learned graph represen-
tation back into 2D grids. Our graph representation facilitates reasoning beyond
regular grids and can capture long range dependencies among regions. We demon-
strate that our model can be trained from end-to-end, and is easily integrated into
existing networks. Finally, we evaluate our method on three challenging recognition
tasks: semantic segmentation, object detection and object instance segmentation.
For all tasks, our method outperforms state-of-the-art methods.

1 Introduction

Deep convolutional networks have been tremendously successful for visual recognition [1]. These
deep models stack many local operations of convolution and pooling. The assumption is that this
stacking will not only provide a strong model for local patterns, but also create a large receptive field
to capture long range dependencies, e.g., contextual relations between an object and other elements
of the scene. However, this approach for modeling context is highly inefficient. A recent study [2]
showed that even after hundreds of convolutions, the effective receptive field of a network’s units is
severely limited. Such a model may fail to incorporate global context beyond local regions.

Instead of the “deep stacking”, one appealing idea is using image regions for context reasoning and
visual recognition [3, 4, 5, 6, 7, 8, 9]. This paradigm builds on the theory of perceptual organization,
and starts by grouping pixels into a small set of coherent regions. Recognition and context modeling
are often postulated as an inference problem on a graph structure [8, 10]–with regions as vertices
and the similarity between regions as edges. This graph thus encodes dependencies between regions.
These dependencies are of much longer range than those are captured by local convolutions.

Inspired by region based recognition, we propose a novel approach for capturing long range depen-
dencies using deep networks. Our key idea is to move beyond regular grids, and learn a graph
representation for a 2D input image or feature map. This graph has its vertices defining clusters of
pixels (“regions”), and its edges measuring the similarity between these clusters in a feature space.
Our method further learns to propagate messages across all vertices on this graph, making it possible
to share global information in a single operation. Finally, our method is able to project the learned
graph representation back into 2D grids, and thus is fully compatible with existing networks.
∗The work was done when Y. Li was at CMU.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Specifically, our method consists of Graph Projection, Graph Convolution and Graph Re-projection.
Graph projection turns a 2D feature map into a graph, where pixels with similar features are assigned
to the same vertex. It further encodes features for each vertex and computes an adjacency matrix for
each sample. Graph convolution makes use of convolutions on a graph structure [11], and updates
vertex features based on the adjacency matrix. Finally, graph re-projection interpolates the vertex
features into a 2D feature map, by reverting the pixel-to-vertex assignment from the projection step.

We evaluate our method on several challenging visual recognition tasks, including semantic seg-
mentation, object detection and object instance segmentation. Our method consistently improves
state-of-the-art methods. For semantic segmentation, our method improves a baseline fully convolu-
tional network [12] by ∼7%. And our results slightly outperform the state-of-the-art context modeling
approaches [13, 14]. For object detection and instance segmentation, our method improves the strong
baseline of Mask RCNN [15] by ∼1%. Note that a 1% improvement is significant on COCO (even
doubling the number of layers provides 1-2% improvement). More importantly, we believe that our
method offers a new perspective in designing deep models for visual recognition.

2 Related Work

Major progress has been made for visual recognition with the development of deep models. Deep
networks have been widely used for image classification [1], semantic segmentation [12], object detec-
tion [16] and instance segmentation [15]. However, even after hundreds of convolution operations,
these network may fail to capture long range context in the input image [2, 13].

Several recent works have thus developed deep architectures for modeling visual context. For example,
dilated convolutions are attached to deep networks to increase the size of their receptive fields [17]. A
global context vector, pooled from all spatial positions, can be concatenated to local features [18, 13].
These new features thus encode both global context and local appearance. Moreover, local features
across different scales can be fused to encode global context [19]. However, all previous methods
still reside in a regular 2D feature map with the exception of [20]. The non-local operation in [20]
constructed a densely connected graph with pairwise edges between all pixels. Therefore, their
method is computational heavy for high resolution feature maps, and is less desirable for tasks like
semantic segmentation. Our methods differs from these approaches by moving beyond regular grids
and learning an efficient graph representation with a small number of vertices.

Our method is inspired by region based recognition. This idea can date back to Gestalt school
of visual perception. In this setting, recognition is posed as labeling image regions. Examples
include segmentation [21], object recognition [3], object detection [22, 23] and scene geometry
estimation [24]. Several works addressed context reasoning among regions. Context can be encoded
via a decomposition of regions [6], or via features from neighborhood regions [7]. Our graph
representation resembles the key idea of a region graph in [10, 9, 8], where vertices are regions
and edges encode relationships between regions. While previous approaches did not consider deep
models, our model embeds a region graph in a deep network. More recently, region based recognition
has been revisited in deep learning [25, 26, 27]. Nonetheless, these methods considered grouping as a
pre-processing step, and did not learn a graph representation as our method. In contrast, our method
provides a novel deep model for learning graph representations of 2D visual data

Furthermore, our method is related to learning deep models on graph structure [28, 11, 29]. Specif-
ically, graph convolutional networks [11] are used to propagate information on our learned graph.
However, our method focuses on learning graph representations rather than developing message
passing methods on the graph. Finally, our graph projection step draws inspirations from nonlinear
feature encoding methods, such as VLAD and Fisher Vectors [30, 31]. These methods have been
visited in the context of deep models [32, 33, 14]. However, previous methods focused on global
encoding of local features, and did not consider the case of a graph representation.

3 Approach

In this section, we present our method on learning graph representations for visual recognition. We
start with an overview of our key ideas, followed by a detailed derivation of the proposed graph
convolutional unit. Finally, we discuss the learning of our method and present approaches for
incorporating our model into existing networks for recognition tasks.

2

Graph
Projection

Graph
Re-Projection

Graph Convolution

Soft Assignment

Graph Representation

Figure 1: Overview of our approach. Our Graph Convolutional Unit (GCU) projects a 2D feature
map into a sample-dependent graph structure by assigning pixels to the vertices of the graph. GCU
then passes information along the edges of graph and update the vertex features. Finally, these new
vertex features are projected back into 2D grids based on the pixel-to-vertex assignment. GCU learns
to reason beyond regular grids, captures long range dependencies across the 2D plane, and can be
easily integrated into existing networks for recognition tasks.

3.1 Overview

For simplicity, we consider an input 2D feature map X of size H ×W from a single sample. Our
method can easily extend to batch size ≥ 1 or 3D feature maps (e.g., videos). X are the intermediate
responses of a deep convolutional network. xij ∈ Rd thus indexes the d dimensional feature at pixel
(i, j). Our proposed Graph Convolutional Units (GCU) consists of three operations.

• Graph Projection Gproj . Gproj projects X into a graph G = (V, E) with its vertices as V
and edges as E . Specifically, Gproj assigns pixels with similar features to the same vertex.
This assignment is soft and likely groups pixels into coherent regions. Pixel features are
further aggregated within each vertex, and form the vertex features Z ∈ Rd×|V| for graph G.
Based on Z, we measure the distance between vertices, and compute the adjacency matrix.
Moreover, we store the pixel-to-vertex assignments and will use them to re-project the graph
back to 2D grids.

• Graph Convolution Gconv. Gconv performs convolutions on the graph G by propagating
features Z along the edges of the graph. Gconv makes use of graph convolutions as [11]
and can stack multiple convolutions with nonlinear activation functions. When G is densely
connected, Gconv has a receptive field of all vertices on the graph, and thus is able to capture
the global context of the input. Gconv outputs the transformed vertex features Z̃ ∈ R|V|×d̃.

• Graph Reprojection Greproj . Greproj maps the new features Z̃ back into the 2D grid of
size (H ×W). This is done by “inverting” the assignments from the projection step. The
output X̃ ofGreproj will be a 2D feature map with dimension d̃ at each position (i, j). Thus,
X̃ is compatible with a regular convolutional neural network.

Figure 1 presents an overview of our method. In a nutshell, our GCU can be expressed as

X̃ = GCU(x) = Greproj(Gconv(Gproj(X))). (1)

It is more intuitive to consider our method in terms of pixels and regions. In GCU, “pixels” are
assigned to vertices based on their feature vectors. Thus, each vertex defines a cluster of pixels,
i.e., a “region” in the image. Each region will re-compute its feature by pooling over all its pixels.
And the similarity between regions is estimated based on the pooled region features, and thus define
the structure of a region graph. Inference can then be performed on the graph by passing messages
between regions and along the edges that connect them. This inference will update the feature for
each region and can connect regions that are far away in the 2D space. The updated region features
can then be projected back to pixels by linearly interpolation between regions.

3.2 Graph Convolutional Unit

We now describe the details of our graph projection, convolution and reprojection operations.

3

Graph Projection Gproj first assigns feature vectors X to a set of vertices, parameterzied by
W ∈ Rd×|V| and Σ ∈ Rd×|V|, with the number of vertices |V| pre-specified. Each column wk ∈ Rd

of W specifies an anchor point for the vertex k. Specifically, we compute a soft-assignment qkij of a
feature vector xij to wk by

qkij =
exp

(
−‖(xij − wk)/σk‖22/2

)∑
k exp (−‖(xij − wk)/σk‖22/2)

, (2)

where σk is the column vector of Σ and / is the element-wise division. We constrain the range of
each element in σk to (0, 1) by defining σk as the output of a sigmoid function. Eq 2 computes the
weighted Euclidean distance between all xij and wk, and creates a soft-assignment using softmax
function. We denote Q ∈ RHW×|V| as the soft assignment matrix from pixel to vertices, with each
row vector qij such that

∑
k q

k
ij = 1.

Moreover, we encode features zk for each vertex k by

zk =
z′k
‖z′k‖2

, z′k =
1∑
ij q

k
ij

∑
ij

qkij (xij − wk) /σk. (3)

Each z′k is a weighted average of the residuals between feature vectors xij to the vertex parameter wk.
z′k is further L2 normalized to get the feature vector zk for vertex k. zk thus forms the kth columns of
the feature matrix Z ∈ Rd×|V|. We further compute the graph adjacency matrix as A = ZTZ. With
normalized zk, Ak,k′ in the adjacency matrix is the pairwise cosine similarity between the feature
vectors zk and zk′ . Note that removing the coefficients 1/

∑
ij q

k
ij does not impact the normalized

feature zk, yet will change the way that the gradients are computed.

Eq 3 is inspired by nonlinear feature encoding methods, such as VLAD or Fisher Vectors [30, 34, 31].
This connection is more obvious if we consider wk as the cluster center and σk as its variance
(assuming a diagonal covariance matrix). In this case, the L2 normalization is exactly the intra-
normalization in [34]. We note that our encoding is different from VLAD or Fisher Vectors as we do
not concatenate zk as a global representation of X . Instead, we derive graph structure from Z and
keep individual zk as vertex features.

Eq 3 can be viewed as multiple parallel yet competing affine transforms, followed by weighted
average pooling. And thus each zk provides a different snapshot of the input X . Moreover, if wk and
σk are computed as per batch mean and variance for cluster k, each affine transform becomes batch
normalization [35]. This link between fisher vector and batch normalization is discussed in [36].

To summarize, the outputs of our graph projection operation are (1) the adjacency matrix A, (2) the
vertex features Z and (3) the pixel-to-vertex assignment matrix Q. Moreover, our graph projection
operation introduce 2|V|d new parameters. With a small number of vertices (e.g., 32) and a moderate
feature dimension (e.g., 1024), the number of added parameters is small in comparison to those in the
rest of a deep network. Moreover, every step in this project operation is fully differentiable. Thus,
chain rule can be used for the derivatives of the input x and the parameters (W and Σ). In practice,
we reply on automatic differentiation for back propagation.

Graph Convolution We make use of graph convolution Gconv from [11] to further propagate
information on the graph. Specifically, for a single graph convolution with its parameter Wg ∈ Rd×d̃,
the operation is defined as

Z̃ = f(AZTWg), (4)
where f can be any nonlinear activation functions. We use the Batch Normalization [35] with
Rectified Linear Units for our models. For all our experiments, we use a single graph convolution
yet stacking multiple graph convolutions is a trivial extension. While each graph convolution has
parameters of size (d× d̃), it remains highly efficient with a small number of vertices. Note that our
adjacency matrix is computed per sample, and thus our graph representation is sample-dependent
and will get updated during training. This is different from the settings in [28, 11, 29], where a
sample-independent graph is pre-computed and remains unchanged during training.

Graph Reprojection Our graph reprojection operation Greproj takes the inputs of transformed
vertex features Z̃ and the assignment matrix Q, and produces 2D feature map X̃ . Ideally, we have to
invert the assignment matrixQ, which is unfortunately unfeasible. Instead, we compute pixel features

4

of X̃ using a re-weighting of the vertex features Z̃, given by X̃ = QZ̃T . Greproj thus linearly
interpolates 2D pixel features based on their region assignments and does not have any parameters.
Note that even if two pixels are assigned to the same vertex, they will have different features after
reprojection. Thus, GCU is likely to preserve the spatial details of the signal. Finally, these projection
results can be integrated into existing networks.

3.3 Learning Graph Representations

Our model is fully differentiable and can be trained from end-to-end. However, we find that learning
GCUs faces an optimization challenge. Let us consider a corner case where the model assigns most
of the input pixel features xij to a single vertex k. In this setting, the GCU will degenerate to a
linear function Wg(xij − wk)/σk. As this rare case seems to be unlikely, we find that the model
can be trapped to several modes. For example, the model will always assign the whole image with a
single vertex, but uses different vertices for different images. To address this issue, we propose two
strategies to regularize the learning of GCU.

Initialization by Clustering We initialize the W and Σ in graph projection operations by clustering
the input feature maps. Specifically, we use K-Means clustering to get the centers for each column wk

ofW . We also estimate the variance along each dimension and setup the column vectors σk of Σ. Note
that our model always start with a pre-trained network. Thus, K-Means will produce semantically
meaningful clusters. And this initialization does not require labeled data. Once initialized, we use
gradient descent to update W and Σ, and avoid tracking batch statistics as [35]. We found that this
initialization is helpful for stable training and gives slightly better results than random initialization.

Regularization by Diversity We find it beneficial to directly regularize the assignment between
pixels to vertices. Specifically, we propose to add a graph diversity loss function that matches the
distribution of the assignments p(Q) =

∑
ij q

k
ij ∈ R|V| to a prior p. This is given by

Ldiv = KL(p(Q)||p) (5)

where KL is the Kullback–Leibler divergence between p(Q) and p. This regularization term is
highly flexible as it allows us to inject any prior distributions. We assume that p follows a uniform
distribution. This prior enforces that each vertex is used with equal frequency, and thus prevents the
learning of “empty” vertices. We find that a small coefficient (0.05) of this loss term is sufficient.

3.4 Graph Blocks

Projection

Graph Convolution

Unprojection

Projection

Graph Convolution

Unprojection

Graph Convolution

UnprojectionProjection

Figure 2: Architectures of two different graph
blocks. Top: Single GCU with a residual con-
nection can be incorporated an existing network;
Bottom: Concatenation of multiple parallel GCUs
introduces a new context model.

Our GCU can be easily wrapped into a graph
block and incorporated into an existing network.
Specifically, we define a graph block as

X̂ = X ⊕ GCUk1(X)⊕ ...⊕ GCUkn(X), (6)

where GCUk denote a GCU with k vertices
and ⊕ can be either a residual connection or a
concatenation operation. A residual connection
allows us to insert GCU into a network without
changing its behavior (by using a zero initial-
ization of the batch normalization after Gconv).
Concatenating features supplements the original
map X with global context captured at different
granularity. We explore both architectures in
our experiments. We use the residual connec-
tion with a single GCU for object detection and
instance segmentation, and concatenate features
from multiple GCUs for semantic segmentation.
Details of these architectures are shown in Fig 2.

Computational Complexity We summarize the computational complexity of our graph block. More
importantly, we compare the complexity to 2D convolutions and non-local networks [20].

5

• Complexity: For a feature map of size H ×W with dimension d, our graph projection has a
complexity of O(HWd|V|), where |V| is the number of vertices on the graph. The graph
convolution is O(|V|d2 + |V|2d) and the reprojection takes O(HWd|V|)) if we keep the
output feature dimension the same as the inputs.

• Comparison to convolutions. The graph projection, convolution and reprojection operations
have roughly the same complexity as 1x1 convolutions with output dimension |V| (assuming
HW ≥ d for high resolution feature maps). Thus, the complexity of a single GCU is
approximately equivalent to the stacking of three 1x1 convolutions.

• Comparison to non-local networks. For the same setting, the non-local operation [20] has
a complexity of O(H2W 2d). With a high resolution feature map (large HW) and a small
|V|, this is almost quadratic to our GCU.

4 Experiments

We present our experiments and discuss the results in this section. We test our method on three impor-
tant recognition tasks: (1) semantic segmentation, (2) object detection and instance segmentation.
Our experiments are thus organized into two parts.

We also explored different ways of incorporating our method in the experiments. For semantic
segmentation, we concatenate multiple GCU outputs (Fig 2 Bottom). In this case, our method has
to be accomplished with extra convolutions for recognition, and thus can be considered an novel
context model. For object detection and instance segmentation, we incorporate GCUs with residual
connections (Fig 2 Top) into the Mask RCNN framework [15]. Here, our method does not change the
original networks and thus serves as a new plugin unit.

4.1 Semantic Segmentation

We now present our results on semantic segmentation. We introduce the benchmark and implementa-
tion details, and present an ablation study of the GCU. More importantly, we compare our model to a
set of baselines and discuss the results.

Dataset and Benchmark We use ADE20K dataset [37] for semantic segmentation. ADE20K
contains 22K densely labeled images. The benchmark includes 150 semantic categories with both
stuff (i.e., wall, sky) and objects (i.e., car, person). The categories are fine-grained and their number
of samples follows a long tailed distribution. Therefore, this dataset is very challenging. We follow
the same evaluation protocol as [13] and train our method on the 20K training set. We report the
pixel level accuracy and mean Intersection over Union (mIoU) on the 2K validation set.

Implementation Details Our base model attaches 4 GCUs to the last block of a backbone network
and concatenates their outputs, followed by convolutions for pixel labeling. These GCUs have
(2, 4, 8, 32) vertices and output dimensions of d̃ = 256. And these numbers are chosen to roughly
match the number of parameters and operations as in [13]. We use ResNet 50/101 [38] pre-trained
on ImageNet [39] as our backbone network. Similar to [13], we add dilation to the last two residual
blocks, thus the output is down-sampled by a factor of 8. We upsample the result to original resolution
using bilinear interpolation. As in [13], we crop the image into a fixed size (505x505) with data
augmentations (random flip, rotation, scale) and train for 120 epochs. We also add an auxiliary loss
after the 4th residual block with a weight of 0.4 as [13]. The network is trained using SGD with batch
size 16 (across 4 GPUs), learning rate 0.01 and momentum 0.9. We also adapt the power decay for
learning rate schedule [40], and enable synchronized batch normalization. For inference, we average
network outputs from multiple scales.

Ablation Study We provide an ablation study of the GCU using the task of semantic segmentation.
The results are reported on ADE20K and with pre-trained ResNet 50 as the backbone. First, we vary
the number of GCUs. With dilated convolutions, the backbone itself has a mIoU of 35.6%. Adding a
single GCU with 2 vertices to the backbone achieves 39.43%–a ∼4% boost. Using two GCUs with
(2, 4) vertices reaches 40.92%. And our base model (4 GCUs with (2, 4, 8, 32) vertices) has 42.60%.
Alternatively, if we increase the number of vertices in the last GCU of our base model (from 32 to 64).
The mIoU score stays similar to the base model (42.58% vs. 42.60%). Adding more nodes increases

6

Building

Sky

Floor

Tree

Ceiling

Bed

Window

Grass

Person

Table

Plant

Curtain

Chair

Clock

House

Lamp

Skyscraper

Pillow

Coffee

Bench

Stool

Brand

Car

!"

#$%

!$&'
()*+,-

Figure 3: Visualization of segmentation results
on ADE20K (with ResNet 50). Our method pro-
duces “smoother” maps–regions that are similar
are likely to be labeled as the same category.

Backbone Method PixAcc% mIoU%

VGG16 [42]

FCN-8s [12] 71.32 29.39
SegNet [41] 71.00 21.64

DilatedNet [17] 73.55 32.31
CascadeNet [37] 74.52 34.90

Res50 [38]

Dilated FCN 76.51 35.60
PSPNet [13] 80.76 42.78
EncNet [14] 79.73 41.11
GCU (ours) 79.51 42.60

Res101 [38]

RefineNet [19] - 40.20
PSPNet [13] 81.39 43.29
EncNet [14] 81.69 44.65
GCU (ours) 81.19 44.81

Table 1: Results of semantic segmentation on
ADE20K. mIoU scores within 0.5% of the best
result are marked. With ResNet 50, our method
improves Dilated FCN by 7%. With ResNet 101,
our method outperforms PSPNet by 1.5%.

the run-time and memory cost, yet does not seem to improve the performance. Second, we evaluate
our initialization and regularization schemes. Our base model (4 GCUs) without regularization and
initialization has a mIoU of 41.34. Our regularization improves the result by 0.39% (41.73%). Our
initialization further adds another 0.87% (42.60%). Thus, both the diversity loss and the clustering
help to improve the performance.

Baselines We further compare our method with a set of baselines. These baselines are organized as

• Dilated FCN: This is the backbone network of our method, where we added dilation to a
ResNet. It is also a variant of DeepLab [40].

• Context Models: We include results from recent context models for deep networks. Specif-
ically, we compare to state-of-the-art results from PSPNet [13], RefineNet [19] and Enc-
Net [14]. These are close competitors of our method.

• Other Methods: We also report results from [12, 17, 41, 37, 19] for reference.

Results and Discussions Our main results are summarized in Table 1. Our method (GCU) improves
the backbone Dilated FCN network by 7% in mIoU. With ResNet 50, our result on mIoU is compa-
rable to PSPNet. With ResNet 101, our method is 1.5% better than PSPNet and 4.6% higher than
RefineNet in mIoU. We also notice that our pixel level accuracy is consistently lower than PSPNet by
0.2-1.2%. One possibility is that GCU will produce “diffused” pixel features. This is because the
output features of GCU are linearly interpolated from region features, which are averaged across
pixels. We visualize our results in Fig 3 and find that our method does tend to over-smooth the
outputs (see the missing clock in the left column). A similar property is also observed in region
based recognition [10]. Even a good grouping may decrease the performance if the recognition goes
wrong. For example, in the middle column of Fig 3, our method mis-classified the “building” region
as “house” and has a lower score than the baseline Dilated FCN. Nonetheless, our method is able to
assign the same category to the pixels on the building surface, which are previously divided in pieces.

Thus far, we have described our method by taking the analogy of region based recognition. However,
we must point out that our method is trained without supervision of regions. And there is no guarantee
that it will learn a valid representation of regions or region graphs. To further diagnose our method,
we create visualizations of the assignment matrix in GCU (see Fig 4). It is interesting to see that
our method does learn to identify some meaningful components of the scene. For example, with 2
vertices, the network seems to build up the concept of foreground vs. background. With 4 vertices,
there seems to be a weak correlation between the assignments and the spatial layout (e.g., pink for
ground, and yellow for vertical surfaces). As the number of vertices grows, the assignment begins to
over-segment the image, creating superpixel-like regions.

7

