
Supplemental Material

1 THEORETICAL JUSTIFICATION

In this section we define the conditions and prove the theorem stated in the main text. Techniques are
similar to [1].

Recall that we say a measurable set U is a support set of probability measure p iff p(U) = 1. A
measurable set U is called p-dense iff for every point z ∈ U , for any neighborhood U(z, ε) of z, we
have p(U(z, ε)) > 0.

Fixing a task T , our discriminator first compresses each data point x to a latent vector representation
z = f(x), and then pass to a linear classifier, with weights wi, i = 1, 2 · · ·K. We further assume
wi, i = 1, 2 · · ·K are bounded by a uniform constant C.

we denote pT (z) the distribution of latent representations of task T . We assume that pT has compact
support B. Without loss of generality, we can also assume B is convex, otherwise we can take
its convex closure. We also denote the probability distribution of latent distributions of class i as
piT (z), i = 1 . . .K. We define an open domain U ⊂ Rn is an ε-support of a probability measure p, if
p(U) > 1−ε. We assume that there exists some very small ε > 0, we have a set ofUi, i = 1, 2 · · · ,K,
such that Ui is an ε-support of piT for all i = 1, 2, · · ·K. We also assume all Ui is disjoint from each
other. For the adapted generator GT (z) , we denote its corresponding distribution in latent space as
pGT (z). Assume pGT has pGT -dense set SG ⊂ B.

Now we can define what is a "complement separating generator".
Definition 1. With the above assumptions and notations, we call a generator G(z; ·) a complement
separating generator if, for any task T ∼ pT , G(z; T ) satisfies the following two conditions:

• for all i = 1, 2, · · ·K, Ui ∩ SG = ∅.

• for all i, j = 1, 2, · · ·K, Ui and Uj are pathwise disconnected from each other in B \ SG.

Then we can formally state the main theorem as:
Theorem 1. Let GT be a separating complement generator. Denote ST the support(training) set
and FT the generated fake dataset. We assume our learned meta-learner is able to learn a classifier
DT which obtains strong correct decision boundary on the augmented support set(ST , FT ). More
precisely, (1) for x, y ∈ ST , x ·wy > max{0,x ·wi} for all i 6= y. (2) for f(x) ∈ FT , f(x) ·wi < 0
for all i ≤ K.

Then if |FT | → +∞, then DT can almost surely correctly classify all real samples from the data
distribution pT (x) of the task.

Proof. We first need to prove when |FT | → +∞, for all z ∈ SG, we have almost surely maxi≤K wi ·
z ≤ 0. The detailed proof is subtle. Here we only give a sketch. From the assumption that SG is
pGT -dense, one can easily deduce that when |FT | → +∞, the points FT become dense in SG. More
precisely, for any ε > 0, any z ∈ SG, when |FT | → +∞, then almost surely there exits z′ ∈ FT ,
such that |z− z′| < ε. From the assumption wi, i = 1, 2 · · ·K are bounded by a uniform constant C,
we can get almost surely maxi≤K wi · z ≤ 0.

Then we prove by contradiction. If for any task T , D successfully adapted to a support set (ST , FT ),
without loss of generality, we can assume ST = {(xi, yi)}Ki=1 is one-shot. If there is a data
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point (x, y) which is classifier incorrectly, namely there exists some j 6= y, such that wj · f(x) >
wy ·f(x) > 0. In the mean time wj ·f(xj) > 0. So for all α ∈ [0, 1], wj ·[αf(xj)+(1−α)f(x)] > 0.
This contradicts with two facts: 1) Uy and Uj are pathwise disconnected from each other in B \ SG;
2) almost surely maxi≤K wi · z ≤ 0, for all z ∈ SG.

So the theorem is proved.

2 ALGORITHMS FOR TRAINING METAGAN WITH MAML

We describe the detailed algorithm for training MetaGAN with MAML model as following:

Algorithm 1 MetaGAN with MAML
G(z, T ): Generator network parameterized by θg .
D(x): Discriminator network. parameterized by θd.

Initialize θg, θd randomly.
while not done do

Sample a batch of tasks Ti ∼ p(T ). . Discriminator Update
for all Ti do

Get K real samples Dr = {x(i), y(i)} from Ti.
Sample K generated samples Df = {x(j)} = G(z(j), Ti) from G(z, Ti).
Evaluate discriminator loss `TiD with Dr and Df .
Compute adapted discriminator parameters θ′di = θd − α∇θd`

Ti
D .

end for
Update θd using loss LD
Sample a batch of tasks Ti ∼ p(T ). . Generator Update
for all Ti do

Sample K generated samples Df = {x(j) = G(z(j), Ti)} from G(z, Ti).
Compute adapted discriminator parameters θ′di = θd − α∇θdLD.
Compute generator loss gradient∇θgL

Ti
G with the adapted discriminator.

end for
Update generator parameters θg with accumulated generator loss gradients.

end while

3 GENERATOR AND DISCRIMINATOR ARCHITECTURE

3.1 GENERATOR

We describe the generator architecture used in Omniglot models in table 3.2. The generator used in
Mini-Imagenet models are similar. Please refer to provided code 1 for more details on the network
architecture and training hyperparameters.

3.2 DISCRIMINATOR

For both model MetaGAN with MAML and MetaGAN with RN, we adopt the same neural network
architecture as MAML and RN respectively.

1https://github.com/sodabeta7/MetaGAN
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2× { conv2d 64 feature maps with 3× 3 kernels and Leaky-Relu activations }
conv2d 64 feature maps with 3× 3 kernels, stride 2 and Leaky-Relu activations
2× {conv2d 128 feature maps with 3× 3 kernels and Leaky-Relu activations }
conv2d 128 feature maps with 3× 3 kernels, stride 2 and Leaky-Relu activations
2× { conv2d 256 feature maps with 3× 3 kernels and Leaky-Relu activations }
conv2d 256 feature maps with 3× 3 kernels, stride 2 and Leaky-Relu activations
fully-connected layer with 256 units and Leaky-Relu activations
sample-dropout and concatenation with number of samples
average pooling within each dataset
concatenation embeded features with noise input z
upsample conv2d 512 feature maps with 3× 3 kernels and Leaky-Relu activations with residual connection
upsample conv2d 256 feature maps with 3× 3 kernels and Leaky-Relu activations with residual connection
upsample conv2d 128 feature maps with 3× 3 kernels and Leaky-Relu activations with residual connection
upsample conv2d 1 feature maps with 3× 3 kernels and Leaky-Relu activations with residual connection

Table 1: Omniglot Conditional Generator
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