
A Supplementary material

A.1 Proof of Lemma 1:

We first show that the feasible set of (3) is contained in the feasible set of (10). We do this by using
the fact that a convex set with a smooth boundary is contained in the halfspace defined by the tangent
hyperplane at any point of the boundary of the convex set. Consider a point (w̃`, x̃`) on the boundary
of the convex set defined by the constraints in (3) and observe that
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Plugging in w` = b|`h and x` = c|`m, we have that any feasible (h,m) satisfies
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which implies s`(b|`hc
|
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|
`m) � 2|y`| for all `. So, the feasible set of (10) contains the

feasible set of (3). Lastly, note that among all points (h,m) 2 (h̃, m̃)� S, only (h̃, m̃) is feasible
in (3). So, if (h̃, m̃) solves (10) then (h̃, m̃) solves (3).

A.2 Proof of Lemma 2:

Define a one-sided loss function:
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where (·)+ denotes the positive side. The LP in (10) can now be equivalently expressed as

(ĥ, m̂) := axrgmin
(h,m)2RK+N

khk1 + kmk1 subject to L(h,m)  0. (16)

We want to show that there is no feasible descent direction (�h, �m) 2 D around the true solution
(h̃, m̃). Since (�h, �m) is a feasible perturbation from the proposed optimal (h̃, m̃), we have from
(16)

L(h̃+ �h, m̃+ �m)  0. (17)

We begin by expanding the loss function L(h̃+ �h, m̃+ �m) below
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Let  t(s) := (s)+ � (s � t)+. Using the fact that  t(s)  (s)+, and that for every ↵, t � 0, and
s 2 R,  ↵t(s) = t ↵(
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t ), we have
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The proof mainly relies on lower bounding the right hand side above uniformly over all (�h, �m) 2 D.
To this end, define a centered random process R(B,C) as follows
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and an application of bounded difference inequality McDiarmid [1989] yields that R(B,C) 
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p
L with probability at least 1� e�2Lt2 . It remains to evaluate ER(B,C), which

after using a simple symmetrization inequality van der Vaart and Wellner [1997] yields
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where "1, "2, . . . , "L are independent Rademacher random variables. Using the fact that  t(s) is
a contraction: | t(↵1) �  t(↵2)|  |↵1 � ↵2| for all ↵1,↵2 2 R, we have from the Rademacher
contraction inequality Ledoux and Talagrand [2013] that
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where the last equality is the result of the fact that multiplying Rademacher random variables with
signs does not change the distribution. In addition, using the facts that t1(s � t)   t(s), and that
random vectors {(c|` m̃b`, b

|
` h̃c`)}L`=1 are identically distributed and the distribution is symmetric,

it follows
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Plugging (22), and (21) in (19), we have
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Combining this with (17) and (18), we obtain the final result
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Using the definitions in (13), and (14), we can write
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It is clear that choosing L �
⇣

2C(D)+t⌧
⌧p⌧ (D)

⌘2
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k(�h, �m)k2  0,

which directly means that (�h, �m) = (0, 0). Recall that S ⇢ N , and D ? N , where S is defined
in (11), this implies that the minimizer (ĥ, m̂) of the LP (10) resides in the set (h̃, m̃) � S. This
completes the proof of Lemma 2.

A.3 Proof of Theorem 2:

In light of Lemma 2, the proof of Theorem 2 comes down to computing the Rademacher complexity
C(D) defined in (13), and the tail probability estimate p⌧ (D) defined in (14) of the set of descent
directions D defined in (12).

Upper Bound on Rademacher Complexity: We will start by evaluating C(D)
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First note that on set D (12), we have
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As for the remaining terms, we begin by writing
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where the second inequality by the application of Lemma 5.2.2 in Akritas et al. [2016], and the final
equality is due to the fact that kc|�c

m
k21, and kb|�c

h
k21 are subexponential and using Lemma 3 in

van de Geer and Lederer [2013].

Plugging the bounds above back in (23), we obtain the upper bound on the Rademacher complexity
given below
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Tail Probability: To apply the result in Lemma 2, we also need to evaluate
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It suffice to estimate the probability P(|b|` h̃c
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Finally, a simple calculation shows that E |b|` h̃c
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where the last equality follows using the fact (�h, �m) 2 D ⇢ N?, and hence D ? N , which
implies that �h>h̃ = �m>m̃. Normalizing by k(�h, �m)k2, and comparing with (25) directly
shows that ⌧2 = min{kh̃k22, km̃k22}, and p⌧ (D) � 1

8c4 . Plugging these results and the Rademacher
complexing bound in (24) in Lemma 2 proves Theorem 2.

A.4 Evaluation of the Projection Operator

Given a point (x0,w0, ⇠0) 2 R3L, in this section we focus on deriving a closed-form expression for
projC

�
(x0,w0, ⇠0)

�
, where

C =
�
(x,w, ⇠) 2 R3L| s`(⇠` + x`)w` � |y`|, t`w` � 0, ` = 1, . . . , L

 

is the convex feasible set of (6). It is straightforward to see that the resulting projection program
decouples into L convex programs in R3 as
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s.t. |y`|� s`xw � s`⇠w  0, �t`w  0. (27)

Throughout this derivation we assume that |y`| > 0 (derivation of the projection for the case y` is
easy) and as a result of which the second constraint �t`w  0 is never active (because then w = 0
and the first constraint requires that |y`|  0). We also consistently use the fact that t` and s` are
signs and nonzero.

Forming the Lagrangian as
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+ µ1 (|y`|� s`xw � s`⇠w)� µ2 (t`w) ,
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along with the primal constraints, the KKT optimality conditions are

@L
@x

= x� x0
` � µ1s`w = 0, (28)

@L
@w

= w � w0
` � µ1s`x� µ1s`⇠ � µ2t` = 0, (29)

@L
@⇠

= ⇠ � ⇠0` � µ1s`w = 0, (30)

µ1 � 0, µ1 (|y`|� s`xw � s`⇠w) = 0, (31)
µ2 � 0, µ2 (t`w) = 0. (32)

We now proceed with the possible cases.

Case 1. µ1 = µ2 = 0:
In this case we have (x,w, ⇠) = (x0

`, w
0
`, ⇠

0
`) and this result would only be acceptable when |y`| �

s`x0
`w

0
` � s`⇠0`w

0
`  0 and t`w0

` � 0.

Case 2. µ1 = 0, t`w = 0:
In this case the first feasibility constraint of (27) requires that |y`|  0, which is not possible when
|y`| > 0.

Case 3. |y`|� s`xw � s`⇠w = 0, t`w = 0:
Similar to the previous case, this cannot happen when |y`| > 0.

Case 4. µ2 = 0, |y`|� s`xw � s`⇠w = 0:
In this case we have

|y`| = s`xw + s`⇠w.

Now combining this observation with (28) and (30) yields

|y`| = s` (x
0
` + µ1s`w)w + s` (⇠

0
` + µ1s`w)w, (33)

and therefore

µ1 =
|y`|� s` (x0

` + ⇠0`)w

2w2
. (34)

Similarly, (29) yields

w = w0
` + µ1s` (x

0
` + µ1s`w) + µ1s` (⇠

0
` + µ1s`w) . (35)

Knowing that w 6= 0, µ1 can be eliminated between (33) and (35) to generate the following forth
order polynomial equation in terms of w:

2w4 � 2w0
`w

3 + s`|y`| (x0
` + ⇠0`)w � y2` = 0.

After solving this 4-th order polynomial equation (e.g., the root command in MATLAB) we pick the
real root w which obeys

t`w � 0, |y`|� s` (x
0
` + ⇠0`)w � 0. (36)

Note that the second inequality in (36) warrants nonnegative values for µ1 thanks to (34). After
picking the right root, we can explicitly obtain µ1 using (35) and calculate the solutions x and ⇠ using
(28) and (30). Technically, in using the ADMM scheme for each ` we solve a forth-order polynomial
equation and find the projection.
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