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1 Missing data representation

In this section, we show how to regularize typical conditional probability density function. Next, we
present complete formulas for a conditional density in the case of the mixture of Gaussians.

1.1 Regularized conditional density

Let us recall a definition of conditional density representing missing data points formulated in the
paper. We assume that F is a probability density function on data space R”. A missing data point
(z,J) can be represented by restricting F' to the affine subspace S = Aff[x, J], which gives a
conditional density Fis : S — R given by:

;F f S’
Fs(z) = {fs F(s)ds (x), forz € N

0, otherwise,

The natural choice for missing data density F' is to apply GMM. However, the straightforward
application of GMM may lead to some practical problems with taking the conditional density (T}
Thus, to provide better representation of missing data points we introduce additional regularization
described in this section.

Let us observe that the formula (1)) is not well-defined in the case when the density function F’
is identically zero on the affine space S = Aff[z,J]. In practice, the same problem appears
numerically for the mixture of gaussians, because every component has exponentially fast decrease.
In consequence, (I) either gives no sense, or trivializesE] (reduces to only one gaussian) for points
sufficiently far from the main clusters. To some extent we can also explain this problem with the
fact that the real density can have much slower decrease to infinity than gaussians, and therefore the
estimation of conditional density based on gaussian mixture becomes unreliable.

To overcome this problem, which occurs in the case of gaussian distributions, we introduce the
regularized y-conditional densities, where v > 0 is a regularization parameter. Intuitively, the
regularization allows to control the influence of F' outside S = Aff[z, J] on conditional density
Fs. In consequence, the mixture components (in the case of GMM) could have higher impact
on the final conditional density even if they are located far from S. The Figure |I| illustrates the
regularization effect for different values of . We are indebted to the classical idea behind the
definition of conditional probability.

'One can show that the conditional density of a missing point (2, J) sufficiently distant from the data reduces
to only one gaussian, which center is nearest in the Mahalanobis distance to Aff[z, J]
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(a) Conditional density (y — 0) (b) Intermediate case (y = 1) (c) Marginal density (v — c0)

Figure 1: Tllustration of probabilistic representation Fs of missing data point (¥, —1) € R? for
different regularization parameters vy when data density is given by the mixture of two Gaussians.

Let v > 0 be a regularization parameter. By regularized ~-restriction of F' to the affine subspace S of
RP we understand

Jg= F(s) - N(z,vIs_.)(s)ds,if x € S,

0 otherwise,

Fls(z) = {

where ST = {w : (w —x) L (S — x)} is the affine space consisting of all points which are at
x perpendicular to S, and N (z,vIg_,) is the degenerate normal density which has mean at z, is
supported on S and its covariance matrix is a rescaled identity (restricted to S — x). Then the
regularized y-conditional density F'J is defined as the normalization of F'7|g:

1
F1 = ) s s fors €9
o 0 otherwise.

The regularized density F'J has the following properties:

1. FJ is well-defined degenerate density on S for every ~,
2. FJ converges to the conditional density Fis with v — 0, see Figure
3. FJ converges to the marginal density as v — oo, see Figure

One can easily see that the first point follows directly from the fact that F' is integrable. Since for an
arbitrary function g we have [ g(s)N(z,vI)(s)ds — f(z), asy — 0, we obtain that

. - _
’lylir%)F |s(z) = F(z)forx € S.
Thus F7|s — F|g, as v — 0. Analogously

lim / mg(s)N(a@, ~I)(s)ds

y—>0o0

y—00

. 1
= Jim_ [ gl exp(—g-lo - slPds = / o(s)ds,

which implies that for large ~ the function F'J as a renormalization of F'7|g at point  converges to
/ F(s)ds,
57

which is exactly the value of marginal density at point x.



1.2 Gaussian model for missing data density

We consider the case of F' given by GMM and calculate analytical formula for the regularized
~-conditional density. To reduce the number of parameters and provide more reliable estimation in
high dimensional space, we use diagonal covariance matrix for each mixture component.

We will need the following notation: given a point € R” and a set of indexes K C {1,...,D} by
x i we denote the restriction of x to the set of indexes K. The complementary set to K is denoted by
K'. Given x5, by [2x, yx] we denote a point in R which coordinates equal z on K’ and y on K.
We use analogous notation for matrices.

One obtains the following exact formula for regularized restriction of gaussian density with diagonal
covariance:
Proposition 1.1. Let N(m, X)) be non-degenerate normal density with a diagonal covariance ¥ =
diag(o1,...,0p). We consider a missing data point (x,J) represented by the affine subspace
S = Aff[z, J|. Let v > 0 be a regularization parameter.
The ~y-regularized restriction of F to S at point s = [x/,y] € S equals:

F75(s) = C)), v ¢N(ms, Xs)(s),
where

ms = [vy,mz],8s = [0/, X4],

cy = !
mB.S T (r)(D-17)/2 ey (v + o)t/

.exp(—% ZZGJ/ ﬁ(ml — CUZ)2)'

Finally, by using the above proposition (after normalization) we get the formula for the regularized
conditional density in the case of the mixture of gaussians:

Corollary 1.1. Let F be the mixture of nondegenerate gaussians
F=> piN(mi, ),

where all ¥; = diag(oi, ..., o%) and let S = Aff[z, J].

Then ) )
Fy =Y "riN(mi, %),
where ) ]
mg = [z, (m;) 1], X5 = [0, (55) 57],
qi o
Ty = >Qi:Cm, .5 " Diy
Zj qj 32,5

cr = .
m,%,S (27)(D=17D/2 e, (v + ap)l/2

exp(—1 Yy = (my — a?).

2 Theoretical analysis

In this section, we continue a theoretical analysis of our model. First, we consider a special case of
RBF neurons for arbitrary probability measures. Next, we restrict our attention to the measures with
compact supports and show that the identification property holds for neurons satisfying UAP

2.1 Identification property for RBF

RBF function is given by

RBF,, n(z) = N(m,X)(z),
where m is an arbitrary point and X is positively defined symmetric matrix. In some cases one often
restricts to either diagonal or rescaled identities > = a, where a > 0. In the last case we use the
notation RBF,,, ,, for RBF,, 1.



Theorem 2.1. Let i, v be probabilistic measures. If
RBF,, (1) = RBF,,, o (v) for everym € R” o > 0,

then v = L.

Proof. We will show that p and v coincide on every cube. Recall that (n * f)(z) = [n(y
y)dAn (x).

Let us first observe that for an arbitrary cube K = a + [0, h]?

/]IK * N(0,a)dp(z) = /]IK * N (0, )dv(x),

where i > 0 is arbitrary. This follows from the obvious observation that

1 9
n7 Z N(a-l-gh,cd)

1€ZPN[0,n]P
converges uniformly to 1 * N (0, al), as n goes to co.

Since Ty 1jgqn ¥ N (0, #I ) converges pointwise to 1, analogously as before by applying
Lebesgue dominated convergence theorem we obtain the assertion. O

2.2 General identification property

We begin with recalling the UAP (universal approximation property). We say that a family of
neurons N has UAP if for every compact set K C R” and a continuous function f : K — R the
function f can be arbitrarily close approximated with respect to supremum norm by span(N') (linear
combinations of elements of \).

Our result shows that if a given family of neurons satisfies UAP, then their generalization allows to
distinguish any two probability measures with compact support:

Theorem 2.2. Let pi, v be probabilistic measures with compact support. Let N be a family of
functions having UAP.

I
n(u) = n(v) foreveryn € N, (2)
then v = L.

Proof. Since u, v have compact support, we can take R > 1 such that supp u,suppv C B(0, R—1),
where B(a, ) denotes the closed ball centered at a and with radius 7. To prove that measures (i, v
are equal it is obviously sufficient to prove that they coincide on each ball B(a,r) with arbitrary
a € B(0,R — 1) and radius r < 1.

Let ¢,, be defined by
bn(z) =1 —n-d(z,B(a,r)) for z € RP,

where d(x,U) denotes the distance of point  from the set U. Observe that ¢,, is a continuous
function which is one on B(a,r) an and zero on RP \ B(a, 7+ 1/n), and therefore ¢,, is a uniformly
bounded sequence of functions which converges pointwise to the characteristic funtion 1 p(, ) of the
set B(a, ).

By the UAP property we choose 1), € span(N') such that

supp |¢n(x) - ¢n(x)| < 1/”
z€B(0,R)

By the above also 1), restricted to B(0, R) is a uniformly bounded sequence of functions which
converges pointwise to 1 p(q . Since ¥, € N, by (2) we get

/wn Yu(a /wn Yz
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Figure 2: More reconstructions of partially incomplete images using the autoencoder. From left:
(1) original image, (2) image with missing pixels passed to autoencooder; the output produced by
autoencoder when absent pixels were initially filled by (3) k-nn imputation and (4) mean imputation;
(5) the results obtained by autoencoder with (5) dropout, (6) our method and (7) context encoder. All
columns except the last one were obtained with loss function computed based on pixels from outside
the mask (no fully observable data available in training phase). It can be noticed that our method
gives much sharper images then the competitive methods.

Now by the Lebesgue dominated convergence theorem we trivially get

[ ntadduta) = [ o V@) > p(Blar))
/¢n(x)du(x) = /B(O 0 U (2)dv(x) — v(B(a,r)),

which makes the proof complete. O

3 Reconstruction of incomplete MNIST images

Due to the limited space in the paper, we could only present 4 sample images from MNIST experiment.
In Figure[2] we present more examples from this experiment.



Table 1: Summary of data sets, where 50% of values were removed randomly.

Data set #Instances #Attributes
australian 690 14
bank 1372 4
breast cancer 699 8
crashes 540 20
diabetes 768 8
fourclass 862 2
heart 270 13
liver disorders 345 6

Table 2: Classification results measured by accuracy on UCI data sets with 50% of removed attributes.

data karma geom k-nn mice mean dropout \ our

australian 0.833 0.802 0.820 0.826 0.808 0.812 0.833
bank 0.799 0.740 0.763 0.793 0.788 0.722 0.795
breast cancer 0.938 0.874  0.902 0.942 0.938 0.911 0.951
crashes 0.920 0.914 0.898 0.894 0.892 0.900 0.920
diabetes 0.695 0.644 0.673 0.708 0.699 0.675 0.690
fourclass 0.808 0.653 0.766 0.776 0.766 0.731 0.737
heart 0.755 0.738  0.725 0.751 0.725 0.722 0.770

liver disorders 0.530 0.591 0.565 0.576 0.562 0.571 0.608

4 Additional RBFN experiment

In addition to data sets reported in the paper, we also ran RBFN on 8 examples retrieved from UCI
repository, see Table[I] These are complete data sets (with no missing attributes). To generate missing
samples, we randomly removed 50% of values.

The results presented in Table 2] confirm the effects reported in the paper. Our method outperformed
imputation techniques in almost all case and was slightly better than karma algorithm.

S Computational complexity

We analyze the computational complexity of applying a layer for missing data processing with &
Gaussians for modeling missing data density. Given an incomplete data point S = Aff[z, J], where
x € RPand J C {1,..., N}, the cost of calculation of regularized (degenerate) density FJis
O(k|J'|), where J' = {1,...,N}\ J (see Corollary 1.1. in supplementary material). Computation
of a generalized ReLU activation (Theorem 3.1) takes O (kD + k|.J|). If we have ¢ neurons in the
first layer, then a total cost of applying our layer is O(k|J'| + tk(D + |J])).

In contrast, for a complete data point we need to compute ¢ ReLU activations, which is O(¢D). In
consequence, generalized activations can be about 2k times slower than working on complete data.

6 Learning missing data density

To run our model we need to define initial mixture of Gaussians. This distribution is passed to the
network and its parameters are tuned jointly with remaining network weights to minimize the overall
cost of the network.

We illustrate this behavior on the following toy example. We generated a data set from the mixture of
four Gaussians; two of them were labeled as class 1 (green) while the remaining two were labeled as
class 2 (blue), see Figure[3(a)] We removed one of the attributes from randomly selected data points
x = (1, z2) with 1 < 0. In other words, we generated missing samples only from two Gaussian on
the left. Figure[3(b)|shows initial GMM passed to the network. As can be seen this GMM matches
neither a data density nor a density of missing samples. After training, we get a GMM, where its
first component estimates a density of class 1, while the second component matches class 2, see
Figure In consequence, learning missing data density by the network helped to perform better
classification than estimating GMM directly by EM algorithm.
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Figure 3: Toy example of learning missing data density by the network.
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