
A Proof of Lemma and Theorem

Lemma 3.1 proof. For the first equation can be proved by expanding the inner prod-
uct according to the definition of the transformation. Note that 〈h̃, φ(xi, bi)〉 =〈

[h; 1; 0],
[
xi; bi;

√
U2 − ‖xi‖2 − b2i

]〉
= 〈h, xi〉+ 1 · bi + 0 ·

√
U2 − ‖xi‖2 − b2i = 〈h, xi〉+ bi.

The second equation follows from the relation between the inner product and the distance in Eu-
clidean spaces: ρ(h̃, φ(xi, bi)

2 = ‖h̃ − φ(xi, bi)‖2 = ‖h̃‖2 + ‖φ(xi, bi)‖2 − 2〈h̃, φ(xi, bi)〉 =

‖h‖2 + 1 + U2 − 2〈h̃, φ(xi, bi)〉.

Theorem 3.2 proof. By Lemma 3.1, the distance ρ(h̃, φ(xi, bi)) depends strictly monotonically de-
creasingly on 〈h, xi〉 + bi. The claim of the theorem then follows straightforwardly upon this
fact.

B Visualization of Similarity Relation

Our IPPT (Section 3.2.1) approach provides a convenient way to transform inner product against word
embedding vectors to a metric space, exploiting closeness between words through their metric relation,
and then inversely transforming metric distance back to inner product result in O(1) complexity,
which then can be consumed by the final softmax function to compute word probabilities. To see the
metric relation, we utilize t-SNE [57] to visualize the weights at the vocabulary projection layer by
mapping it to a 2D Euclidean distance space. As shown in Figure 5, words in the projection layer
clearly has conceptual and positional properties. Thus semantic more similar words are closer in
distance.

Figure 5: Projection of word embedding vectors on a 2D Euclidean distance space. 400 words are
sampled from the vocabulary projection weights of WikiText-2 by filtering the high frequency words
(higher than 1000) and low frequency words (less than 100). Training methodology to get the weights
is included in Section 4.2.

C A Bound on Top-K Softmax Approximation

In this section we derive an error bound of top-K highest ranked words approximation on softmax
toward a probability distribution. Let V be the set of vocabulary. Let si (1 ≤ i ≤ |V |) be the
scores produced using exhaustive search, sorted in decreasing order. Suppose L is a lower bound
for {si}, i.e., L ≤ min si. Typically one chooses L to be a negative number with sufficiently
large absolution value. If there is no known lower bound, one may also set L = −∞ and agrees
that exp(−∞) = 0. The probability distribution generated by applying softmax on si is given by
pi = exp(si)/

∑
i exp(si). Using exhaustive search we are able to compute pi as exact. However
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with approximated techniques, we are only able to obtain an approximation p̂i of the distribution. In
real applications we typically only care about how p̂i differs from pi for the top-K words. The error
in such approximations comes from two sources: (1) the accuracy of the approximation to obtain the
approximated top-K; and (2) the approximation of

∑
i exp(si). In the following theorem we give a

quantitative analysis of how large the relative error could be.
Theorem C.1. Let V , si, L, pi be as above. Let K ⊆ {1, . . . , |V |} be the ground truth top-K
indices. Suppose an approximation top-K softmax algorithm gives K′ ⊆ {1, . . . , |V |} as the ap-
proximated top-K indices. Let ŝi be the approximated score the algorithm assigns to the i-th
word in V , and let s′ = mini∈K′ ŝi. Assume that (i) the algorithm assigns exact scores ŝi = si
to those i ∈ K′; and (ii) it assigns a score ŝi for i 6∈ K′ such that L ≤ ŝi ≤ s′. The approxi-
mated probability distribution is given by p̂i := exp(ŝi)/

∑
i exp(ŝi). Let K′′ = {i : si ≥ s′}.

Then the relative error of probability distribution approximation is bounded by |p̂i − pi|/pi ≤∑
i∈K′′\K′ (exp(si)− exp(L)) + (|V | − |K′′|)(exp(s′)− exp(L))∑

i∈K′ exp(ŝi) + (|V | −K) exp(L)
for any i ∈ K ∩ K′.

Proof. First note that pi =
exp(si)∑
i exp(si)

and that p̂i =
exp(ŝi)∑
i exp(ŝi)

. Since i ∈ K ∩ K′, we have

si = ŝi. We then deduce that

|p̂i − pi|
pi

=
|
∑

i exp(si)−
∑

i exp(ŝi)|∑
i exp(ŝi)

. (1)

We then proceed to bound both the numerator and the denominator.

To find an upper bound for the numerator, first note that∣∣∣∣∣∑
i

exp(si)−
∑
i

exp(ŝi)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
i∈K′′

exp(si)−
∑
i∈K′′

exp(ŝi)

∣∣∣∣∣+

∣∣∣∣∣∣
∑
i 6∈K′′

exp(si)−
∑
i6∈K′′

exp(ŝi)

∣∣∣∣∣∣ .
(2)

For the first summand, first observe that K ⊆ K′′ and K′ ⊆ K′′. Therefore∣∣∣∣∣∑
i∈K′′

exp(si)−
∑
i∈K′′

exp(ŝi)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈K′

(exp(si)− exp(ŝi)) +
∑

i∈K′′\K′

(exp(si)− exp(ŝi))

∣∣∣∣∣∣ .
The condition (i) implies that the first sum is zero. The second sum is always non-negative
since exp(si) ≥ exp(s′) ≥ exp(ŝi) for i ∈ K′′\K′. Thus

∣∣∣∑i∈K′′\K′ (exp(si)− exp(ŝi))
∣∣∣ =∑

i∈K′′\K′ (exp(si)− exp(ŝi)) ≤
∑

i∈K′′\K′ (exp(si)− exp(L)). For the second summand in the

right hand side of Equation (2), note that
∣∣∣∑i 6∈K′′ exp(si)−

∑
i 6∈K′′ exp(ŝi)

∣∣∣ ≤∑i 6∈K′′ | exp(si)−
exp(ŝi)|. Since both si, ŝi ∈ [L, s′] for all i 6∈ K′′, we have

∑
i 6∈K′′ | exp(si) − exp(ŝi)| ≤∑

i 6∈K′′ (exp(s′)− exp(L)) = (|V | − |K′′|) (exp(s′)− exp(L)). This shows the upper bound of
the numerator.

For the denominator in the right hand side of Equation (1), simply note that
∑

i exp(ŝi) =∑
i∈K′ exp(ŝi) +

∑
i6∈K′ exp(ŝi) ≥

∑
i∈K′ exp(ŝi) + (|V | − K) exp(L). This then concludes

the proof of the theorem.

It is worthy to point out that the numerator of the above error bound can be rewritten as∑
i∈K′′\K′(exp(si) − exp(s′)) + (|V | − K)(exp(s′) − exp(L)). Intuitively, the theorem states

that the accuracy of the softmax probability approximation for the top-K words depends on three
quantities: (i)

∑
i∈K′′\K′(exp(si)− exp(s′)), which measures how many words are “missed” by the

approximation of top-K words. (ii) exp(s′)− exp(L), which measures the distribution of the scores
found by the approximation. The smaller (i) and (ii) are (relative to

∑
i∈K′ exp(ŝi), the better the

approximation is.

We also observe that when the precision at K is 1 for the approximation algorithm, then the bound
depends only on the sum of exponential scores and the smallest top-K score retrieved by the
algorithm.
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Corollary C.1.1. Let the notations be the same as in the above theorem. Assume that the precision
at K of the approximation is 1. Further assume that all the scores si are distinct. Then the relative
error to the approximated softmax probability distribution is bounded above by |p̂i − pi|/pi ≤

(|V | −K)(exp(s′)− exp(L))∑
i∈K′ exp(ŝi) + (|V | −K) exp(L)

for any i ∈ K ∩ K′.

Proof. It suffices to show thatK′′ = K′. Since the precision atK is 1, we haveK = K′, which means
s′ = mini∈K′ ŝi = mini∈K si. Now assume i ∈ K′′, then by definition of K′′, si ≥ minj∈K sj .
Since all scores are distinct, this shows that si is amongst the top-K, i.e., si ∈ K = K′. Thus
K′′ ⊆ K′. The other direction of inclusion is trivial.

D Additional Results

Speedup with different vocabulary size. Figure 6 shows the speedup for FGD (with different
efSearch) over the execution time of full-softmax for vocabulary size 10K, 20K, 40K, and 80K.
When efSearch = 20, FGD achieves more than 65X speedup over the baseline with a vocabulary
size 80K. Even with smaller vocabulary size, FGD still achieves roughly an order of magnitude
speedup. Overall, FGD achieves speedup over the baseline consistently and scales well with different
efSearch values.

Figure 6: Performance of FGD, normalized to full-softmax execution time. Higher is better.

Sensitivity of word embedding dimension. Table 4 reports the precision with varying word vector
embedding dimension 128, 256, and 512 on the WikiText-2 language modeling. The vocabulary size
is set to the default 33,728. In most cases, efSearch being 50 or 100 is sufficient to provide high
precision (e.g., > 0.95). Over 0.99 precision can be reached when efSearch is 200. This indicates
that FGD offers high precision with different word embedding dimensions.

D P@K FGD (efSearch)
20 50 100 200

128 P@1 0.913 0.993 0.998 0.999
P@10 0.819 0.934 0.976 0.992

256 P@1 0.832 0.917 0.958 0.992
P@10 0.866 0.944 0.976 0.995

512 P@1 0.854 0.921 0.968 0.988
P@10 0.884 0.950 0.979 0.995

Table 4: Precision of FGD on WikiText-2 dataset varying word vector embedding dimension.

Figure 7 compares with the execution time of FGD and full-softmax, FGD achieves an order of
magnitude reduction of execution time.
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Figure 7: Scalability of WikiText-2 language model varying word vector embedding dimension.
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