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Abstract

We consider the problem of finding anomalies in high-dimensional data using
popular PCA based anomaly scores. The naive algorithms for computing these
scores explicitly compute the PCA of the covariance matrix which uses space
quadratic in the dimensionality of the data. We give the first streaming algorithms
that use space that is linear or sublinear in the dimension. We prove general results
showing that any sketch of a matrix that satisfies a certain operator norm guarantee
can be used to approximate these scores. We instantiate these results with powerful
matrix sketching techniques such as Frequent Directions and random projections to
derive efficient and practical algorithms for these problems, which we validate over
real-world data sets. Our main technical contribution is to prove matrix perturbation
inequalities for operators arising in the computation of these measures.

1 Introduction

Anomaly detection in high-dimensional numeric data is a ubiquitous problem in machine learning
[1, 2]. A typical scenario is where we have a constant stream of measurements (say parameters
regarding the health of machines in a data-center), and our goal is to detect any unusual behavior. An
algorithm to detect anomalies in such high dimensional settings faces computational challenges: the
dimension of the data matrix A ∈ Rn×d may be very large both in terms of the number of data points
n and their dimensionality d (in the datacenter example, d could be 106 and n� d). The desiderata
for an algorithm to be efficient in such settings are—

1. As n is too large for the data to be stored in memory, the algorithm must work in a streaming
fashion where it only gets a constant number of passes over the dataset.
2. As d is also very large, the algorithm should ideally use memory linear or even sublinear in d.

In this work we focus on two popular subspace based anomaly scores: rank-k leverage scores and
rank-k projection distance. The key idea behind subspace based anomaly scores is that real-world
data often has most of its variance in a low-dimensional rank k subspace, where k is usually much
smaller than d. In this section, we assume k = O(1) for simplicity. These scores are based on
identifying this principal k subspace using Principal Component Analyis (PCA) and then computing
how “normal” the projection of a point on the principal k subspace looks. Rank-k leverage scores
compute the normality of the projection of the point onto the principal k subspace using Mahalanobis
distance, and rank-k projection distance compute the `2 distance of the point from the principal k
subspace (see Fig. 1 for an illustration). These scores have found widespread use for detection of
anomalies in many applications such as finding outliers in network traffic data [3, 4, 5, 6], detecting
anomalous behavior in social networks [7, 8], intrusion detection in computer security [9, 10, 11], in
industrial systems for fault detection [12, 13, 14] and for monitoring data-centers [15, 16].

The standard approach to compute principal k subspace based anomaly scores in a streaming setting
is by computing ATA, the (d × d) covariance matrix of the data, and then computing the top k
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Figure 1: Illustration of subspace based anomaly scores. Here, the data lies mostly in the k = 2
dimensional principal subspace shaded in red. For a point a(i) the rank-k projection distance equals
‖x‖2, where x is the component of a(i) orthogonal to the principal subspace. The rank-k leverage
score measures the normality of the projection y onto the principal subspace.

principal components. This takes space O(d2) and time O(nd2). The quadratic dependence on d
renders this approach inefficient in high dimensions. It raises the natural question of whether better
algorithms exist.

1.1 Our Results

In this work, we answer the above question affirmatively, by giving algorithms for computing these
anomaly scores that require space linear and even sublinear in d. Our algorithms use popular matrix
sketching techniques while their analysis uses new matrix perturbation inequalities that we prove.
Briefly, a sketch of a matrix produces a much smaller matrix that preserves some desirable properties
of the large matrix (formally, it is close in some suitable norm). Sketching techniques have found
numerous applications to numerical linear algebra. Several efficient sketching algorithms are known
in the streaming setting [17].

Pointwise guarantees with linear space: We show that any sketch Ã of A with the property that
‖ATA − ÃT Ã‖ is small, can be used to additively approximate the rank-k leverage scores and
rank-k projection distances for each row. By instantiating this with suitable sketches such as the
Frequent Directions sketch [18], row-sampling [19] or a random projection of the columns of the
input, we get a streaming algorithm that uses O(d) memory and O(nd) time.

A matching lower bound: Can we get such an additive approximation using memory only
o(d)?2 The answer is no, we show a lower bound saying that any algorithm that computes such an
approximation to the rank-k leverage scores or the rank-k projection distances for all the rows of a
matrix must use Ω(d) working space, using techniques from communication complexity. Hence our
algorithm has near-optimal dependence on d for the task of approximating the outlier scores for every
data point.

Average-case guarantees with logarithmic space: Perhaps surprisingly, we show that it is
actually possible to circumvent the lower bound by relaxing the requirement that the outlier scores
be preserved for each and every point to only preserving the outlier scores on average. For this we
require sketches where ‖AAT − ÃÃT ‖ is small: this can be achieved via random projection of the
rows of the input matrix or column subsampling [19]. Using any such sketch, we give a streaming
algorithm that can preserve the outlier scores for the rows up to small additive error on average, and
hence preserve most outliers. The space required by this algorithm is only poly(k) log(d), and hence
we get significant space savings in this setting (recall that we assume k = O(1)).

Technical contributions. A sketch of a matrix A is a significantly smaller matrix Ã which ap-
proximates it well in some norm, say for instance ‖ATA− ÃT Ã‖ is small. We can think of such
a sketch as a noisy approximation of the true matrix. In order to use such sketches for anomaly

2Note that even though each row is d dimensional an algorithm need not store the entire row in memory, and
could instead perform computations as each coordinate of the row streams in.
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detection, we need to understand how the noise affects the anomaly scores of the rows of the matrix.
Matrix perturbation theory studies the effect of adding noise to the spectral properties of a matrix,
which makes it the natural tool for us. The basic results here include Weyl’s inequality [20] and
Wedin’s theorem [21], which respectively give such bounds for eigenvalues and eigenvectors. We use
these results to derive perturbation bounds on more complex projection operators that arise while
computing outlier scores, these operators involve projecting onto the top-k principal subspace, and
rescaling each co-ordinate by some function of the corresponding singular values. We believe these
results could be of independent interest.

Experimental results. Our results have a parameter ` that controls the size and the accuracy of the
sketch. While our theorems imply that ` can be chosen independent of d, they depend polynomially
on k, the desired accuracy and other parameters, and are probably pessimistic. We validate both our
algorithms on real world data. In our experiments, we found that choosing ` to be a small multiple
of k was sufficient to get good results. Our results show that one can get outcomes comparable to
running full-blown SVD using sketches which are significantly smaller in memory footprint, faster to
compute and easy to implement (literally a few lines of Python code).

This contributes to a line of work that aims to make SVD/PCA scale to massive datasets [22]. We
give simple and practical algorithms for anomaly score computation, that give SVD-like guarantees
at a significantly lower cost in terms of memory, computation and communication.

2 Notation and Setup

Given a matrix A ∈ Rn×d, we let a(i) ∈ Rd denote its ith row and a(i) ∈ Rn denote its ith column.
Let UΣVT be the SVD of A where Σ = diag(σ1, . . . , σd), for σ1 ≥ · · · ≥ σd > 0. Let κk be the
condition number of the top k subspace of A, defined as κk = σ2

1/σ
2
k. We consider all vectors as

column vectors (that includes a(i)). We denote by ‖A‖F the Frobenius norm of the matrix, and by
‖A‖ the operator norm (which is equal to the largest singular value). Subspace based measures of
anomalies have their origins in a classical metric in statistics known as Mahalanobis distance, denoted
by L(i) and defined as,

L(i) =

d∑
j=1

(aT(i)v
(j))2/σ2

j , (1)

where a(i) and v(i) are the ith row of A and ith column of V respectively. L(i) is also known as the
leverage score [23, 24]. If the data is drawn from a multivariate Gaussian distribution, then L(i) is
proportional to the negative log likelihood of the data point, and hence is the right anomaly metric in
this case. Note that the higher leverage scores correspond to outliers in the data.

However, L(i) depends on the entire spectrum of singular values and is highly sensitive to smaller
singular values, whereas real world data sets often have most of their signal in the top singular values.
Therefore the above sum is often limited to only the k largest singular values (for some appropriately
chosen k � d) [1, 25]. This measure is called the rank k leverage score Lk(i), where

Lk(i) =

k∑
j=1

(aT(i)v
(j))2/σ2

j .

The rank k leverage score is concerned with the mass which lies within the principal space, but to
catch anomalies that are far from the principal subspace a second measure of anomaly is the rank k
projection distance T k(i), which is simply the distance of the data point a(i) to the rank k principal
subspace—

T k(i) =

d∑
j=k+1

(aT(i)v
(j))2.

Assumptions. We now discuss assumptions needed for our anomaly scores to be meaningful.

(1) Separation assumption. If there is degeneracy in the spectrum of the matrix, namely that
σ2
k = σ2

k+1 then the k-dimensional principal subspace is not unique, and then the quantities Lk and
T k are not well defined, since their value will depend on the choice of principal subspace. This
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suggests that we are using the wrong value of k, since the choice of k ought to be such that the
directions orthogonal to the principal subspace have markedly less variance than those in the principal
subspace. Hence we require that k is such that there is a gap in the spectrum at k.
Assumption 1. We define a matrix A as being (k,∆)-separated if σ2

k − σ2
k+1 ≥ ∆σ2

1 . Our results
assume that the data are (k,∆)-separated for ∆ > 0.

This assumptions manifests itself as an inverse polynomial dependence on ∆ in our bounds. This
dependence is probably pessimistic: in our experiments, we have found our algorithms do well on
datasets which are not degenerate, but where the separation ∆ is not particularly large.

(2) Approximate low-rank assumption. We assume that the top-k principal subspace captures a
constant fraction (at least 0.1) of the total variance in the data, formalized as follows.

Assumption 2. We assume the matrix A is approximately rank-k, i.e.,
∑k
i=1 σ

2
i ≥ (1/10)

∑d
i=1 σ

2
i .

From a technical standpoint, this assumption is not strictly needed: if Assumption 2 is not true, our
results still hold, but in this case they depend on the stable rank sr(A) of A, defined as sr(A) =∑d
i=1 σ

2
i /σ

2
1 (we state these general forms of our results in the appendix).

From a practical standpoint though, this assumption captures the setting where the scores Lk and T k,
and our guarantees are most meaningful. Indeed, our experiments suggest that our algorithms work
best on data sets where relatively few principal components explain most of the variance.

Setup. We work in the row-streaming model, where rows appear one after the other in time. Note
that the leverage score of a row depends on the entire matrix, and hence computing the anomaly
scores in the streaming model requires care, since if the rows are seen in streaming order, when row
i arrives we cannot compute its leverage score without seeing the rest of the input. Indeed, 1-pass
algorithms are not possible (unless they output the entire matrix of scores at the end of the pass,
which clearly requires a lot of memory). Hence we will aim for 2-pass algorithms.

Note that there is a simple 2-pass algorithm which uses O(d2) memory to compute the covariance
matrix in one pass, then computes its SVD, and using this computes Lk(i) and T k(i) in a second
pass using memory O(dk). This requires O(d2) memory and O(nd2) time, and our goal would be to
reduce this to linear or sublinear in d.

Another reasonable way to define leverage scores and projection distances in the streaming model is
to define them with respect to only the input seen so far. We refer to this as the online scenario, and
refer to these scores as the online scores. Our result for sketches which preserve row spaces also hold
in this online scenario. We defer more discussion of this online scenario to the appendix, and focus
here only on the scores defined with respect to the entire matrix for simplicity.

3 Guarantees for anomaly detection via sketching

Our main results say that given µ > 0 and a (k,∆)-separated matrix A ∈ Rn×d with top singular
value σ1, any sketch Ã ∈ R`×d satisfying

‖ATA− ÃT Ã‖ ≤ µσ2
1 , (2)

or a sketch Ã ∈ Rn×` satisfying

‖AAT − ÃÃT ‖ ≤ µσ2
1 , (3)

can be used to approximate rank k leverage scores and the projection distance from the principal
k-dimensional subspace. The quality of the approximation depends on µ, the separation ∆, k and the
condition number κk of the top k subspace.3 In order for the sketches to be useful, we also need them
to be efficiently computable in a streaming fashion. We show how to use such sketches to design
efficient algorithms for finding anomalies in a streaming fashion using small space and with fast
running time. The actual guarantees (and the proofs) for the two cases are different and incomparable.
This is to be expected as the sketch guarantees are very different in the two cases: Equation (2) can
be viewed as an approximation to the covariance matrix of the row vectors, whereas Equation (3)

3The dependence on κk only appears for showing guarantees for rank-k leverage scores Lk in Theorem 1.
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gives an approximation for the covariance matrix of the column vectors. Since the corresponding
sketches can be viewed as preserving the row/column space of A respectively, we will refer to them
as row/column space approximations.

Pointwise guarantees from row space approximations. Sketches which satisfy Equation (2) can
be computed in the row streaming model using random projections of the columns, subsampling
the rows of the matrix proportional to their squared lengths [19] or deterministically by using the
Frequent Directions algorithm [26]. Our streaming algorithm is stated as Algorithm 1, and is very
simple. In Algorithm 1, any other sketch such as subsampling the rows of the matrix or using a
random projection can also be used instead of Frequent Directions.

Algorithm 1: Algorithm to approximate anomaly scores using Frequent Directions
Input: Choice of k, sketch size ` for Frequent Directions [26]
First Pass:

Use Frequent Directions to compute a sketch Ã ∈ R`×d
SVD:

Compute the top k right singular vectors of ÃT Ã
Second Pass: As each row a(i) streams in,

Use estimated right singular vectors to compute leverage scores and projection distances

We state our results here, see Section B for precise statements and general results for any sketches
which satisfy the guarantee in Eq. (2). All our proofs are deferred to the appendix in the supplementary
material.
Theorem 1. Assume that A is (k,∆)-separated. There exists ` = k2 · poly(ε−1, κk,∆), such that
the above algorithm computes estimates T̃ k(i) and L̃k(i) where

|T k(i)− T̃ k(i)| ≤ ε‖a(i)‖22,

|Lk(i)− L̃k(i)| ≤ εk
‖a(i)‖22
‖A‖2F

.

The algorithm uses memory O(d`) and has running time O(nd`).

The key is that while ` depends on k and other parameters, it is independent of d. In the setting where
all these parameters are constants independent of d, our memory requirement is O(d), improving on
the trivial O(d2) bound.

Our approximations are additive rather than multiplicative. But for anomaly detection, the candidate
anomalies are ones where Lk(i) or T k(i) is large, and in this regime, we argue below that our additive
bounds also translate to good multiplicative approximations. The additive error in computing Lk(i) is
about εk/n when all the rows have roughly equal norm. Note that the average rank-k leverage score
of all the rows of any matrix with n rows is k/n, hence a reasonable threshold on Lk(i) to regard
a point as an anomaly is when Lk(i) � k/n, so the guarantee for Lk(i) in Theorem 1 preserves
anomaly scores up to a small multiplicative error for candidate anomalies, and ensures that points
which were not anomalies before are not mistakenly classified as anomalies. For T k(i), the additive
error for row a(i) is ε‖a(i)‖22. Again, for points that are anomalies, T k(i) is a constant fraction of
‖a(i)‖22, so this guarantee is meaningful.

Next we show that substantial savings are unlikely for any algorithm with strong pointwise guarantees:
there is an Ω(d) lower bound for any approximation that lets you distinguish Lk(i) = 1 from
Lk(i) = ε for any constant ε.
Theorem 2. Any streaming algorithm which takes a constant number of passes over the data and can
compute a 0.1 error additive approximation to the rank-k leverage scores or the rank-k projection
distances for all the rows of a matrix must use Ω(d) working space.

Average-case guarantees from columns space approximations. We derive smaller space algo-
rithms, albeit with weaker guarantees using sketches that give columns space approximations that
satisfy Equation (3). Even though the sketch gives column space approximations our goal is still to
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compute the row anomaly scores, so it not just a matter of working with the transpose. Many sketches
are known which approximate AAT and satisfy Equation (3), for instance, a low-dimensional pro-
jection by a random matrix R ∈ Rd×` (e.g., each entry of R could be a scaled i.i.d. uniform {±1}
random variable) satisfies Equation (3) for ` = O(k/µ2) [27].

On first glance it is unclear how such a sketch should be useful: the matrix ÃÃT is an n× n matrix,
and since n� d this matrix is too expensive to store. Our streaming algorithm avoids this problem
by only computing ÃT Ã, which is an `× ` matrix, and the larger matrix ÃÃT is only used for the
analysis. Instantiated with the sketch above, the resulting algorithm is simple to describe (although
the analysis is subtle): we pick a random matrix in R ∈ Rd×` as above and return the anomaly scores
for the sketch Ã = AR instead. Doing this in a streaming fashion using even the naive algorithm
requires computing the small covariance matrix ÃT Ã, which is only O(`2) space.

But notice that we have not accounted for the space needed to store the (d× `) matrix R. This is a
subtle (but mainly theoretical) concern, which can be addressed by using powerful results from the
theory of pseudorandomness [28]. Constructions of pseudorandom Johnson-Lindenstrauss matrices
[29, 30] imply that the matrix R can be pseudorandom, meaning that it has a succinct description
using only O(log(d)) bits, from which each entry can be efficiently computed on the fly.

Algorithm 2: Algorithm to approximate anomaly scores using random projection

Input: Choice of k, random projection matrix R ∈ Rd×`
Initialization

Set covariance ÃT Ã← 0
First Pass: As each row a(i) streams in,

Project by R to get RTa(i)
Update covariance ÃT Ã← ÃT Ã + (RTa(i))(R

Ta(i))
T

SVD:
Compute the top k right singular vectors of ÃT Ã

Second Pass: As each row a(i) streams in,
Project by R to get RTa(i)
For each projected row, use the estimated right singular vectors to compute the leverage
scores and projection distances

Theorem 3. For ε sufficiently small, there exists ` = k3 · poly(ε−1,∆) such that the algorithm
above produces estimates L̃k(i) and T̃ k(i) in the second pass, such that with high probabilty,

n∑
i=1

|T k(i)− T̃ k(i)| ≤ ε‖A‖2F,

n∑
i=1

|Lk(i)− L̃k(i)| ≤ ε
n∑
i=1

Lk(i).

The algorithm uses space O(`2 + log(d) log(k)) and has running time O(nd`).

This gives an average case guarantee. We note that Theorem 3 shows a new property of random
projections—that on average they can preserve leverage scores and distances from the principal
subspace, with the projection dimension ` being only poly(k, ε−1,∆), independent of both n and d.

We can obtain similar guarantees as in Theorem 3 for other sketches which preserve the column
space, such as sampling the columns proportional to their squared lengths [19, 31], at the price of
one extra pass. Again the resulting algorithm is very simple: it maintains a carefully chosen `× `
submatrix of the full d× d covariance matrix ATA where ` = O(k3). We state the full algorithm in
Section C.3.

4 Experimental evaluation

The aim of our experiments is to test whether our algorithms give comparable results to exact anomaly
score computation based on full SVD. So in our experiments, we take the results of SVD as the
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ground truth and see how close our algorithms get to it. In particular, the goal is to determine how
large the parameter ` that determines the size of the sketch needs to be to get close to the exact scores.
Our results suggest that for high dimensional data sets, it is possible to get good approximations to the
exact anomaly scores even for fairly small values of ` (a small multiple of k), hence our worst-case
theoretical bounds (which involve polynomials in k and other parameters) are on the pessimistic side.

Datasets: We ran experiments on three publicly available datasets: p53 mutants [32], Dorothea
[33] and RCV1 [34], all of which are available from the UCI Machine Learning Repository, and are
high dimensional (d > 5000). The original RCV1 dataset contains 804414 rows, we took every tenth
element from it. The sizes of the datasets are listed in Table 1.

Ground Truth: To establish the ground truth, there are two parameters: the dimension k (typically
between 10 and 125) and a threshold η (typically between 0.01 and 0.1). We compute the anomaly
scores for this k using a full SVD, and then label the η fraction of points with the highest anomaly
scores to be outliers. k is chosen by examining the explained variance of the datatset as a function of
k, and η by examining the histogram of the anomaly score.

Our Algorithms: We run Algorithm 1 using random column projections in place of Frequent
Directions.4 The relevant parameter here is the projection dimension `, which results in a sketch
matrix of size d× `. We run Algorithm 2 with random row projections. If the projection dimension is
`, the resulting sketch size is O(`2) for the covariance matrix. For a given `, the time complexity of
both algorithms is similar, however the size of the sketches are very different: O(d`) versus O(`2).

Measuring accuracy: We ran experiments with a range of `s, in the range (2k, 20k) for each
dataset (hence the curves have different start/end points). The algorithm is given just the points
(without labels or η) and computes anomaly scores for them. We then declare the points with the
top η′ fraction of scores to be anomalies, and then compute the F1 score (defined as the harmonic
mean of the precision and the recall). We choose the value of η′ which maximizes the F1 score. This
measures how well the proposed algorithms can approximate the exact outlier scores. Note that in
order to get both good precision and recall, η′ cannot be too far from η. We report the average F1

score over 5 runs.

For each dataset, we run both algorithms, approximate both the leverage and projection scores, and
try three different values of k. For each of these settings, we run over roughly 10 values for `. The
results are plotted in Figs. 2, 3 and 4. Here are some takeaways from our experiments:

• Taking ` = Ck with a fairly small C ≈ 10 suffices to get F1 scores > 0.75 in most settings.

• Algorithm 1 generally outperforms Algorithm 2 for a given value of `. This should not be
too surprising given that it uses much more memory, and is known to give pointwise rather
than average case guarantees. However, Algorithm 2 does surprisingly well for an algorithm
whose memory footprint is essentially independent of the input dimension d.

• The separation assumption (Assumption (1)) does hold to the extent that the spectrum is not
degenerate, but not with a large gap. The algorithms seem fairly robust to this.

• The approximate low-rank assumption (Assumption (2)) seems to be important in practice.
Our best results are for the p53 data set, where the top 10 components explain 87% of the
total variance. The worst results are for the RCV1 data set, where the top 100 and 200
components explain only 15% and 25% of the total variance respectively.

Performance. While the main focus of this work is on the streaming model and memory con-
sumption, our algorithms offer considerable speedups even in the offline/batch setting. Our timing
experiments were run using Python/Jupyter notebook on a linux VM with 8 cores and 32 Gb of
RAM, the times reported are total CPU times in seconds as measured by the % time function, and are
reported in Table 1. We focus on computing projection distances using SVD (the baseline), Random
Column Projection (Algorithm 1) and Random Row Projection (Algorithm 2). All SVD computations
use the randomized_svd function from scikit.learn. The baseline computes only the top k
singular values and vectors (not the entire SVD). The results show consistent speedups between 2×
and 6×. Which algorithm is faster depends on which dimension of the input matrix is larger.

4Since the existing implementation of Frequent Directions [35] does not seem to handle sparse matrices.
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Table 1: Running times for computing rank-k projection distance. Speedups between 2× and 6×.

Dataset Size (n× d) k ` SVD Column Row
Projection Projection

p53 mutants 16772× 5409 20 200 29.2s 6.88s 7.5s
Dorothea 1950× 100000 20 200 17.7s 9.91s 2.58s

RCV1 80442× 47236 50 500 39.6s 17.5s 20.8s

Figure 2: Results for P53 Mutants. We get F1 score > 0.8 with > 10× space savings.

5 Related work
In most anomaly detection settings, labels are hard to come by and unsupervised learning methods
are preferred: the algorithm needs to learn what the bulk of the data looks like and then detect any
deviations from this. Subspace based scores are well-suited to this, but various other anomaly scores
have also been proposed such as those based on approximating the density of the data [36, 37] and
attribute-wise analysis [38], we refer to surveys on anomaly detection for an overview [1, 2].

Leverage scores have found numerous applications in numerical linear algebra, and hence there has
been significant interest in improving the time complexity of computing them. For the problem of
approximating the (full) leverage scores (L(i) in Eq. (1), note that we are concerned with the rank-k
leverage scores Lk(i)), Clarkson and Woodruff [39] and Drineas et al. [40] use sparse subspace
embeddings and Fast Johnson Lindenstrauss Transforms (FJLT [41]) to compute the leverage scores
using O(nd) time instead of the O(nd2) time required by the baseline—but these still need O(d2)
memory. With respect to projection distance, the closest work to ours is Huang and Kasiviswanathan
[42] which uses Frequent Directions to approximate projection distances in O(kd) space. In contrast
to these approaches, our results hold both for rank-k leverage scores and projection distances, for any
matrix sketching algorithm—not just FJLT or Frequent Directions—and our space requirement can
be as small as log(d) for average case guarantees. However, Clarkson and Woodruff [39] and Drineas
et al. [40] give multiplicative guarantees for approximating leverage scores while our guarantees for
rank-k leverage scores are additive, but are nevertheless sufficient for the task of detecting anomalies.

6 Conclusion
We show that techniques from sketching can be used to derive simple and practical algorithms
for computing subspace-based anomaly scores which provably approximate the true scores at a
significantly lower cost in terms of time and memory. A promising direction of future work is to use
them in real-world high-dimensional anomaly detection tasks.
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A Matrix Perturbation Bounds

In this section, we will establish projection bounds for various operators needed for computing outlier
scores. We first set up some notation and state some results we need.

A.1 Preliminaries

We work with the following setup throughout this section. Let A ∈ Rn×d = UΣVT where
Σ = (σ1, . . . , σd). Assume that A is (k,∆)-separated as in Assumption 1 from 2. We use sr(A) =
‖A‖2F/σ2

1 to denote the stable rank of A, and κk = σ2
1/σ

2
k for the condition number of Ak.

Let Ã ∈ Rn×` be a sketch/noisy version of A satisfying

‖AAT − ÃÃT ‖ ≤ µσ2
1 . (4)

and let Ã = ŨΣ̃ṼT denote its SVD. While we did not assume Ã is (k,O(∆))-separated, it will
follow from Weyl’s inequality for µ sufficiently small compared to ∆. It helps to think of ∆ as
property of the input A, and µ as an accuracy parameter that we control.

In this section we prove perturbation bounds for the following three operators derived from Ã,
showing their closeness to those derived from A:

1. UkU
T
k : projects onto the principal k-dimensional column subspace (Lemma 3).

2. UkΣ
2
kU

T
k : projects onto the principal k-dimensional column subspace, and scale co-

ordinate i by σi (Theorem 4).

3. UkΣ
−2
k UT

k : projects onto the principal k-dimensional column subspace, and scale co-
ordinate i by 1/σi (Theorem 6).

To do so, we will extensively use two classical results about matrix perturbation: Weyl’s inequality
(c.f. Horn and Johnson [20] Theorem 3.3.16) and Wedin’s theorem [21], which respectively quantify
how the eigenvalues and eigenvectors of a matrix change under perturbations.

Lemma 1. (Weyl’s inequality) Let C,D = C + N ∈ Rn×d. Then for all i ≤ min(n, d),

|σi(C)− σi(D)| ≤ ‖N‖.

Wedin’s theorem requires a sufficiently large separation in the eigenvalue spectrum for the bound to
be meaningful.

Lemma 2. (Wedin’s theorem) Let C,D = C + N ∈ Rn×d. Let PC and PD respectively denote
the projection matrix onto the space spanned by the top k singular vectors of C and D. Then,

‖PD −PCPD‖ ≤
‖N‖

σk(C)− σk+1(C)− ‖N‖
.

A.2 Matrix Perturbation Bounds

We now use these results to derive the perturbation bounds enumerated above. The first bound is a
direct consequence of Wedin’s theorem.
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Lemma 3. If A = UΣVT is (k,∆)-separated, Ã = ŨΣ̃ṼT satisfies (4) with µ ≤ ∆/6, then

‖UkU
T
k − ŨkŨ

T
k ‖ ≤ 2

√
µ

∆
.

Proof. Let P = UkU
T
k and P̃ = ŨkŨ

T
k . Since we have AAT = UΣ2UT , P (P̃) is the projection

operator onto the column space of Ak (and similarly for P̃ and Ãk). Since PT = P and PP = P
for any orthogonal projection matrix, we can write,

‖P− P̃‖2 = ‖(P− P̃)2‖ = ‖PP−PP̃− P̃P + P̃P̃‖ = ‖P−PP̃ + P̃− P̃P‖
≤ ‖P̃−PP̃‖+ ‖P− P̃P‖. (5)

Since A is (k,∆)-separated,

σk(AAt)− σk+1(AAt) = σ2
k − σk+1(A)2 = ∆. (6)

So applying Wedin’s theorem to AAT ,

‖P̃−PP̃‖ ≤ µ

∆− µ
. (7)

We next show that the spectrum of Ã also has a gap at k. Using Weyl’s inequality,

σ̃2
k ≥ σ2

k − µσ2
1 and σ̃2

k+1 ≤ σ2
k+1 + µσ2

1

Hence using Equation (6)

σ̃2
k − σ̃2

k+1 ≥ σ2
k+1 − σ2

k − 2µσ2
1 ≥ (∆− 2µ)σ2

1 .

So we apply Wedin’s theorem to Ã to get

‖P− P̃P‖ ≤ µ

∆− 3µ
. (8)

Plugging (7) and (8) into (5),

‖P− P̃‖2 ≤ µ

∆− µ
+

µ

∆− 3µ
≤ 2µ

∆− 3µ
≤ 4µ

∆

where the last inequality is becuase ∆− 3µ ≥ ∆/2 since we assumed ∆ ≥ 6µ. The claim follows
by taking square roots on both sides.

We now move to proving bounds for items (2) and (3), which are given by Theorems 4 and 6
respectively.
Theorem 4. Let µ ≤ min(∆3k2, 1/(20k)).

‖UkΣ
2
kU

T
k − ŨkΣ

2
kŨ

T
k ‖ ≤ 8σ2

1(µk)1/3.

The full proof of the theorem is quite technical and is stated in Section E. Here we prove a special
case that captures the main idea. The simplifying assumption we make is that the values of the
diagonal matrix in the operator are distinct and well separated. In the full proof we decompose Σk to
a well separated component and a small residual component.
Definition 5. Λ = diag(λ1, . . . λk) is monotone and δ-well separated if

• λi+1 ≥ λi for 1 ≤ i < k.

• The λs could be partitioned to buckets so that all values in the same buckets are equal, and
values across buckets are well separated. Formally, 1 . . . k are partitioned to m buckets
B1, . . . Bm so that if i, j ∈ B` then λi = λj . Yet, if i ∈ B` and j ∈ B`+1 then λi − λj >
δλ1.

The idea is to show Σ = Λ + Ω where Λ is monotone and well separated and Ω has small norm.
The next two lemmas handle these two components. We first state a simple lemma which handles the
case where Ω has small norm.
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Lemma 4. For any diagonal matrix Ω,

‖UkΩUT
k − ŨkΩŨT

k ‖ ≤ 2‖Ω‖.

Proof. By the triangle inequality, ‖UkΩUT
k −ŨkΩŨT

k ‖ ≤ ‖UkΩUT
k ‖+‖ŨkΩŨT

k ‖. The bound
follows as Uk and Ũ are orthonormal matrices.

We next state the result for the case where Λ is monotone and well separated. In order to prove this
result, we need the following direct corollary of Lemma 3:
Lemma 5. For all j ≤ m,

‖UbjU
T
bj − ŨbjŨ

T
bj‖ ≤

√
2µσ2

1

δσ2
1 − 3µσ2

1

≤ 2

√
µ

δ
. (9)

Using this, we now proceed as follows.
Lemma 6. Let 6µ ≤ δ ≤ ∆. Let Λ = diag(λ1, . . . λk) be a monotone and δσ2

1 well separated
diagonal matrix. Then

‖UkΛUT
k − ŨkΛŨT

k ‖ ≤ 2‖Λ‖
√
µ

δ
.

Proof. We denote by bj the largest index that falls in bucket Bj . Let us set λBm+1
= 0 for

convenience. Since

UbjU
T
bj =

bj∑
i=1

u(i)u(i)
T
,

we can write,

UkΛUT
k =

m∑
j=1

(λbj − λbj+1
)UbjU

T
bj

and similarly for ŨkΛŨT
k . So we can write

UkΛUT
k − ŨkΛŨT

k =

m∑
j=1

(λbj − λbj+1
)(UbjU

T
bj − ŨbjŨ

T
bj ).

Therefore by using Lemma 5,

‖UkΛUT
k − ŨkΛŨT

k ‖ =

m∑
j=1

|λbj − λbj+1 |‖(UbjU
T
bj − ŨbjŨ

T
bj )‖ ≤ 2

√
µ

δ

m∑
j=1

|λbj − λbj+1
|,

where the second inequality is by the triangle inequality and by applying Lemma 4. Thus proving
that

∑m
j=1 |λbj − λbj+1

| ≤ ‖Λ‖ would imply the claim. Indeed

k∑
j=1

|λbj − λbj+1
| =

k∑
j=1

(λbj − λbj+1
) = λb1 − λbk+1

≤ ‖Λ‖.

Note that though Lemma 6 assumes that the eigenvalues in each bucket are equal, the key step where
we apply Wedin’s theorem (Lemma 3) only uses the fact that there is some separation between the
eigenvalues in different buckets. Lemma 10 in the appendix does this generalization by relaxing the
assumption that the eigenvalues in each bucket are equal. The final proof of Theorem 4 works by
splitting the eigenvalues into different buckets or intervals such that all the eigenvalues in the same
interval have small separation, and the eigenvalues in different intervals have large separation. We
then use Lemma 10 and Lemma 4 along with the triangle inequality to bound the perturbation due to
the well-separated part and the residual part respectively.

The bound corresponding to (3) is given in following theorem:
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Theorem 6. Let κk denote the condition number κk = σ2
1/σ

2
k. Let µ ≤ min(∆3(kκk)2, 1/(20kκk)).

Then,

‖UkΣ
−2
k UT

k − ŨkΣ
−2
k ŨT

k ‖ ≤
8

σ2
k

(µkκk)1/3.

The proof uses similar ideas to those of Theorem 4 and is deferred to Section E.

B Pointwise guarantees for Anomaly Detection

Let the input A ∈ Rn×d have SVD UΣVT be its SVD. Write a(i) in the basis of right singular
vectors as a(i) =

∑d
j=1 αjv

(j). Recall that we defined its rank-k leverage score and projection
distance respectively as

Lk(i) =

k∑
j=1

α2
j

σ2
j

= ‖Σ−1k VT
k a(i)‖22, (10)

T k(i) =

d∑
j=k+1

α2
j = aT(i)(I−VkV

T
k )a(i). (11)

To approximate these scores, it is natural to use a row-space approximation, or rather a sketch
Ã ∈ R`×d that approximates the covariance matrix ATA as below:

‖ATA− ÃT Ã‖ ≤ µσ2
1 . (12)

Given such a sketch, our approximation is the following: compute Ã = ŨΣ̃Ṽt. The estimates for
Lk(i) and T k(i) respectively are

L̃k(i) = ‖Σ̃−1k ṼT
k a(i)‖22, (13)

T̃ k(i) = aT(i)(I− ṼkṼ
T
k )a(i). (14)

Given the sketch Ã, we expect that Ṽk is a good approximation to the row space spanned by Vk,
since the covariance matrices of the rows are close. In contrast the columns spaces of A and Ã are
hard to compare since they lie in Rn and R` respectively. The closeness of the row spaces follows
from the results from Section A but applied to AT rather than A itself. The results there require that
‖AAT − ÃÃT ‖ is small, and Equation (12) implies that this assumption holds for AT .

We first state our approximation guarantees for T k.

Theorem 7. Assume that A is (k,∆)-separated. Let ε < 1/3 and let Ã satisfy Equation (12) for
µ = ε2∆. Then for every i,

|T k(i)− T̃ k(i)| ≤ ε‖a(i)‖22.

Proof. We have

|T k(i)− T̃ k(i)| = |aT(i)(I−VkV
T
k )a(i) − aT(i)(I− ṼkṼ

T
k )a(i)|

= |a(i)(ṼkṼ
T
k −VkV

T
k )a(i)|

≤ ‖ṼkṼ
T
k −VkV

T
k ‖‖a(i)‖22

≤ ε‖a(i)‖22
where in the last line we use Lemma 3, applied to the projection onto columns of AT , which are the
rows of A. The condition µ < ∆/6 holds since µ = ε2∆ for ε < 1/3.

How meaningful is the above additive approximation guarantee? For each row, the additive error is
ε‖a(i)‖22. It might be that T k(i)� ε‖a(i)‖22 which happens when the row is almost entirely within
the principal subspace. But in this case, the points are not anomalies, and we have T̃ k(i) ≤ 2ε‖a(i)‖22,
so these points will not seem anomalous from the approximation either. The interesting case is when
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T k(i) ≥ β‖a(i)‖22 for some constant β (say 1/2). For such points, we have T̃ k(i) ∈ (β ± ε)‖a(i)‖22,
so we indeed get multiplicative approximations.

Next we give our approximation guarantee for Lk, which relies on the perturbation bound in Theorem
6.
Theorem 8. Assume that A is (k,∆)-separated. Let Ã be as in Equation (12). Let

ε ≤ min
(
κk∆,

1

k

)
sr(A)κk, µ =

ε3k2

103sr(A)3κ4k
.

Then for every i,

|Lk(i)− L̃k(i)| ≤ εk
‖a(i)‖22
‖A‖2F

. (15)

Proof. Since Lk(i) = ‖Σ−1k VT
k a(i)‖22, L̃k(i) = ‖Σ̃−1k ṼT

k a(i)‖22, it will suffice to show that

‖VkΣ
−2
k VT

k − ṼkΣ̃
−2

ṼT
k ‖ ≤

εk

‖A‖2F
. (16)

To prove inequality (16), we will bound the LHS as

‖VkΣ
−2VT

k − ṼkΣ̃
−2

ṼT
k ‖ ≤ ‖VkΣ

−2
k VT

k − ṼT
k Σ−2k ṼT

k ‖+ ‖Ṽk(Σ−2 − Σ̃
−2

)ṼT
k ‖ (17)

For the first term, we apply Theorem 6 to AT to get

‖VkΣ
−2VT

k − ṼT
k Σ−2k ṼT

k ‖ ≤
8

σ2
k

(µkκk)1/3. (18)

We bound the second term as

‖Ṽk(Σ−2 − Σ̃
−2

)ṼT
k ‖ = max

i∈[k]
|σ−2i − σ̃

−2
i | = max

i∈[k]

|σ2
i − σ̃2

i |
σ2
i σ̃

2
i

≤ µσ2
1

σ2
kσ̃

2
k

(19)

where we use Weyl’s inequality to bound σ2
i − σ̃2

i . Using Weyl’s inequality and the fact that
µ ≥ 1/(20kκk),

σ̃2
k ≥ σ2

k − µσ2
1 ≥ σ2

k − σ2
k/10k ≥ σ2

k/2,

µσ2
1

σ2
kσ̃

2
k

≤ 2µσ2
1

σ4
k

=
2µκk
σ2
k

(20)

Plugging Equations (18) and (20) into Equation (17) gives

‖VkΣ
−2VT

k − ṼkΣ̃
−2

ṼT
k ‖ ≤

1

σ2
k

(8(µkκk)1/3 + 2µκk) ≤ 10

σ2
k

(µkκk)1/3 (21)

≤ 10

σ2
k

( ε3k3

103sr(A)3κ3k

)1/3
≤ kε

σ2
kκksr(A)

=
kε

‖A‖2F
.

Equation (21) follows by Theorem 6. The conditions on µ needed to apply it are guaranteed by our
choice of µ and ε.

To interpret this guarantee, consider the setting when all the points have roughly the same 2-norm.
More precisely, if for some constant C

‖a(i)‖22
‖A‖2F

≤ C

i

then Equation (15) gives

|Lk(i)− L̃k(i)| ≤ Cεk/n.
Note that k is a constant whereas n grows as more points come in. As mentioned in the discussion
following Theorem 1, the points which are considered outliers are those where Lk(i) � k

n . For
the parameters setting, if we let κk = O(1) and sr(A) = Θ(k), then our bound on ε reduces to
ε ≤ min(∆, 1/k), and our choice of µ reduces to µ ≈ ε3/k.

To efficiently compute a sketch that satisfies (12), we can use Frequent Directions [18]. We use the
improved analysis of Frequent Directions in Ghashami et al. [26]:
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Theorem 9. [26] There is an algorithm that takes the rows of A in streaming fashion and computes
a sketch Ã ∈ R`×d satisfying Equation (12) where ` =

∑n
i=k+1 σ

2
i /(σ

2
1µ).

Let Ã = ŨΣ̃ṼT . The algorithm maintains Σ̃, Ṽ. It uses O(d`) memory and requires time at most
O(d`2) per row. The total time for processing n rows is O(nd`). If ` � d, this is a significant
improvement over the naive algorithm in both memory and time. If we use Frequent directions, we
set

` =

∑d
i=k+1 σ

2
i

σ2
1µ

(22)

where µ is set according to Theorem 7 and 8. This leads to ` = poly(k, sr(A), κk,∆, ε
−1). Note that

this does not depend on d, and hence is considerably smaller for our parameter settings of interest.

B.1 The Online Setting

We now consider the online scenario where the leverage scores and projection distances are defined
only with respect to the input seen so far. Consider again the motivating example where each machine
in a data center produces streams of measurements. Here, it is desirable to determine the anomaly
score of a data point online as it arrives, with respect to the data produced so far, and by a streaming
algorithm. We first define the online anomaly measures. Let A ∈ R(i−1)×d denote the matrix of
points that have arrived so far (excluding a(i)) and let UΣVT be its SVD. Write a(i) in the basis
of right singular vectors as a(i) =

∑d
j=1 αjv

(j). We define its rank-k leverage score and projection
distance respectively as

lk(i) =

k∑
j=1

α2
j

σ2
j

= ‖Σ−1k VT
k a(i)‖22, (23)

tk(i) =

d∑
j=k+1

α2
j = aT(i)(I−VkV

T
k )a(i). (24)

Note that in the online setting there is a one-pass streaming algorithm that can compute both these
scores, using time O(d3) per row and O(d2) memory. This algorithm maintains the d× d covariance
matrix ATA and computes its SVD to get Vk,Σk. From these, it is easy to compute both lk and tk.

All our guarantees from the previous subsection directly carry over to this online scenario, allowing us
to significantly improve over this baseline. This is because the guarantees are pointwise, hence they
also hold for every data point if the scores are only defined for the input seen so far. This implies a one-
pass algorithm which can approximately compute the anomaly scores (i.e., satisfies the guarantees in
Theorem 7 and 8) and uses spaceO(d`) and requires timeO(nd`) for ` = poly(k, sr(A), κk,∆, ε

−1)
(independent of d).

The Ω(d) lower bounds in Section D show that one cannot hope for sublinear dependence on d for
pointwise estimates. In the next section, we show how to eliminate the dependence on d in the space
requirement of the algorithm in exchange for weaker guarantees.

C Average-case guarantees for Anomaly Detection

In this section, we present an approach which circumvents the Ω(d) lower bounds by relaxing the
pointwise approximation guarantee.

Let A = UΣVT be the SVD of A. The outlier scores we wish to compute are

Lk(i) = ‖eTi Uk‖22 = ‖Σ−1k VT
k a(i)‖22, (25)

T k(i) = ‖a(i)‖22 − ‖eTi UkΣk‖22 = ‖a(i)‖22 − ‖VT
k a(i)‖22. (26)

Note that these scores are defined with respect to the principal space of the entire matrix. We present
a guarantee for any sketch Ã ∈ Rn×` that approximates the column space of A, or equivalently the
covariance matrix AAT of the row vectors. We can work with any sketch A where

‖AAT − ÃÃT ‖ ≤ µσ2
1 . (27)
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Theorem 10 stated in Section C.2 shows that such a sketch can be obtained for instance by a random
projection R onto R` for ` = sr(A)/µ2: let Ã = AR for R ∈ Rd×` chosen from an appropriately
family of random matrices. However, we need to be careful in our choice of the family of random
matrices, as naively storing a (d× `) matrix requires O(d`) space, which would increase the space
requirement of our streaming algorithm. For example, if we were to choose each entry of R to be
i.i.d. be ± 1√

`
, then we would need to store O(d`) random bits corresponding to each entry of R.

But Theorem 10 also shows that this is unnecessary and we do not need to explicitly store a (d× `)
random matrix. The guarantees of Theorem 10 also hold when R is a pseudorandom matrix with the
entries being± 1√

`
with log(sr(A)/δ)-wise independence instead of full independence . Therefore, by

using a simple polynomial based hashing scheme [28] we can get the same sketching guarantees using
only O(log(d) log(sr(A)/δ)) random bits and hence only O(log(d) log(sr(A)/δ)) space. Note that
each entry of R can be computed from this random seed in time O(log(d) log(sr(A)/δ)).

Theorem 11 stated in Section C.3 shows that such a sketch can also be obtained for a length-squared
sub-sampling of the columns of the matrix, for ` = Õ(sr(A)/µ2) (where the Õ hides logarithmic
factors).

Given such a sketch, we expect Ũk to be a good approximation to Uk. So we define our approxima-
tions in the natural way:

L̃k(i) = ‖eTi Ũi
k‖22, (28)

T̃ k(i) = ‖a(i)‖22 − ‖eTi ŨkΣ̃k‖22. (29)

The analysis then relies on the machinery from Section A. However, Ũk lies in Rn×k
which is too costly to compute and store, whereas Ṽk in contrast lies in R`×k, for ` =
1/µ2 max(sr(A), log(1/δ)). In particular, both ` and k are independent of n, d and could be signif-
icantly smaller. In many settings of practical interest, we have sr(A) ≈ k and both are constants
independent of n, d. So in our algorithm, we use the following equivalent definition in terms of
Ṽk, Σ̃k.

L̃k(i) = ‖Σ̃−1k ṼT
k (RTa(i))‖22, (30)

T̃ k(i) = ‖a(i)‖22 − ‖ṼT
k (RTa(i))‖22. (31)

For the random projection algorithm, we compute ÃT Ã in R`×` in the first pass, and then run SVD on
it to compute Σ̃k ∈ Rk×k and Ṽk ∈ R`×k. Then in the second pass, we use these to we compute L̃k

and T̃ k. The total memory needed in the first pass is O(`2) for the covariance matrix. In the second
pass, we need O(k`) memory for storing Vk. We also need O(log(d) log(sr(A)/δ)) additional
memory for storing the random seed from which the entries of R can be computed efficiently.

C.1 Our approximation guarantees

We now turn to the guarantees. Given the Ω(d) lower bound from Section D, we cannot hope for a
strong pointwise guarantee, rather we will show a guarantee that hold on average, or for most points.

The following simple Lemma bounds the sum of absolute values of diagonal entries in symmetric
matrices.
Lemma 7. Let A ∈ Rn×n be symmetric. Then

n∑
i=1

∣∣∣eTi Aei

∣∣∣ ≤ rank(A)‖A‖.

Proof. Consider the eigenvalue decomposition of A = QΛQT where Λ is the diagonal matrix of
eigenvalues of A, and Q has orthonormal columns, so ‖Q‖2F = rank(A). We can write,

n∑
i=1

∣∣∣eTi Aei

∣∣∣ =

n∑
i=1

∣∣∣eTi QΛQTei

∣∣∣ =

n∑
i=1

n∑
j=1

∣∣∣Λi,iQ
2
i,j

∣∣∣
≤ ‖A‖

n∑
i,j=1

∣∣∣Q2
i,j

∣∣∣ = ‖A‖‖Q‖2F = rank(A)‖A‖.
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We first state and prove Lemma 8 which bounds the average error in estimating Lk.

Lemma 8. Assume that A is (k,∆)-separated. Let Ã satisfy Equation (27) for µ = ε2∆/16 where
ε < 1. Then

n∑
i=1

|Lk(i)− L̃k(i)| ≤ ε
n∑
i=1

Lk(i).

Proof. By Equations (25) and (28)
n∑
i=1

|Lk(i)− L̃k(i)| =
n∑
i=1

|etiUkU
T
k ei − etiŨkŨ

T
k ei|.

Let C = UkU
T
k − ŨkŨ

T
k , so that rank(C) ≤ 2k. By Lemma 3 (which applies since µ ≤ ∆/16),

we have

‖C‖ ≤ 2

√
µ

∆
≤ ε

2
.

So applying Lemma 7, we get
n∑
i=1

|etiUkU
T
k ei − etiŨkŨ

T
k ei| ≤

ε

2
2k = εk.

The claim follows by noting that the columns of Uk are orthonormal, so
∑n
i=1 L

k(i) = k.

The guarantee above shows that the average additive error in estimating Lk(i) is ε
n

∑n
i=1 L

k(i) for
a suitable ε. Note that the average value of Lk(i) is 1

n

∑n
i=1 L

k(i), hence we obtain small additive
errors on average. Additive error guarantees for Lk(i) translate to multiplicative guarantees as long
as Lk(i) is not too small, but for outlier detection the candidate outliers are those points for which
Lk(i) is large, hence additive error guarantees are meaningful for preserving outlier scores for points
which could be outliers.

Similarly, Lemma 9 bounds the average error in estimating T k.
Lemma 9. Assume that A is (k,∆)-separated. Let

ε ≤ min(∆k2, k)

sr(A)
. (32)

Let Ã satisfy Equation (27) for

µ =
ε3sr(A)3

125k4
. (33)

Then
n∑
i=1

|T k(i)− T̃ k(i)| ≤ ε‖A‖2F
‖A−Ak‖2F

n∑
i=1

T k(i).

Proof. By Equations (26) and (29), we have
n∑
i=1

|T k(i)− T̃ k(i)| =
n∑
i=1

|‖eTi UkΣk‖22 − ‖eTi ŨkΣ̃k‖22| =
n∑
i=1

|etiUkΣ
2
kU

T
k ei − etiŨkΣ̃

2

kŨ
T
k ei|

Let C = UkΣ
2
kU

T
k − ŨkΣ̃

2

kŨ
T
k . Then rank(C) ≤ 2k. We now bound its operator norm as follows

‖C‖ ≤ ‖UkΣ
2
kU

T
k − ŨkΣ

2
kŨ

T
k ‖+ ‖Ũk(Σ2

k − Σ̃
2

k)ŨT
k ‖.

To bound the first term, we use Theorem 4 (the condition on µ holds by our choice of ε in Equation
(32) and µ in Equation (33)) to get

‖U≤kΣ2
kU

t
≤k − Ũ≤kΣ

2
kŨ

t
≤k‖ ≤ 4σ1(A)2(µk)1/3.
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For the second term, we use

‖Ũk(Σ2
k − Σ̃

2

k)ŨT
k ‖ ≤ ‖Σ

2
k − Σ̃

2

k‖ ≤ µσ1(A)2.

Overall, we get ‖C‖ ≤ 5σ(A)2(µk)1/3. So applying Lemma 7, we get
n∑
i=1

|etiUkΣ
2
kU

T
k ei − etiŨkΣ̃

2

kŨ
T
k ei| ≤ 5σ(A)2(µk)1/3 · 2k

≤ 5σ(A)2µ1/3k4/3

≤ εsr(A)σ(A)2 = ε‖A‖2F.

In order to obtain the result in the form stated in the Lemma, note that
∑n
i=1 T

k(i) = ‖A−Ak‖2F.

Typically, we expect ‖A−Ak‖2F to be a constant fraction of ‖A‖2F. Hence the guarantee above says
that on average, we get good additive guarantees.

C.2 Guarantees for random projections

Theorem 10. [29, 30] Consider any matrix A ∈ Rn×d. Let R = (1/
√
`)X where X ∈ Rd×` is a

random matrix drawn from any of the following distributions of matrices. Let Ã = AR. Then with
probability 1− δ,

‖AAT − ÃÃT ‖ ≤ µ‖A‖2.

1. R is a dense random matrix with each entry being an i.i.d. sub-Gaussian random variable
and ` = O( sr(A)+log(1/δ)

ε2 ).

2. R is a fully sparse embedding matrix , where each column has a single ±1 in a random
position (sign and position chosen uniformly and independently) and ` = O( sr(A)2

ε2δ ). Ad-
ditionally, the same matrix family except where the position and sign for each column are
determined by a 4-independent hash function.

3. R is a Subsampled Randomized Hadamard Transform (SRHT) [41] with ` =

O( sr(A)+log(1/(εδ))
ε2 ) log(sr(A)/δ).

4. R is a dense random matrix with each entry being ±
√

1
` for ` = O( sr(A)+log(1/δ)

ε2 ) and the
entries are drawn from a log(sr(A)/δ)-wise independent family of hash functions. Such
a hash family can be constructed with O(log(d) log(sr(A)/δ)) random bits use standard
techniques (see for e.g. Vadhan [28] Sec 3.5.5).

Using Theorem 10 along with Lemma 8 and Lemma 9 and with the condition that sr(A) = O(k)
gives Theorem 3 from the introduction—which shows that taking a random projection with ` =
k3 · poly(∆, ε−1) ensures that the error guarantees in Lemma 8 and Lemma 9 hold with high
probability.

C.3 Results on subsampling based sketches

Subsampling based sketches can yield both row and column space approximations. The algorithm
for preserving the row space, i.e. approximating ATA, using row subsampling is straightforward.
The sketch samples ` rows of A proportional to their squared lengths to obtain a sketch Ã ∈ R`×d.
This can be done in a single pass in a row streaming model using reservior sampling. Our streaming
algorithm for approximating anomaly scores using row subsampling follows the same outline as
Algorithm 1 for Frequent Directions. We also obtain the same guarantees as Theorem 1 for Frequent
Directions, using the guarantee for subsampling sketches stated at the end of the section (in Theorem
11). The guarantees in Theorem 1 are satisfied by subsampling ` = k2 · poly(κ, ε−1,∆) columns,
and the algorithm needs O(d`) space and O(nd) time.

In order to preserve the column space using subsampling, i.e. approximate AAT , we need to sub-
sample the columns of the matrix. Our streaming algorithm follows a similar outline as Algorithm 2
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which does a random projections of the rows and also approximates AAT . However, there is a
subtlety involved. We need to subsample the columns, but the matrix is arrives in row-streaming
order. We show that using an additional pass, we can subsample the columns of A based on their
squared lengths. This additional pass does reservoir sampling on the squared entries of the matrix,
and uses the column index of the sampled entry as the column to be subsampled. The algorithm
is stated in Algorithm 3. It requires space O(` log d) in order to store the ` indices to subsample,
and space O(`2) to store the covariance matrix of the subsampled data. Using the guarantees for
subsampling in Theorem 11, we can get the same guarantees for approximating anomaly scores
as for a random projection of the rows. The guarantees for random projection in Theorem 10 are
satisfied by subsampling ` = k3 · poly(ε−1,∆) columns, and the algorithm needs O(d` + log d)
space and O(nd) time.

Algorithm 3: Algorithm to approximate anomaly scores using column subsampling
Input: Choice of k and `.
Initialization

Set covariance ÃT Ã← 0
For 1 ≤ t ≤ `, set St = 1 . Si stores the ` column indices we will subsample
Set s→ 0 . s stores the sum of the squares of entries seen so far

Zeroth Pass: As each element aij of A streams in,
Update s→ s+ a2ij
for 1 ≤ t ≤ ` do

Set St → j with probability a2ij/s
First Pass: As each row a(i) streams in,

Project by R to get RTa(i)
Update covariance ÃT Ã← ÃT Ã + (RTa(i))(R

Ta(i))
T

SVD:
Compute the top k right singular vectors of ÃT Ã

Second Pass: As each row a(i) streams in,
Project by R to get RTa(i)
For each projected row, use the estimated right singular vectors to compute the leverage
scores and projection distances

Guarantees for subsampling based sketches. Drineas et al. [19] showed that sampling columns
proportional to their squared lengths approximates AAT with high probability. They show a stronger
Frobenius norm guarantee than the operator norm guarantee that we need, but this worsens the
dependence on the stable rank. We will instead use the following guarantee due to Magen and
Zouzias [31].
Theorem 11. [31] Consider any matrix A ∈ Rn×d. Let Ã ∈ Rn×` be a matrix obtained by
subsampling the columns of A with probability proportional to their squared lengths. Then with
probability 1− 1/poly(sr(A)), for ` ≥ sr(A) log(sr(A)/µ2)/µ2

‖AAT − ÃÃT ‖ ≤ µ‖A‖2.

D Streaming Lower Bounds

In this section we prove lower bounds on streaming algorithms for computing leverage scores, rank
k leverage scores and ridge leverage scores for small values of λ. Our lower bounds are based on
reductions from the multi party set disjointness problem denoted as DISJt,d. In this problem, each of
t parties is given a set from the universe [d] = {1, 2, . . . , d}, together with the promise that either
the sets are uniquely intersecting, i.e. all sets have exactly one element in common, or the sets are
pairwise disjoint. The parties also have access to a common source of random bits. Chakrabarti et al.
[43] showed a Ω(d/(t log t)) lower bound on the communication complexity of this problem. As
usual, the lower bound on the communication in the set-disjointness problem translates to a lower
bound on the space complexity of the streaming algorithm.
Theorem 12. For sufficiently large d and n ≥ O(d), let the input matrix be A ∈ Rn×d. Consider a
row-wise streaming model the algorithm may make a constant number passes over the data.
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1. Any randomized algorithm which computes a
√
t-approximation to all the leverage scores

for every matrix A with probability at least 2/3 and with p passes over the data uses space
Ω(d/(t2p log t)).

2. For λ ≤ sr(A)
2d σ1(A)2, any randomized streaming algorithm which computes a

√
t/2-

approximation to all the λ-ridge leverage scores for every matrix A with p passes over the
data with probability at least 2/3 uses space Ω(d/(pt2 log t)).

3. For 2 ≤ k ≤ d/2, any randomized streaming algorithm which computes any multiplicative
approximation to all the rank k leverage scores for every matrix A using p passes and with
probability at least 2/3 uses space Ω(d/p).

4. For 2 ≤ k ≤ d/2, any randomized algorithm which computes any multiplicative approxi-
mation to the distances from the principal k-dimensional subspace of every row for every
matrix A with p passes and with probability at least 2/3 uses space Ω(d/p).

We make a few remarks:

• The lower bounds are independent of the stable rank of the matrix. Indeed they hold both
when sr(A) = o(d) and when sr(A) = Θ(d).

• The Theorem is concerned only with the working space; the algorithms are permitted to
have separate access to a random string.

• In the first two cases an additional log t factor in the space requirement can be obtained if
we limit the streaming algorithm to one pass over the data.

Note that Theorem 12 shows that the Frequent Directions sketch for computing outlier scores is
close to optimal as it uses O(d`) space, where the projection dimension ` is a constant for many
relevant parameter regimes. The lower bound also shows that the average case guarantees for the
random projection based sketch which uses working space O(`2) cannot be improved to a point-wise
approximation. The proof of the theorem is in Appendix G.

E Proofs of Section 2

We will prove bounds for items (2) and (3), which are given by Theorems 4 and 6 respectively.
To prove these, the next two technical lemmas give perturbation bounds on the operator norm of
positive semi-definite matrices of the from UkΛUT

k , where Λ is a diagonal matrix with non-negative
entries. In order to do this, we split the matrix Σ to a well-separated component and a small residual
component.

We now describe the decomposition of Σ . Let δ be a parameter so that

6µ ≤ δ ≤ ∆ (34)

We partition the indices [k] into a set of disjoint intervals B(A, δ) = {B1, . . . , Bm} based on the
singular values of A so that there is a separation of at least δσ2

1 between intervals, and at most δσ2
1

within an interval. Formally, we start with i = 1 assigned to B1. For i ≥ 2, assume that we have
assigned i− 1 to Bj . If

σ2
i (A)− σ2

i−1(A) ≤ δσ2
1(A)

then i is also assigned to Bj , whereas if

σ2
i (A)− σ2

i−1(A) > δσ2
1(A)

then it is assigned to a new bucket Bj+1. Let bj denote the largest index in the interval Bj for
j ∈ [m].

Let Λ = diag(λ1, . . . λk) be a diagonal matrix with all non-negative entries which is constant on each
interval Bj and non-increasing across intervals. In other words, if i ≥ j, then λi ≥ λj , with equality
holding whenever i, j belong to the same interval Bk. Call such a matrix a diagonal non-decreasing
matrix with respect to B(A, δ). Similarly, we define diagonal non-increasing matrices with respect
to B(A, δ) to be non-increasing but are constant on each interval Bk. The following is the main
technical lemma in this section, and handles the case where the diagonal matrix is well-separated.

22



It is a generalization of Lemma 6. In Lemma 6 we assumed that the eigenvalues in each bucket are
equal, here we generalize to the case where the eigenvalues in each bucket are separated by at most
δσ2

1(A).
Lemma 10. Let 6µ ≤ δ ≤ ∆. Let Λ = diag(λ1, . . . λk) be a diagonal non-increasing or a diagonal
non-decreasing matrix with respect to B(A, δ). Then

‖UkΛUT
k − ŨkΛŨT

k ‖ ≤ 4‖Λ‖
√
µ

δ
.

Proof. Let us set λbm+1 = 0 for convenience. Since

UbjU
T
bj =

bj∑
i=1

u(i)u(i)
T

we can write

UkΛUT
k =

m∑
j=1

λbj
∑
i∈Bj

u(i)u(i)
T

=

m∑
j=1

(λbj − λbj+1)UbjU
T
bj

and similarly for ŨkΛŨT
k . So we can write

UkΛUT
k − ŨkΛŨT

k =

m∑
j=1

(λbj − λbj+1)(UbjU
T
bj − ŨbjŨ

T
bj ).

Therefore, by the triangle inequality and Lemma 5,

‖UkΛUT
k − ŨkΛŨT

k ‖ =

m∑
j=1

|λbj − λbj+1
|‖(UbjU

T
bj − ŨbjŨ

T
bj )‖ ≤ 2

√
µ

δ

m∑
j=1

|λbj − λbj+1
|

thus proving that
∑m
j=1 |λbj − λbj+1 | ≤ 2‖Λ‖ would imply the claim.

When Λ is diagonal non-increasing with respect to B(A, δ), then λbj − λbj+1
≥ 0 for all j ∈ [m],

and ‖Λ‖ = λb1 . Hence
m∑
j=1

|λbj − λbj+1 | =
m∑
j=1

(λbj − λbj+1) = λb1 − λbm+1 = ‖Λ‖.

When Λ is diagonal non-decreasing with respect to B(A, δ), then for j ≤ m− 1, λbj ≤ λbj+1
, and

‖Λ‖ = λbm . Hence
m−1∑
j=1

|λbj − λbj+1
| =

m−1∑
j=1

λbj+1
− λbj = λbm − λb1 ≤ λbm

whereas |λbm − λbm+1 | = λbm . Thus overall,
m∑
j=1

|λbj − λbj+1
| ≤ 2λbm = 2‖Λ‖.

Figure 5: Illustration of the decomposition of the k singular values into m intervals such that there is
a separation of at least δσ2

1 between intervals, and at most δσ2
1 within an interval.
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We use this to prove our perturbation bound for UkΣ
2
kU

T
k .

Theorem 4. Let µ ≤ min(∆3k2, 1/(20k)).

‖UkΣ
2
kU

T
k − ŨkΣ

2
kŨ

T
k ‖ ≤ 8σ2

1(µk)1/3.

Proof. Define Λ to be the k × k diagonal non-increasing matrix such that all the entries in the
interval Bj are σ2

bj
. Define Ω to be the k × k diagonal matrix such that Λ + Ω = Σ2

k. With this
notation,

‖UkΣ
2
kU

T
k − ŨkΣ

2
kŨ

T
k ‖ = ‖(UkΛUT

k − ŨkΛŨT
k ) + (UkΩUT

k − ŨkΩŨT
k )‖

≤ ‖UkΛUT
k − ŨkΛŨT

k ‖+ ‖UkΩUT
k − ŨkΩŨT

k )‖ (35)

By definition, Λ is diagonal non-increasing, ‖Λ‖ = σ2
b1
≤ σ2

1 . Hence by part (1) of Lemma 10,

‖UkΛUT
k − ŨkΛŨT

k ‖ ≤ 4σ2
1

√
µ

δ
.

By our definition of the Bjs, if i, i + 1 ∈ Bj then σ2
i − σ2

i+1 ≤ δσ2
1 , hence for any pair i, i′ inBj ,

σ2
i − σ2

i′ ≤ kδσ2
1 . Hence

‖Ω‖ = max
i∈Bj

(σ2
i − σ2

bj ) ≤ kδσ2
1

We use Lemma 4 to get
‖UkΩUT

k − ŨkΩŨT
k ‖ ≤ 2kδσ2

1 .
Plugging these bounds into Equation (35), we get

‖UkΣ
2
kU

T
k − ŨkΣ

2
kŨ

T
k ‖ ≤ 4σ2

1(

√
µ

δ
+ kδ).

We choose δ = µ1/3/k2/3 that minimizes the RHS, to get

‖UkΣ
2
kU

T
k − ŨkΣ

2
kŨ

T
k ‖ ≤ 8σ2

1(µk)1/3.

We need to ensure that this choice satisfies 6µ ≤ δ. This holds since it is equivalent to 6(µk)2/3 ≤ 1,
which is implied by µk ≤ 1/20. We need δ ≤ ∆ which holds since µ ≤ ∆3k2.

Next we derive our perturbation bound for UkΣ
−2
k UT

k , which will depend on the condition number
κ = σ2

1/σ
2
k. The proof is similar to the proof of Theorem 4.

Theorem 6. Let κk denote the condition number κk = σ2
1/σ

2
k. Let µ ≤ min(∆3(kκk)2, 1/(20kκk)).

Then,

‖UkΣ
−2
k UT

k − ŨkΣ
−2
k ŨT

k ‖ ≤
8

σ2
k

(µkκk)1/3.

Proof. We use a similar decomposition as in Theorem 4. Define Λ to be diagonal non-decreasing
such that all the entries in the interval Bj are 1/σ2

bj
. Note that ‖Λ‖ ≤ σ−2k . Using Lemma 10, we get

‖UkΛ
−2
k UT

k − ŨkΛŨT
k ‖ ≤

4

σ2
k

√
µ

δ
. (36)

Define Ω = Σ−2k −Λ. Note that

‖Ω‖ = max
i∈Bj

1

σ2
bj

− 1

σ2
i

= max
i∈Bj

σ2
i − σ2

bj

σ2
i σ

2
bj

≤ kδσ2
1

σ4
k

=
kκδ

σ2
k

.

By using this in Lemma 4,

‖UkΩUT
k − ŨkΩŨT

k ‖ ≤
2kκδ

σ2
k

. (37)

Putting Equation (36) and (37) together, we get

‖UkΣ
−2
k UT

k − ŨkΣ
−2
k ŨT

k ‖ ≤
4

σ2
k

(√
µ

δ
+ kκδ

)
.

The optimum value of δ is µ1/3/(kκ)2/3 which gives the claimed bound. A routine calculation shows
that the condition 6µ ≤ δ ≤ ∆ holds because µ ≤ min(∆3(kκ)2, 1/(20kκ)).
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F Ridge Leverage Scores

Regularizing the spectrum (or alternately, assuming that the data itself has some ambient Gaussian
noise) is closely tied to the notion of ridge leverage scores [44]. Various versions of ridge leverages
had been shown to be good estimators for the Mahalanobis distance in the high dimensional case and
were demonstrated to be an effective tool for anomaly detection [25]. There are efficient sketches
that approximate the ridge leverage score for specific values of the parameter λ [45].

Recall that we measured deviation in the tail by the distance from the principal k-dimensional
subspace, given by

T k(i) =

d∑
j=k+1

α2
j .

We prefer this to using

L>ki :=

d∑
j=k+1

α2
j

σj

2

since it is more robust to the small σj , and is easier to compute in the streaming setting.5

An alternative approach is to consider the ridge leverage scores, which effectively replaces the
covariance matrix ATA with ATA+λI, which increases all the singular values by λ, with the effect
of damping the effect of small singular values. We have

Lλ(i) =

d∑
j=1

α2
j

σ2
j + λ

.

Consider the case when the data is generated from a true k-dimensional distribution, and then
corrupted with a small amount of white noise. It is easy to see that the data points will satisfy
both concentration and separation assumptions. In this case, all the notions suggested above will
essentially converge. In this case, we expect σ2

k+1 ≈ · · · ≈ σ2
n. So

L>ki =

d∑
j=k+1

α2
j

σ2
j

≈ T k(i)

σ2
k+1

.

If λ is chosen so that σ2
k � λ� σ2

k+1, it follows that

Lλ(i) ≈ Lk(i) +
T k(i)

λ
.

G Proof of Theorem 12: Streaming Lower Bounds

Proof. We describe the reduction from DISJt,d to computing each of the four quantities.

(1) Leverage scores: Say for contradiction we have an algorithm which computes a
√
t-

approximation to all the leverage scores for every matrix A ∈ Rn×d using spaceO(d/(kt2 log t)) and
k = O(1) passes. We will use this algorithm to design a protocol for DISJt,d using a communication
complexity of O(d/(t log t)). In other words we need the following lemma.

Lemma 11. A streaming algorithm which approximates all leverage scores within
√
t with p passes

over the data, and which uses space s implies a protocol for DISJt,d with communication complexity
s · p · t

Proof. Given an DISJt,d instance, we create a matrix A with d columns as follows: Let ei be the
ith row of the (d× d) identity matrix Id×d. The vector ei is associated with the ith element of the
universe [d]. Each player j prepares a matrix Aj with d columns by adding the row ei for each i ∈ [d]
in its set. A is composed of the rows of the t matrices Aj .

5Although the latter measure is also studied in the literature and may be preferred in settings where there is
structure in the tail.
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We claim that
√
t approximation to the leverage scores of A suffices to differentiate between the

case the sets are disjoint and the case they are uniquely intersecting. To see this note that if the
sets are all disjoint then each row is linearly independent from the rest and therefore all rows have
leverage score 1. If the sets are uniquely intersecting, then exactly one row in A is repeated t times.
A moment’s reflection reveals that in this case, each of these rows has leverage score 1/t. Hence a√
t-approximation to all leverage scores allows the parties to distinguish between the two cases.

The actual communication protocol is now straight forward. Each party i in turn runs the algorithm
over its own matrix Ai and passes the s bits which are the state of the algorithm to the party i+1. The
last party outputs the result. If the algorithm requires p passes over the data the total communication
is p · s · t.

Theorem 12 now follows directly from the lower bound on the communication complexity of DISJt,d.

Note that in the construction above the stable rank sr(A) is Θ(d). The dependency on d could be
avoided by adding a row and column to A: A column of all zeros is added to A and then the last
party adds a row to At having the entry

√
K ≥ 1 in the last column. Now since K > 1 the last row

will dominate both the Frobenius and the operator norm of the matrix but does not affect the leverage
score of the other rows. Note that sr(A) ≤ K+d

K . By choosing K large enough, we can now decrease
sr(A) to be arbitrarily close to 1. Note also that if the algorithm is restricted to one pass, the resulting
protocol is one directional and has a slightly higher lower bound of Ω(d/t2).

(2) Ridge leverage scores: We use the same construction as before and multiply A by σ ≥
√
λ.

Note that as required, the matrix A has operator norm σ. As before, it is sufficient to claim that by
approximately computing all ridge leverage scores the parties can distinguish between the case their
sets are mutually disjoint and the case they are uniquely intersecting. Indeed, if the sets are mutually
disjoint then all rows have ridge leverage scores σ2

σ2+λ . If the sets are uniquely intersecting, then
exactly one element is repeated t times in the matrix A, in which case this element has ridge leverage
score σ2

tσ2+λ . These two cases can be distinguished by a
√
t/2-approximation to the ridge leverage

scores if λ ≤ σ2.

To modify the stable rank sr(A) in this case we do the same trick as before, add a column of zeros
and the last party adds an additional row having the entry

√
Kσ ≥ σ in its last column. Note that

sr(A) ≤ K+d
K , and by increasingK we can decrease sr(A) as necessary. However, ‖A‖2 now equals

Kσ2, and hence we need to upper bound K in terms of the stable rank sr(A) to state the final bound
for λ in terms of ‖A‖2. Note that sr(A) ≤ K+d

K =⇒ K ≤ 2d/sr(A). Hence λ ≤ sr(A)
2d ‖A‖

2

ensures that λ ≤ σ2.

(3) Rank-k leverage scores: The construction is similar to the previous ones, with some modifica-
tions to ensure that the top k singular vectors are well defined. We set number of parties to be 2, and
let the universe be of size d′ = d− k, so the matrix is wider that the size of universe by k columns.
As before, for i ≤ d′ the i’th row of Id×d is associated with the i’th element of the universe [d′]. The
first set of rows in A are the rows corresponding to the elements in the first party’s set and the next
set of rows in A correspond to the elements in the second party’s set. The second party also adds the
last k rows of Id×d, scaled by 1.1, to the matrix A.

We claim that by computing a multiplicative approximation to all rank k leverage scores the parties
can determine whether their sets are disjoint. If the sets are all disjoint, then the top k right singular
vectors correspond to the last k rows of the matrix Id×d, and these are orthogonal to the rest of the
matrix and hence the rank k leverage scores of all rows except the additional ones added by the
second party are all 0. If the sets are intersecting, then the row corresponding to the intersecting
element is the top right singular vector of A, as it has singular value

√
2 > 1.1. Hence the rank k

leverage score of this row is 1/2. Hence the parties can distinguish whether they have disjoint sets by
finding any multiplicative approximation to all rank k leverage scores.

We apply a final modification to decrease the stable rank sr(A) as necessary. We scale the dth row
of Id×d by a constant

√
K. Note that sr(A) ≤ K+d+2k

K . By choosing K accordingly, we can now
decrease sr(A) as desired. We now examine how this scaling affects the rank k leverage scores for
the rows corresponding to the sets. When the sets are not intersecting, the rank k leverage scores
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of all the rows corresponding to the set elements are still 0. When the sets are intersecting, the row
corresponding to the intersecting element is at the least second largest right singular vector of A
even after the scaling, as

√
2 > 1.1. In this case, for k ≥ 2 the rank k leverage score of this row is

1/2, hence the parties can distinguish whether they have disjoint sets by finding any multiplicative
approximation to all rank k leverage scores for any 2 ≤ k ≤ d/2.

Distance from principal k-dimensional subspace: We use the same construction as in statement
(3). If the sets are non-intersecting, all the rows corresponding to the sets of the two-parties have
distance 1 from the principal k-dimensional subspace. If the sets are intersecting, the row corre-
sponding to the element in the intersection has distance 0 from the principal k-dimensional subspace,
as that row is either the top or the second right singular vector of A. Hence, any multiplicative
approximation could be used to distinguish between the two cases.

27


	Introduction
	Our Results

	Notation and Setup
	Guarantees for anomaly detection via sketching
	Experimental evaluation
	Related work
	Conclusion
	Matrix Perturbation Bounds
	Preliminaries
	Matrix Perturbation Bounds

	Pointwise guarantees for Anomaly Detection
	The Online Setting

	Average-case guarantees for Anomaly Detection
	Our approximation guarantees
	Guarantees for random projections
	Results on subsampling based sketches

	Streaming Lower Bounds
	Proofs of Section 2
	Ridge Leverage Scores
	Proof of Theorem 12: Streaming Lower Bounds

