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1 Proofs of Section 3.1

1.1 Proof of Lemmal[ll

The convergence in Wasserstein distance is classically done via a standard synchronous coupling
[Dieuleveut et al, 2017, Proposition 2]. We prove the statement for SGLD; the adaptation for
LMC, SGLDFP and SGD is immediate. Let v € (0,2/L) and A\;, Ay € P»(R%). By [Villani,

2009, Theorem 4.1], there exists a couple of random variables (0(1) 0(2)) such that W3 (A1, \o) =
E {Héé 9(2 H } Let (9,21 ,9 ))keN be the SGLD iterates starting from 6 (M) and 9(2 respectively
and driven by the same noise, i.e. for all k € N,

0 =0 = {VUO) + (N/D) Tics, ., VUiOL) b+ V27 Zig |

02 =67 = {VU0) + (N/p) Lics,.,, VUOD) | + V2 Zicsr

where (Z)r>1 is an i.1.d. sequence of standard Gaussian variables and (Sj),>1 an i.i.d. sequence of

subsamples of {1,..., N} of size p. Denote by (Fj)ren the filtration associated to (9,(61), 9,(62)) kEN-
We have for k € N,

1)

o ok
2
o — 02|+ [vooe) + Z VU(0) - VU (6) — Z VUL(02)
lESk+1 ZESk+1
—27<9,§> 012, VU (0 Z VU - VU0 - X S i 9<2)>
’LGSkJrl p 1€Sk41

By HJI| and 0 — VU(0) + (N/p) > ,cq VUi(8) is P-a.s. L-co-coercive |Zhu and Marcotte
[1996]. Taking the conditional expectation w.r.t. Fj, we obtain

1 2
B o6 - o

]—'k] < Hal(cl) _ 0,2”“2727{1 _(0)/2) <9](€1) — 0 vu D) - VU(GS))> |

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



and by H2|
e (o - o2 | < 01 -2 - Gz o - |

Since for all k > 0, (6.",6(”)) belongs to TI(A\; RE,, ., Ao RE ., ), we get by a straightforward
induction

2
W3O Ry, ARy ) < B [Ha,‘:) -6 ] < {1 2my(1 = (YL)/2 WE (O, ha) - (SD)

By HI| A\ Rscin € P2(R?) and taking Ao = A Reun, We get 30,70 W3\ RE o, M RESL) <
+00.By [Villani, 2009, Theorem 6.16], P2 (R%) endowed with Wy is a Polish space. (A1 R%; ,)k>0
is a Cauchy sequence and converges to a limit 724, , € P2(R?). The limit 72}, ,, does not depend on
A1 because, given Ay € Py(R?), by the triangle inequality

W, (ﬂ-;\cl;LDa ﬂ-é\éLD) <Wp (Wg\(l;LD7 )‘1R§GLD) + WZ(AlR];GLDv A2R§GLD) + W, (ﬂ.g\éLD’ )\QRISCGLD) :
Taking the limit k — +oo, we get Wo (723, , 722, ,) = 0. The limit is thus the same for all initial
distributions and is denoted 7g1.p. Tsqrp 1S invariant for Ry since we have for all £ € N*,

Ws (TFSGLDv WSGLDRSGLD) < Ws (WSGLDa WSGLDRISCGLD) + Ws (TFSGLDRSGLDy TFSGLDRISCGLD) .

Taking the limit & — +o00, we obtain W (7sarp, Tserp Rserp) = 0. Using (SI), msqrp is the unique
invariant probability measure for Rgsqyp.

1.2 Proof of Theorem 2]

Proof of Lety € (0,1/L] and Ay, A2 € Po(R?). By [Villani, 2009, Theorem 4.1], there exists a
couple of random variables (6p, %) such that W3(\1, Ag) = E [||90 - 190\\2] Let (0k, 9k )ken be

the LMC and SGLDFP iterates starting from 6y and ¥ respectively and driven by the same noise,
ie forallk € N,

Orv1 =0 —YVU(Or) + V272141,
I =0k — 7 (VUo(9) = VU(8) + (N/p) Sics, ., {VUi(9) = VULO")}) + VI Zkt
where (Z)r>1 is an i.1.d. sequence of standard Gaussian variables and (Sj),>1 an i.i.d. sequence of

subsamples with replacement of {1, ..., N} of size p. Denote by (Fy)xen the filtration associated to
(0k, 9% ) ren. We have for k € N,

E {Hok-&-l - ﬂk+1||2’fk} = 116 — I]|> — 29 (0 — 9%, VU(8r) — VU (%)) + 724 (S2)

where
2

A=E||VU(0) = | VUo(0x) = VU(0") + (N/p) D {VUi(0x) = VUi(6")} | || | Fi
1€SK4+1
= Al + AZ ’
Ar = [|VU(0) = VU(@)]? |
2

Ay =E ||VU®Wx) — | VUo (k) — VU, (0) + (N/p) Z {VU:(Vx) — VU;(07)} F

1€Sk41

Denote by W the random variable equal to VU; () — VU;(6*) — (1/N) Z;V:l{VUj(ﬁk) -
VU;(6*)} fori € {1,..., N} with probability 1/N. By and using the fact that the subsamples
(Sk)k>1 are drawn with replacement, we obtain

Ay = (N2 /p)B[IW 217 < (L3 /p) |9 — 6 .



Combining it with (S2), and using the L-co-coercivity of VU under HI|and H2] we get
E (161 = O | Fi] < (U= my) 164 = 94l> + {(L292)/m} 10k — 077
Iterating and using Lemma|[ST}jD} we have for n € N

WQ()\IRLMC7 AzRITTLP) <E |:H9n - 1971"2}

< (]‘ - m’Y) W2(>\17)‘2

nlk * (2
> (0w [0, o]
2.2

2L2%~d

< (1 —my)" W5(A1, Ag) + n(l—mv)"_l/ 19 = 01 Ao (d9) + =
Rd pm

Proof offi)} Denote by £ = (2mL)/(m~+ L). By Hl} H2|and [Durmus and Moulines| 2016 Theorem
5], we have forall n € N,

. 212 AL2?
WO Py e < 2(1 = 19/2)" WA, hg) + 2 o ) (204 200 )

+ LA (5 ) Y G {1 — k2"

where forall & € {1,...,n},
8 < e 2mk=1)y / 19 — 6% Ay (d9) 4 d/m. .

We get the result by straightforward simplifications and using v < 1/L.

Proof of Letvy € (0,1/L] and Ay, Ay € Po(R?). By [Villani, 2009, Thereom 4.1], there exists a
couple of random variables (6, ) such that W3(A;, \2) = E [||00 - 190\\2] Let (0, 9k )ken be

the SGLD and SGD iterates starting from 6 and v respectively and driven by the same noise, i.e. for
allk e N,

Okt1 =0k —7 (VUo(Qk:) + (N/P) Yies, VUZ-(H,C)) +vV27Zk 11
I =0k =7 (V0o (9) + (N/p) Tics,.,, VUil0) )

where (Z);>1 is an i.i.d. sequence of standard Gaussian variables and (Sj)x>1 an i.i.d. sequence of
subsamples with replacement of {1, ..., N} of size p. Denote by (Fj)ren the filtration associated to
(0%, Ok ) ken. We have for k € N,

E (161 = Orsa | Fe] = 166 = 04l = 29 (6 = 00, VU(B)) = VU (@) + 29d

2

+7°E || VUs(0k) + (N/p) Y VUi(0) = VUo(9%) = (N/p) Y VUi(04)|| | Fi

i€Sk41 4€Skt1
By Hi|and H3} 6 — VU (0) + (N/p) 3, VUi(0) is P-as. L-co-coercive and we obtain
E {16141 - ﬁkHHQ\Ik} < {1 = 2my(L = 9L/} |00 — 0u]* + 27
which concludes the proof by a straightforward induction.
1.3 Proof of Theorem [

Proof of Lety € (0, S H1+N/(p Zf;l xf)}*l} , (Or)ken be the iterates of SGLD (B)) started
at 0* and (Fy)ren the associated filtration. For all k € N, E [6;] = 6*. The variance of 6y, satisfies



the following recursion for k£ € N

E [(Ok11 — 0%)*|F]
- [{"’“ 0" (S0 — 0) + p(Ses) O — 0) + E(Si1)) + @zk+1}2‘fk]

= p(bp —0°)> +2v + 774,

where
1 N ? 0* N ?
p=EK {1—7<2+22$?>} , A=E {24‘22(%9*—%)%}
9 9yP i3 99 9yP s
We have for p,
N 2
N 1
oyP ic€S Ty i=1
N Y 1Y
=1 - +2{8%2 4+ — —— 2 <1-—~%
7 +/7 +0’3p; xl N;x] — 7 )
and for A,
N 2
N (Ile* — yl) Z; 9*
A=— .
p;{ o2 JrNag

By a straightforward induction, we obtain that the variance of the n™ iterate of SGLD started at 6* is
forn € N*

N 2
1—pu" 1—pu™ Ny? (2,6 — y;) @ 0*
_ A*\2 pn * _
[ 0= 07 R0 a0) R .

1—1p Nag

For SGLDFP, the additive part of the noise in the stochastic gradient disappears and we obtain

similarly for n € N*

I—p
_ A*\2 pn * —
[ @2 R0 a0 = T

2y

To conclude, we use that for two probability measures with given mean and covariance matrices, the
Wasserstein distance between the two Gaussians with these respective parameters is a lower bound
for the Wasserstein distance between the two measures [Gelbrich, Theorem 2.1].

The proof of[i)]is straightforward.

2 Proofs of Section 3.2
2.1 Proof of Proposition 5]

Let 6 be distributed according to 7. By ]-@ forall ¥ € R, U(9) > U(0*) + (m/2) |9 — 6*|* and
E [VU ()] = 0. By a Taylor expansion of VU around #*, we obtain

0=E[VU0)] = V2U(0") (E[0] - 0*) + (1/2) D*UO)[E [(¢ - 0")**]] + E[R1(9)] ,
where by Ry : R — RY satisfies

sup {[R1 ()] / 9 = 0*[°} < L/6. (53)
YeR

Rearranging the terms, we get

E[0] — 0* = —(1/2)V2U(6*) ' D* U(0")[E (0 — 6*)%%]] — VU (6*) 'E[R1(0)] .



To estimate the covariance matrix of 7 around 6*, we start again from the Taylor expansion of VU
around 6* and we obtain

E[VU(0)%2] =E [(v%(e*)(e — ")+ Rg(e))m] = V2U(0")9°E [(0 — 0*)%2] + E [Rs(0)]

(54)
where by Ro : R? — R9 satisfies
sup {[R2 () /19— 0**} < L/2, (s5)
YER
and Rs3 : RY — R¥* is defined for all ¥ € R? by
R3(¥) = VEU(0*) (9 — 0%) @ Ra(9) + Ra(9) @ VEU(0*)(9 — 0%) + Ra(9)%? . (S6)

E [VU(6)®?] is the Fisher information matrix and by a Taylor expansion of V2U around 6* and an
integration by parts,

E [VU(0)®?] =E [V*U(0)] = V’U(6*) + E [R4(0)]
where by R4 : R? — RIX4 gatisfies
sup {IRs( /(|9 = 6"[I} < L. S7)
c d

Combining this result, (S3), (S4), (S3), (S6). and E[||0 — 0*[|*] < d(d + 2)/m? by [Brosse
et al.l 2017, Lemma 9] conclude the proof.

2.2 Proofs of Theorem[6land Theorem [7]

First note that under I-@ and I-EI, there exists r € [0, L/(,/pm)] such that
K < r(V2U(67)%2 (S8)

i.e. forall A € R4xd,

Tr(ATK(A)) < r? Tr(AT(V2U(6%))%2A) ,
and where K is defined in (7). In addition, if liminfy_, o N ~Im > 0, r can be chosen indepen-
dently of N.

Moreover, for all v € (0,2/L), H defined in (8), is invertible and for all v € (0,2/{(1 +r?)L}), G
defined in (@), is invertible. Indeed,

H=v2U(0") @ (1d —%VQU(G*)) + (Id—%VQU(H*)) ® V2U(9*) - 0,
G = VU(0*) @ 1d+1d@V2U (0*) — v(1 + r})V2U (6*) @ V2U(6*)

= VU @ (Id—”(lzJ”?)v2U(e*)) + (1(1_7(12”2)

v%(&*)) ® V2U(6*) = 0.
For simplicity of notation, in this Section, we use ¢(6) to denote the difference between the stochastic

and the exact gradients at § € R?. More precisely, ¢ is the null function for LMC and is defined for
6 € R% by

N
N
€(0) = —=>_ VU;(0) = > VU;(6) for SGLD and SGD, (S9)
P ics j=1
N
() = VU, (0) — VU, (%) + > > {VUi(6) — VUi(6*)} = VU(60) for SGLDFP,  (S10)
icS
where S is a random subsample of {1, ..., N} with replacement of size p € N*. In this setting, the
update equation for LMC, SGLD and SGLDFP is given for & € N by
Or+1 =0k — (VU(Or) + €x41(0k)) + /272541 (S11)
where (Z)r>1 is a sequence of i.i.d. standard d-dimensional Gaussian variables and the sequence of
vector fields (ex)r>1 is associated to a sequence (S )x>1 of i.i.d. random subsample of {1,..., N}

with replacement of size p € N*. We also denote by 7@ € P, (R?) the invariant probability measure
of LMC, SGLDFP or SGLD.



2.2.1 Control of the moments of order 2 and 4 of LMC, SGLDFP and SGLD

Lemma S1. Assume HI| HD|and H3)
i) For all initial distribution \ € Py(R?), v € (0,1/L] and k € N,
E [l — 017 < = mn)¥ [ 19— 0°1 o) + 2
where (0))ken are the iterates of SGLDFP (3) or LMC (2).

ii) For all initial distribution X € P2(R?), v € (0,1/(2L)] and k € N,

2d
(16— 6°1%] < (1= ma)* [ o - 0| @) + 2
R4 m

2
N
29N 1
+— VU;(0*) — = > VU;(0*
z g )= % VU0
where (0 )ren are the iterates of SGLD (3).
Proof. [i)] We prove the result for SGLDFP, the case of LMC is identical. Let v € (0,1/L], (6))kren

be the iterates of SGLDFP and (F)ren the filtration associated to (6 ) ken- By (B), we have for all
keN,

E (1041 = 0717 F] = 160 = 0°11* = 29 (0 = 67, VU(0)) = VU(87)) + 24d
2
N
+7°E | ||VUo(6x) — VU (0") + — Z {VU;(0) — VU (0)}|| | T
1€SK4+1

By and I-‘E_I, 0 = VU (0)—VUo(0*)+(N/p) >_;cs1VUi(0) = VU;(0%)} is P-a.s. L-co-coercive
and we obtain

E (1001 — 0*1°| 7] < {1 = 2ma(1 = AL/} 16 — 6%|* + 294 .
A straightforward induction concludes the proof.

i)} Lety € (0,1/(2L)], (6x)ren be the iterates of SGLD and (Fy)xen the filtration associated to
(0 ) ken. By (B), we have for all k € N,

[Hokﬂ el ]fk} = 1|6k — 0%||> — 27 (6 — 6%, VU (8;) — VU(6*)) + 27d
2

N
+9%E |{[VU(6k) + = > VU(0h)|| |Fi

1€SK41

< |6k — 6*]]* — 2v (8, — 6%, VU (8;,) — VU(0*)) + 2vd

+ 29°E | ||VUo(0k) — VU, (%) + Z {VU;(0,) — VU; (0| | Fi
zESk+1
- 2
+29°E ||| VU (6%) + Z VU (0%)|| |Fr
ZESkJrl

By Hl|and H3} 6 — VU (0 (N/p) > ics VU;(0) is P-a.s. L-co-coercive and we obtain

E [lx11 — 0] \fk] < {1 = 2my(1 = L)}y — 0°[]* + 27

292N & N
+= > |vuie?) sz:

=1

2




A straightforward induction concludes the proof. O

Lemma S2. Assume andlﬁl For all initial distribution A\ € P4(R?), v € (0,1/{12(L Vv 1)}]
and k € N,

B [I6 - 0°1] < (L= 2ma)* [ 967 Aao)
+ {129 [[le(0)]1?] + 29(2d + 1)} k(L m)*! /]R 19— 6> A(dv)

2d+1 6y )’
{2050 Tg o)
2vd(2+d) 493 . 4v%(d +2) .
+ 22 TR (@] + TR )] -
where (0))ren are the iterates of LMC @), SGLD () or SGLDFP (B).

Proof. Let~y € (0,1/{12(L V 1)}], (6x)ren be the iterates of LMC (2), SGLD (3)) or SGLDFP (3)
and (Fy)ren be the associated filtration. By developing the square, we have

16y —6*11" = (H@o =0 * + 29[ 2% + A IVU (60) + e1.(60)|?

29 (VU(B0) + e1(60). 6 — 6°) + /27 (B — 0*, 22) — (22" (VU (60) +2(00).2) )
and taking the conditional expectation w.r.t. Fo,
E [0 = 0%11*| Fo| = E[ 160 — 0"1I" + 492 | 211" +4* VU (06) + ex(60)]"
+ 492 (VU (60) + €1(60), 00 — 0%)* + 27 (80 — 6%, Z1)* + (27)* (VU (6) + €1(60), Z1)*
+ 47 (1 Z1]1* 160 — 071" + 29 1160 — 6*[1* IV U (6o) + e1.(60) I
— 47|60 — 0*]* (VU (60), 60 — 0%) + 49° | Z1|* | VU (60) + €1(60)|”
= 89 || Z1[1* (VU (60), 00 — 6%) — 477 VU (60) + €1(60)|* (VU (60) + €1(60), 6o — 6%)
— 82 (0o — 0%, Z1) (VU (60) + €1(60), Z1) | Fo
By and 0 — VU(0) 4 €1(0) is P-a.s. L-co-coercive and we have for all § € R?, P-a.s. ,
IVU(6) + e1(0) — ex(6%)]* < L (6 — 6%, VU () + e1(0) — e2(6"))
IVU(0) + e1(0) — ex (0)[[* < L2[|6 — 0%]|* (0 — 0%, VU(0) + 2(0) — ex(6%))
Combining it with E {HZl ||4] = d(2 + d), we obtain
E Iy - 61| Fo, $1] <1160 - 6°11" = 49(1 = 39L — 2°L2) 60 — 0
X (80— 0", VU (6) + €1(00) — e2(6)) + (129”2 (0°)]* + 29(2d + 1)) [|60 — 6|

+472d(2 + d) + 8y* [|e (0] + 873 (d + 2) [|ex (6]

—8(d + 1)7*(1 = 2vL) (o — 6", VU (o) + €1(6o) — e1(6")) -
By H2Jand using v < 1/{12(L v 1)}, we get

E [16: = 61| 7o < (1= 2m9) 160 — 6*|[* + {1297E [lea(6) ] + 2v(2d + 1) } 160 — 6"

+ 49242+ d) + $y°E [l (67)'] + 89°(d + 2)E [ea (07)I] -
By a straightforward induction, we have for alln € N
E (116, — 671*] < (1= 2my)"E [|Ifo — 6]

n—1

+ {129%E eI + 2v2d + 1)} Y- (1 = 2my)" " HE (16 — 0°]°]
k=0

+ (2my) 7 {492d(2 + d) + 8y°E [|e(6)]'] + 8 (@ + 2 [1e(6")1*] }



and by Lemma [ST]
E {16, - 6°11'] < (1= 2m)" / =6 Aav)
+ {129%E [lex(67)1P] + 2v(2d + 1)} n(1 = )" / i =67 M)
+ {224 D0 ey }

3 2
$ 29CED g ey )] + 2D g ooy ]

O

Thanks to this lemma, we obtain the following corollary. The upper bound for SGD is given by
[Dieuleveut et al., 2017, Lemma 13].

Corollary 3. Assume H]I| HZ)and H3)

i) Let v = n/N withn € (0,1/{24(L Vv 1)}] and assume that lim inf y_, ;oo N~ 'm > 0.
Then,

/ 10— 9*”4 Time(d0) = d20N%+oo(N_2) )

Rd

/ 16 = 071" mer (d0) = d*On—+oe (N 72) .
Rd

ii) Lety =n/N withn € (0,1/{24(L V 1)}] and assume that lim inf x_, , .o N~"m > 0 and
that N > 1/n. Then,

[ 16 =071 o) = #0,0?) . [ 16~ 67] micn(d6) = 0 l)
R R

2.2.2 Proofs of Theorem[6land Theorem 7]

N 2N
— inf A 0 s12
o fvnzl{m(Lm) (1+r2)L}> ’ (512)

and set v = n/N withn € (0,7). Let 8 € {0,1} be equal to 1 for LMC, SGLDFP and SGLD and 0
for SGD. Let 6, be distributed according to 7. By (SII) and using a Taylor expansion around 6* for
VU, we obtain

91 —-0* = 90 —0* — Yy (VQU(Q*)(HO — 9*) + Rl (90) + 61(90)) + 8\/ 2’yZ1 s
where by Ry : R? — R9 satisfies
sup {[R1(0)]1 /16— 0*[*} < /2. (s13)

OeRd

Denote by

Taking the tensor product and the expectation, and using that 8, €1, Z; are mutually independent, we
obtain

HE [(6p — 6*)%?] = 281d +7E [€1(00)®?] + E[R1(00) @ {fo — 6"} + {60 — 6"} @ R1(60)]
+ ’YE [R1(00)®2 + {VQU(G*)(GO — 0*)} X R1(90) —+ R1(90) X VZU(Q*)(GO — 9*)] . (S14)

For LMC, ¢, is the null function and by Corollary 3D} (ST3) and (ST4), we obtain (10). Regarding
SGLDFP, SGLD and SGD, by a Taylor expansion of ¢; around 6*, we get for all € R, P-ass. ,

€1(8) = e1(6%) + Ver (67)(6 — 6%) + R (6)
where by HI|R, : RY — R satisfies

sup {[R2(0)] /16 — 0|} < /2. (s15)

0cRd



Therefore, taking the tensor product and the expectation, we obtain
E [e1(60)%] = E [1(0)%%] + (Ver (6%))*2E [(6 — 0%)%%] +E[R5(0)]  (S16)
where R5 : R4 — R%4 is defined for all € R?, P-a.s. ,
R3(0) = e1(67) @ {Ver(07)(0 = 0")} + {Ver (07)(0 — ")} @ e (67)
+{€1(0%) + Ver (07)(0 — 0")} @ Ra(0) + Ra(0) @ {e1(0™) + Ver (6%)(0 — 6%)} + R?Q((Qs)ﬁ)

Note that K = E (Vﬁl(e*))®2] For SGLDFP, €, (6*) = 0 as. By Corollary (S13), (S14),
(ST3), (S16) and , we obtain (TT)).
Regarding SGLD and SGD, we have E [e;(6*)®?] = (N/p) M where M is defined in (T4). By

Corollary BfiD} (ST3), (ST4), (ST3), (STE) and , we obtain (T2) and (T3).

For the mean of 7y ¢, Tpp, TseLp and msep, by a Taylor expansion around 6* for VU of order 3, we
obtain

01— 0% = 0o — 0" — v (V2U(0%)(0 — 0*) + (1/2) D> U (8*)(6 — 0*)®* + Ra(6o) + €1(6o))
+8/ 2971,
where by Ry : R — RY satisfies
sup {|R4(O)]1 /110~ 0*1I° } < L/6 . (s18)
0ER?

Taking the expectation and using that 6, is distributed according to 7, we get
E 0] — 0% = —(1/2)V2U(0*) D> U(6")[E [(6 — 6*)®%]] — VEU(6*) 'E [Ra(60)] -
(10), (TT), (12),(13), (ST8) and Corollary [3|conclude the proof.

3 Means and covariance matrices of 7, ¢, Tpp, Tserp and msqp, in the
Bayesian linear regression

In this Section, we provide explicit expressions of the covariance matrices of 7 ¢, Trp, TsqrLp and
Tsep in the context of the Bayesian linear regression. In this setting, the algorithms are without bias,
ie.

O (dE) = Omer(df) = OsaLp () = Omsan(df) = Om(d9) = 6~ .
Rd Rd Rd Rd Rd
(S19)

Before giving the expressions of the variances in Theorem we define T : R4X4 — R¥*4 for all
A € R¥*d by

®2 N ®2

Id N N zl Id %
TA) =E || = al =% Al =— YLy 2 ) A, (S20
w=2|(Ge i me2) o SR g on) 4

where S is a random subsample of {1,..., N} with replacement of size p € N*. Note that, in

.....

[0, L/(y/pm)] such that
T < r2y®? (S21)

ie. forall A € R¥*4 Tr(ATT-A) < r? Tr(ATE®2A). Assuming that liminfy_, 4 oo N"tm > 0,
r can be chosen independently of V.

Theorem S4. Consider the case of the Bayesian linear regression. We have for all v € (0,2/L)

/ (0 — 0")2%71 e (df) = (IdRY + X ®Id—E e )~ ' (21d),
R4



and for all v € (0,2/{(1+r*)L}),

/Rd(e—e*) ep(df) = {1 + £ @ d—y(S2% + T)} 7' (21d)

/ (0 — 0")*msa1p(df) = {Id@E + T @ Id —y (%2 + T)} !
Rd

N Tox _ . . %\ ®2
2Id+LZ et —yes | 0 7
p = JZ og

/(9—0*) Tean(df) = {Jd@S + L@ Id—y (22 +T)}
Rd

vN N (10" —yi)x;  0* @2
D Dl e e
P i—1 g y g 9

Proof. We prove the result for SGLD, the adaptation to the other algorithms is immediate. Let

v € (0,2/{(1 4 r?)L}), b be distributed according to Tsqy, and 6, be given by (3). By definition
of msqLp, 01 is distributed according to 7s¢.p. We have

{Id—’y( ZZxac)}O—Q*)
09 1€S1

N
_7<0_9 QZ TG*_yz z)"‘\/»Zl

1€Sl

E [(6; — 0*)%?] = El

®2

Using that 6y, S1, Z1 are mutually independent, we obtain

®2
[deY + Y ®Id—E (2 Z T ) E [(60 — 6%)%?]
g,
Y ieS;

®2
0+ N
=2IdHE || 5+ — x] 0 — y;)x;
(55 ot -
and
{IJd®X + L@ 1d —y(Z€* + T)} E [(6o — 6%)?]
N Tor —y)a; 0%
—2Id+VZ<W+2)
p P O'y 0'0

On R%*? equipped with the Hilbert-Schmidt inner product, Id ®% + ¥ ® Id —y(X®2 + T) is a
positive definite operator. Indeed, by (S21),

AR+ X @Id—v(E%2 + T) = Id®T + X @ Id —y(1 + r2) 02
1472 1472
_ (Id—'y “;r 2)®2+2®<1d—7 ;T z:) =0

fory € (0,2/{(1 +r?)L}). Id®% + ¥ @ Id —y(X%? + T) is thus invertible, which concludes the
proof. O

The covariance matrices make clearly visible the different origins of the noise. The Gaussian noise is
responsible of the term 2 Id, while the multiplicative and additive parts of the stochastic gradient (see
(6)) are related to the operator T and to the term

N ®2
N rF0* —y)x;  0*
2 2 :(( i Qy) +2> (S22)

P = Ty 99
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Figure S1: Illustration of Proposition Theorem@ and Theoremin the asymptotic N — +o0. 0,
Oscp, Oimc, Orp and O51p are the means under the stationary distributions 7, msgp, Trve, Trp and
Tsarp» respectively. The associated circles indicate the order of magnitude of the covariance matrix.
While LMC and SGLDFP concentrate to the posterior mean ¢ with a covariance matrix of the order
1/N, SGLD and SGD are at a distance of order ~ 1 of § and do not concentrate as N — +oc.

respectively.

Denote by

ON 2N
SRRV =iy S S $23
n zbn>1{ L (1+r2)L} ” (523)

Corollary 5. Consider the case of the Bayesian linear regression. Set v = n/N withn € (0,11)
and assume that lim inf y_, o N='m > 0.

/ 6= 071 Tunic (d0) = dON— 4o (N1 / 116 =07 7 (d0) = dON 0 (N,
R R
[ 181 Ticrofd) = ndy-reaclV) s [ 10017 Ticn(d6) = 1O (1) .

R R

Recall that, according to the Bernstein-von Mises theorem, the variance of 7 is of the order d/N
when N is large. The corollary confirms that wgyqp is very far from 7 when the constant step size v
is chosen proportional to 1/N.

4 Tllustration of Proposition[5, Theorem 6 and Theorem 7]

We provide in Figure[ST]an illustration of the results of Section [3.2]as the number of data items N
goes to infinity.
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