
Appendix

A State-of-the art codes used in comparison

In this section, we provide details on how to compute the BER and BLER of state-of-the art feedforward
codes. LTE turbo code used in the simulation uses trellis-([13, 15], 13) convolutional code (octal notation)
as a component code, and uses quadratic permutation polynomial (QPP) interleaver. Decoding is done by 8
iterations of Belief Propagation (BP) decoder that uses a posteriori probability (APP) decoder as the constituent
decoder. Tail-bitting convolutional codes (TBCC) used in the simulation has a constraint length 7 and trellis
([123,135,157]) (in octal notation), and uses Viterbi decoder. Polar code used in the simulation uses success
cancellation list decoding (SCL) with list size 8. LDPC code used in the simulation (Rate 1/3, maps 64 bits to a
length-196 codeword with sub-matrix dimension 16) uses the parity check matrix shown below, and layered
offset min-sum decoder is used with offset parameter 0.22 and (max) iteration 25.

2

666666664

10 11 2 3 0 �1 �1 �1 �1 �1 �1 �1
�1 15 9 9 14 0 �1 �1 �1 �1 �1 �1
6 �1 5 13 �1 11 0 �1 �1 �1 �1 �1
�1 5 �1 8 12 �1 6 0 �1 �1 �1 �1
�1 11 �1 �1 1 �1 �1 11 0 �1 �1 �1
�1 2 �1 �1 14 12 �1 7 �1 0 �1 �1
�1 15 10 �1 �1 �1 �1 �1 11 �1 0 �1
�1 �1 �1 7 �1 11 �1 3 �1 �1 �1 0

3

777777775

B Implementation details

In this section, we provide implementation details on the neural encoders and decoders, introduced in Section 3,
for the AWGN channels with feedback.

B.1 Illustration on Scheme A. RNN feedback encoder/decoder (RNN (tanh)).

The details of neural encoder and decoder architectures for RNN feedback code are illustrated in Tables 1 and
Figure 6. For both the RNN (tanh) and RNN (linear) feedback codes, we use the same architecture; the only
difference is that RNN (tanh) encoder has a tanh activation, and RNN (linear) encoder has a linear activation (for
both the recurrent activation and output activation).

Training. Adding more details on training, we reduce the learning rate by 10 times after training with 106

examples, starting from 0.02. In measuring the BER, take the average of 108 bits at �1, 0dB and 109 bits at
1, 2dB.

Table 1: Architecture of RNN feedback encoder (left) and decoder (right) for AWGN channels with
noisy feedback.

Layer Output dimension
Input (K, 4)

RNN (linear or tanh) (K, 50)
Dense (sigmoid) (K, 2)
Normalization (K, 2)

Layer Output dimension
Input (K, 3)

bi-GRU (K, 100)
Batch Normalization (K, 100)

bi-GRU (K, 100)
Batch Normalization (K, 100)

Dense (sigmoid) (K, 1)

B.2 Illustration on Scheme B. RNN feedback code with zero padding (RNN (tanh) + ZP).

The encoder and decoder structures with zero padding are shown in Figure 7 and Figure 8, respectively. In
training, we use the same method as in training for scheme A. The only difference is that when we evaluate the
loss, we evaluate the binary crossentropy loss on the information bits of length K only and ignore the loss on the
last padded bit.

B.3 Illustration on Scheme C. RNN feedback code with power allocation (RNN(tanh) + ZP +
W).

The encoder structure for scheme C is shown in Figure 9. The decoder architecture is the same as the decoder
for Scheme B in Figure 8. Specifically, we introduce three trainable weights (w0, w1, w2) and let E[c2k] =

12



Figure 6: RNN feedback encoder (left) and decoder (right)

Figure 7: Encoder for scheme B.

Figure 8: Decoder for schemes B,C,D.

w2
0,E[c2k,1] = w2

1,E[c2k,2] = w2
2 for all k 2 {1, · · · ,K} where w2

0 + w2
1 + w2

2 = 3 (c.f. in Encoder B, we let
E[c2k] = E[c2k,1] = E[c2k,2] = 1). In training, we initialize wis by 1 and train the encoder and decoder jointly
as we trained Schemes A and B. The trained weights are (w1, w2, w3) = (1.13, 0.90, 0.96) (trained at -1dB).
This implies that the encoder uses the most power in Phase I, to transmit (raw) information bits. In Phase II, the
encoder uses more power on the second parity bits than in the first parity bits.

B.4 Scheme D. RNN feedback code with bit power allocation (RNN(tanh) + ZP + W + A).

The encoder structure for scheme D is shown in Figure 10. The decoder architecture is the same as the decoder
for Scheme B in Figure 8. To the full generality, we can train all the weights a = a1, · · · , aK where ak is
the amplitude of the k-th information bit. However, we let a5, · · · , aK�4 = 1 and only train first 4 weights
and the last 5 weights, a1, a2, a3, a4 and aK�3, aK�2, aK�1, aK , aK+1. This is because by doing so, we can
generalize the encoder to longer block lengths by unrolling and also the BER of bits in the middle have the same
error regardless of positions.

13



Figure 9: Encoder C.

For scheme D, instead of training from the random initialization, we start from the trained model in C
and additionally train a on top of the trained model. (We allow the trained weights change as we learn a.
The trained weights are (a1, a2, a3, a4) = (0.87, 0.93, 0.96, 0.98) and (aK�3, aK�2, aK�1, aK , aK+1) =
(1.009, 1.013, 1.056, 1.199, 0.935) (for �1dB trained model). As we expected, the trained weights in the later
bits are larger. Also, the weight at the K + 1th bit position is small because last bit is always zero and does not
convey any information. On the other hand, trained weights in the beginning positions are small because without
the power control, these bits were very robust to noise.

Figure 10: Encoder D.

B.5 Feedback with delay and coding

Practical feedback typically is delayed for a random time, thus the encoder cannot use immediate feedback to
encode. The feedback is randomly delayed up to block length K, we are restricted not to use feedback till K
bits are transmitted. Coding in both forward and feedback channel under noisy feedback will strengthen the
reliability of communication.

We propose an active and delayed feedback scheme to overcome noisy feedback and delaying effect, the 1/3 code
rate encoder is shown in Figure 11. In the first phase, the K information bits can be encoded by Bi-GRU, while
the feedback is delayed and can only be used in the next phase. The second and third phase uses uni-directional
GRU to encode with K-delayed feedback, which means at index m of phase 2, the encoder can only use the
feedback before of index m of phase 1. Receiver side encode the feedback by unidirectional GRU and send
through the delayed feedback channel back to the transmitter. The decoder is a Bi-GRU which waits to decode
until all information bits are received.

We can see from Figure 12 (Right), passive feedback under delayed feedback still has better performance
compared to the turbo code, and beats S-K code under high SNR regimes. The delaying effect is enabled via our
RNN feedback coding scheme. The gain is from: (1) adding an additional phase, which gives the RNN more
fault tolerance comparing to 2-phase coding; (2) training the RNN to decode with delayed feedback.

Figure 12 (Left) shows the performance under noisy feedback. The forward channel is under AWGN 0dB,
while the x-axis shows the feedback SNR. The C-L and S-K code fail to decode under noisy feedback channel.
Passive feedback code achieve better performance comparing to C-L and S-K code, while active feedback code
outperform passive feedback code. The performance gain is from: (1) the coding gain of active feedback, which
gives the encoder RNN better robust representation of feedback code; (2) as the feedback is noisy, delayed
coding actually averages the noise, which leads to better performance.

14



Figure 11: Encoder for delayed feedback

Figure 12: Neural schemes for delay with feedback under noisy (left) and noiseless (right) feedback

Literature on coded feedback In [37], the authors show that active feedback can improve the reliability under
noisy feedback if the feedback SNR is sufficiently larger than the forward SNR. Their coding scheme assumes
that the encoder and decoder share a common random i.i.d. sequence (of length equals to the coded block length),
mutually independent of the noise sequences and the message, which we do not have, which makes it hard to
compare our scheme with theirs.

C Concatenation of Deepcode with existing codes

Concatenated codes are constructed from two or more codes, originally proposed by Forney [38]. We concatenate
forward error correcting codes (that do not use a feedback) with our neural code that makes use of feedback.
Encoding is performed in two steps; we first map information bits into a turbo code, and then encode the turbo
code via an encoder for channels with feedback. Decoding is also performed in two steps. In the first step, the
decoder recovers the estimates of turbo codes. In the second step, the decoder recovers information bits based on
the estimates of turbo codes. For the experiment in Section 4, for which results are shown in Figure 4 (Right), we
use the rate 1/3 LTE turbo code as an outer code; LTE turbo code uses ([13, 15], 13) convolutional code (octal
notation) as a component code. We compare the performance of the concatenated code with a rate 1/9 turbo
code, which uses ([13,17,16,15,11],13) convolutional code as a component code (introduced in [39]). Besides
turbo codes, any existing codes (e.g., LDPC, polar, convolutional codes) can be used as an outer code. We also
note that C-L scheme is based on the concatenation idea [7].

D Existing codes: C-L and S-K schemes

In this section, we provide an illustration of two baseline schemes, C-L scheme and S-K scheme, and the
connection between these schemes and our neural codes.

A simple scheme is to linearly encode each information bit separately using feedback. For each bit bk, the
encoder generates three coded bits (ck1, ck2, ck3). This is the Chance-Love scheme proposed in [7]. One of the
contributions of [7] is to empirically find the optimal weights for the linear functions (there is no closed-form
solution). Another contribution is that they propose concatenating their code with an existing forward error
correction code such as turbo codes, i.e., instead of mapping the information bits b directly to the codeword c,
the encoder maps b to a turbo code d and then map the turbo code d to a codeword c.

Can we start with a neural architecture that includes the C-L as a special case and improve upon it? Due to the
sequential nature of feedback encoder, recurrent neural network (RNN) architectures are natural candidates. A
simple neural architecture that includes the C-L scheme as a special case is illustrated in Figure 14. We consider
various versions of RNN encoders –RNN with linear activation functions, and nonlinear RNN, GRU, LSTM. We
train the encoder and decoder jointly. For all architectures, we use 50 hidden units. The BER of trained networks
are shown in Table 15. We can see that the BER of nonlinear RNN is smaller than a linear feedback scheme with
weights optimized.

15



Figure 13: Illustration of encoding of k-th bit for a rate-1/3 linear encoder in Chance-Love scheme

Figure 14: Encoding of k-th bit for a rate-1/3 RNN encoder

Scheme BER at 1dB (�2
F = 0.01)

Bit-by-bit linear (Shalkwijk-Kailath) 0.0023
Bit-by-bit linear (Chance-Love) 7.83e-04

Bit-by-bit linear RNN 0.0046
Bit-by-bit RNN 1.56e-04
Bit-by-bit GRU 1.58e-04

Bit-by-bit LSTM 1.88e-04

Figure 15: BER of other RNN architectures. Rate 1/3

Although RNN has the capability to represent any linear bit-by-bit linear encoder/decoder, we can see that the
training is highly nontrivial, and for linear RNN, the neural network converges to a local optima. On the other
hand, for nonlinear RNNs, the trained encoder performs better than the weight-optimized linear scheme.

From coding theory, we know that the bit error rate should go down as block length gets longer. If we use
bit-by-bit encoding, the improvement can never be realized because BER remains the same now matter how long
the block is. In order to enable the bit error to decay faster as block length increases, the encoder has to code
information bits jointly. A celebrated feedback coding scheme, Shalkwijk–Kailath scheme, simplified/illustrated
in Figure 16, belongs to this category.

Figure 16: Illustration of S-K encoder

S-K scheme. Here all information bits are used only to generate the first codeword. The rest of the codewords
depend only on the feedback (noise added to the previous transmission). Although S-K scheme does encode all
information bits jointly, transmitting all information bits in the first phase requires a high numerical precision
as block length increases. For example, for 50 information bits, the transmitter transmits

PK
k=1 bk2

k (with a
power normalization and subtracting a constant to set mean to be 0).

Our approach is different from S-K scheme in that we aim to use the memory of RNN to design an encoder that
encodes the information bits jointly. Since RNN has a memory in it, naturally it allows encoding bits jointly.
The challenge is whether we can we find/train a neural network encoder which makes use of the RNN memory.
For example, Figure 17 illustrates a somewhat natural architecture we attempted. However, after training, the
BER performance is only as good as the BER of bit-by-bit encoding, which means that the memory in the RNN
is not being successfully used to jointly encode the information bits.

16



Figure 17: Bit-coupled RNN encoder

E Robustness under bursty Gaussian channels

Bursty Gaussian channel is a channel where there is a background Gaussian noise n1i, and occasionally, with a
small probability ↵, a Gaussian noise with high power (bursty noise, n2i) is added on top of the background
noise. Mathematically, we consider the following bursty Gaussian channel: yi = xi + ni, where

ni = n1i + ein2i,

n1i ⇠ N (0,�2
o), n2i ⇠ N (0,�2

1), ei ⇠ Bern(↵).

We test the robustness of our feedback code under bursty Gaussian channel. Figure 18 shows the BER as a
function of ↵ (probability of having a burst noise), for �1dB, and two different power of burst noise. We choose
�2
0 so that ↵�2

1 + �2
0 = �2 (i.e., we keep the total power of the noise). As we can see from the Figure, as ↵

increases, the BER decreases, showing that under bursty noise, the bit error rate is smaller.

BER

Probability of burst noise (↵)

Figure 18: Deepcode is robust to bursty noise.

17


	Introduction
	Problem formulation
	Neural encoder and decoder
	Practical considerations: noise, delay, coding in feedback, and blocklength
	Interpretation
	Conclusion
	Acknowledgment
	State-of-the art codes used in comparison
	Implementation details
	Illustration on Scheme A. RNN feedback encoder/decoder (RNN (tanh)).
	Illustration on Scheme B. RNN feedback code with zero padding (RNN (tanh) + ZP).
	Illustration on Scheme C. RNN feedback code with power allocation (RNN(tanh) + ZP + W).
	Scheme D. RNN feedback code with bit power allocation (RNN(tanh) + ZP + W + A).
	Feedback with delay and coding

	Concatenation of Deepcode with existing codes
	Existing codes: C-L and S-K schemes
	Robustness under bursty Gaussian channels

