
A Supplementary Materials

In this section we will describe in more details the models and training methods used in this work.

A.1 Comparing V, M, C Model Sizes

Table 1: CarRacing-v0 Parameter Count

MODEL PARAMETER COUNT

VAE 4,348,547
MDN-RNN 422,368
CONTROLLER 867

Table 2: DoomTakeCover-v0 Parameter Count

MODEL PARAMETER COUNT

VAE 4,446,915
MDN-RNN 1,678,785
CONTROLLER 1,088

A.2 Variational Autoencoder

Figure 1: Description of tensor shapes for each layer of our ConvVAE. (left).
MDN-RNN similar to the one used in [2, 3, 5] (right).

We trained a Convolutional Variational Autoencoder (ConvVAE) model as our agent’s V, as illustrated
in Figure 1 (left). Unlike vanilla autoencoders, enforcing a Gaussian prior over the latent vector zt
also limits the amount of information capacity for compressing each frame, but this Gaussian prior
also makes the world model more robust to unrealistic zt ∈ RNz vectors generated by M.

Our latent vector zt is sampled from a factored Gaussian distribution N(µt, σ
2
t I), with mean µt ∈

RNz and diagonal variance σ2
t ∈ RNz . As the environment may give us observations as high

dimensional pixel images, we first resize each image to 64x64 pixels and use this resized image as
V’s observation. Each pixel is stored as three floating point values between 0 and 1 to represent
each of the RGB channels. The ConvVAE takes in this 64x64x3 input tensor and passes it through 4
convolutional layers to encode it into low dimension vectors µt and σt. In the Car Racing task, Nz

is 32 while for the Doom task Nz is 64. The latent vector zt is passed through 4 of deconvolution
layers used to decode and reconstruct the image.

Each convolution and deconvolution layer uses a stride of 2. The layers are indicated in the diagram
in Italics as Activation-type Output Channels x Filter Size. All convolutional and deconvolutional
layers use relu activations except for the output layer as we need the output to be between 0 and 1.
We trained the model for 1 epoch over the data collected from a random policy, using L2 distance
between the input image and the reconstruction to quantify the reconstruction loss we optimize for, in
addition to KL loss.

1



A.3 Mixture Density Network + Recurrent Neural Network

To implement M, we use an LSTM [7] recurrent neural network combined with a Mixture Density
Network [1] as the output layer, as illustrated in Figure 1 (right). We use this network to model the
probability distribution of zt as a Mixture of Gaussian distribution. This approach is very similar to
previous work [3] in the Unconditional Handwriting Generation section and also the decoder-only
section of SketchRNN [5]. The only difference is that we did not model the correlation parameter
between each element of zt, and instead had the MDN-RNN output a diagonal covariance matrix of a
factored Gaussian distribution.

Unlike the handwriting and sketch generation works, rather than using the MDN-RNN to model the
probability density function (pdf) of the next pen stroke, we model instead the pdf of the next latent
vector zt. We would sample from this pdf at each time step to generate the environments. In the
Doom task, we also use the MDN-RNN to predict the probability of whether the agent has died in
this frame. If that probability is above 50%, then we set done to be true in the virtual environment.
Given that death is a low probability event at each time step, we find the cutoff approach to be more
stable compared to sampling from the Bernoulli distribution.

The MDN-RNNs were trained for 20 epochs on the data collected from a random policy agent. In the
Car Racing task, the LSTM used 256 hidden units, in the Doom task 512 hidden units. In both tasks,
we used 5 Gaussian mixtures, but unlike [3, 5], we did not model the correlation parameters, hence zt
is sampled from a factored mixture of Gaussian distributions.

When training the MDN-RNN using teacher forcing from the recorded data, we store a pre-computed
set of µt and σt for each of the frames, and sample an input zt ∼ N(µt, σ

2
t I) each time we construct

a training batch, to prevent overfitting our MDN-RNN to a specific sampled zt.

A.4 Controller

For both environments, we applied tanh nonlinearities to clip and bound the action space to the
appropriate ranges. For instance, in the Car Racing task, the steering wheel has a range from -1.0 to
1.0, the acceleration pedal from 0.0 to 1.0, and the brakes from 0.0 to 1.0. In the Doom environment,
we converted the discrete actions into a continuous action space between -1.0 to 1.0, and divided
this range into thirds to indicate whether the agent is moving left, staying where it is, or moving to
the right. We would give C a feature vector as its input, consisting of zt and the hidden state of the
MDN-RNN. In the Car Racing task, this hidden state is the output vector ht ∈ RNh of the LSTM,
while for the Doom task it is both the cell vector ct ∈ RNh and the output vector ht of the LSTM.

A.5 Evolution Strategies

We used Covariance-Matrix Adaptation Evolution Strategy (CMA-ES) [6] to evolve C’s weights.
Following the approach described in Evolving Stable Strategies [4], we used a population size of 64,
and had each agent perform the task 16 times with different initial random seeds. The agent’s fitness
value is the average cumulative reward of the 16 random rollouts. The diagram below (left) charts the
best performer, worst performer, and mean fitness of the population of 64 agents at each generation:

Figure 2: Training progress of CarRacing-v0 (left).
Histogram of cumulative rewards. Score is 906 ± 21 (right).

2



Since the requirement of this environment is to have an agent achieve an average score above 900
over 100 random rollouts, we took the best performing agent at the end of every 25 generations,
and tested it over 1024 random rollout scenarios to record this average on the red line. After 1800
generations, an agent was able to achieve an average score of 900.46 over 1024 random rollouts.
We used 1024 random rollouts rather than 100 because each process of the 64 core machine had
been configured to run 16 times already, effectively using a full generation of compute after every 25
generations to evaluate the best agent 1024 times. In the Figure 3 (left) below, we plot the results of
same agent evaluated over 100 rollouts:

Figure 3: When agent sees only zt but not ht, score is 632 ± 251 (left).
If we add a hidden layer on top of only zt, score increases to 788 ± 141 (right).

We also experimented with an agent that has access to only the zt vector from the VAE, but not the
RNN’s hidden states. We tried 2 variations, where in the first variation, C maps zt directly to the action
space at. In second variation, we attempted to add a hidden layer with 40 tanh activations between
zt and at, increasing the number of model parameters of C to 1443, making it more comparable with
the original setup. These results are shown in In the Figure 3 (right).

A.6 DoomRNN

We conducted a similar experiment on the generated Doom environment we called DoomRNN. Please
note that we did not attempt to train our agent on the actual VizDoom environment, but only used
VizDoom for the purpose of collecting training data using a random policy. DoomRNN is more
computationally efficient compared to VizDoom as it only operates in latent space without the need
to render an image at each time step, and we do not need to run the actual Doom game engine.

Figure 4: Training of DoomRNN (left). Histogram of time steps survived in the actual VizDoom
environment over 100 consecutive trials. Score is 1092 ± 556 (right).

In our virtual DoomRNN environment we increased the temperature slightly and used τ = 1.15
to make the agent learn in a more challenging environment. The best agent managed to obtain an
average score of 959 over 1024 random rollouts. This is the highest score of the red line in Figure 4
(left). This same agent achieved an average score of 1092 ± 556 over 100 random rollouts when
deployed to the actual DoomTakeCover-v0 [8] environment, as shown in Figure 4 (right).

3



References
[1] C. M. Bishop. Neural networks for pattern recognition (chapter 6). Oxford university press, 1995.

[2] S. Carter, D. Ha, I. Johnson, and C. Olah. Experiments in handwriting with a neural network. Distill, 2016.

[3] A. Graves. Generating sequences with recurrent neural networks. Preprint arXiv:1308.0850, 2013.

[4] D. Ha. Evolving stable strategies. http://blog.otoro.net/, 2017.

[5] D. Ha and D. Eck. A neural representation of sketch drawings. In International Conference on Learning
Representations, 2018.

[6] N. Hansen. The CMA evolution strategy: A tutorial. Preprint arXiv:1604.00772, 2016.

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

[8] P. Paquette. DoomTakeCover-v0. https://gym.openai.com/, 2016.

4


	Supplementary Materials
	Comparing V, M, C Model Sizes
	Variational Autoencoder
	Mixture Density Network + Recurrent Neural Network
	Controller
	Evolution Strategies
	DoomRNN


