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This supplementary consists of four parts. Section 1 provides proof for Theorem 3.4. Section 2
provides proof for Theorem 3.5. Section 3 includes proof for Corollary 4.7. Section 4 contains real
data examples.

1 Proof of Theorem 3.4

The number of non-overlapping g-dangling sets is upper bounded by N . Actually, by Lemma 1.2
below, it is upper bounded by N/g.

To provide a lower bound on the number of non-overlapping g-dangling sets, we add a fourth
requirement to the g-dangling definition and call this g-dangling. The first three conditions are
identical to g-dangling. The fourth condition will be satisfied by ensuring that the external edge
connects to the largest connected component of the graph. Note that we use this additional fourth
condition in the proof to ensure we are counting non-overlapping dangling sets (Lemma 1.2). Since
we only provide the lower bound in Theorem 3.4 and this condition only reduces the number of
dangling sets, the same result applies for the Definition 1.1 in paper.

Definition 1.1. In a graph G = (V,E), for any subset S ⊂ V , S is g-dangling if and only if the
following conditions hold.

- S contains exactly g nodes.

- There are exactly g − 1 edges within S that do not form any cycles (i.e. the node induced
subgraph from S is a tree).

- There is exactly one edge between nodes in S and nodes in Sc.

- S is part of a connected component in G that has at least 10g nodes.

Lemma 1.2. If S is g-dangling and i ∈ S, then there is no other g-dangling set that contains i.

The proof Lemma 1.2 is at the end of the proof for Theorem 3.4. The proof of Theorem 3.4 is given
below.

Proof. Due to Lemma 1.2, the number of g-dangling sets is a lower bound for the number of non-
overlapping g-dangling sets. Therefore, it is enough to prove that the expected number of g-dangling
sets is lower bounded by εN for some ε > 0. Denote the number of g-dangling sets as

Dg =
∑

S:|S|=g

1{S is g-dangling},

where 1 is an indicator function.
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In what follows εi > 0 is a positive constant for i = 1, . . . that only requires N to be large enough.
The εi’s could have dependence on g, which we consider fixed.

In the proof below, we decompose P{S is g-dangling} into a product of several probabilities. First,
decompose {S is g-dangling} into T (S) ∩O(S) ∩ C(S), where

T (S) = {the node induced subgraph from S is a tree}
O(S) = {the nodes in S have one external connection}
C(S) = {S is part of a connected component that contains at least 10g nodes}

The first two events are independent because it is an inhomogeneous random graph. Then, T (S)
further decomposes. For that decomposition, denote |E(S)| as the number of edges in the node
induced subgraph from S.

EDg ≥
∑

S⊂|Vp|:|S|=g

P{S is g-dangling}

=

(
|Vp|
g

)
P(T (S)) P(O(S)) P(C(S)|O(S), T (S))

=

(
|Vp|
g

)
P(|E(S)| = g − 1)P

(
T (S)

∣∣|E(S)| = g − 1
)
P(O(S)) P(C(S)|O(S), T (S))

Each term is bounded from below as follows. Let bxc denote the largest integer less than x. Then
there exists ε1 > 0, such that (

|Vp|
g

)
>

(
bηNc
g

)
>
ηgNg

gg
> ε1N

g.

Then, because edge probabilities are bounded between 1/N and b/N ,

P(|E(S)| = g − 1) >

( (
g
2

)
g − 1

)
(1/N)g−1(1− b/N)(

g
2)−(g−1) > ε2N

−(g−1).

The next probability is the probability that the g − 1 edges in S form a tree. This does not depend on
N .

P
(
the node induced graph from S is a tree

∣∣|E(S)| = g − 1
)
> ε3

Then, O(S) is bounded similarly to |E(S)|.

P(O(S)) >

(
(N − g)g

1

)
(1/N)1(1− b/N)(

(N−g)g
1 )−1 > ε4(N − g)/N > ε5

Given O(S) and T (S), the condition C(S) is certainly satisfied if the one external edge connects to
a component that is larger than ε6N . Because we are only considering models with pij > (1 + ε)/N ,
these graphs are all more connected than an Erdös-Rényi graph with p = (1 + ε)/N . Even after
removing the set S, the size of the largest connected component of such an Erdös-Rényi graph is
greater than ε6N a.s. [1]. As such P(C(S)|O(S), T (S)) > ε7.

Putting the bounds together,
EDg > ε8N

gN−(g−1) = ε8N.

This concludes the proof.

We must still prove Lemma 1.2. The proof of Lemma 1.2 requires the next fact.
Fact 1.3. For any g-dangling set, there is one edge connecting the g-dangling set to its connected
component in G. If that edge is removed, then there are two connected components: the graph on the
g-dangling set and a larger graph of at least 9g nodes.

Here is a proof of Lemma 1.2.

Proof. Suppose that i is contained in two g-dangling sets, S 6= S̃. Because they are not equal, there
must be a node q such that q ∈ S̃ and q 6∈ S. Because S̃ is g-dangling, i must have unique path to q
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that falls within S̃. Because q is outside of S, that unique path must include the unique “bridge edge”
that connects S to Sc. Define that bridge edge to be (b, k). This implies that b, k ∈ S̃.

There must also be a node ` such that ` ∈ S and ` 6∈ S̃. For any node j ∈ (S ∪ S̃)c, every path from
` to j must include the bridge edge (b, k) for S. Because ` 6∈ S̃, the unique path within S from i

to ` must contain the bridge edge for S̃. Now, consider dropping the bridge edge for S̃. From Fact
1.3, this must create 2 connected components, one of size g and another greater than 9g. That large
component must contain both ` and the nodes in (S ∪ S̃)c. This leads to a contradiction because `
cannot be path connected to (S ∪ S̃)c without the edges in S̃.

2 Proof of Theorem 3.5

Proof. Note that because this theorem only discusses unweighted graphs, wij is either zero or one.

Denote the Q g-dangling sets as {Sεl}
Q
l=1. For each g-dangling set Sεl , we define its cluster identifier

as f (l) = (f
(l)
1 , . . . , f

(l)
N ) ∈ RN , where each element is

f
(l)
i =

{√
di

vol(Sεl )
if i ∈ Sεl

0 otherwise
.

Then,

f (l)TLf (l) =
1

2

∑
i∼j

wij

(
f
(l)
i√
di
−

f
(l)
j√
dj

)2

=
∑

i∼j,i∈Sεl ,j 6∈Sεl

wij
vol(Sεl)

=
1

vol(Sεl)
,

The first equality is from Prop 3 in [3]. The last equality is because there is only one edge connecting
Sεl and Scεl .

Each g-dangling set Sεl has an identifier f (l). Similarly, we define an identifier f (0) ∈ RN for the
set S0 = (∪Ql=1Sεl)

c, where each element is

f
(0)
i =

{√
di

vol(S0)
if i ∈ S0 = (∪Ql=1Sεl)

c

0 otherwise
.

Then,

f (0)TLf (0) =
1

vol(S0)

∑
i∼j,i∈S0,j 6∈S0

wij

≤ Q

vol(S0)
,

The inequality is because there are at most Q edges connecting S0 with ∪Ql=1Sεl (one for each
g-dangling set).
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Thus, sum of the leading Q+ 1 eigenvalues of L

Q∑
i=0

λi = min
V TV=IQ+1

trace(V TLV )

≤f (0)TLf (0) +

Q∑
l=1

f (l)TLf (l)

≤ Q

vol(S0)
+

Q∑
l=1

1

2g − 1

=Q

(
1

vol(S0)
+

1

2g − 1

)
<

Q

2g − 2
.

The first equality is from Ky Fan Maximum Principal [2]. The last inequality is from the condition
vol(S0) ≥ 4g2.

Thus, at least Q/2 eigenvalues are no larger than(g − 1)−1.

3 Proof of Corollary 4.7

Proof of Proposition 4.5

Proof.

CoreCutτ (Sε) =
cut(Sε, G) + τ

N |Sε||S
c
ε |

vol(Sε, G) + τ |Sε|
≥

τ
N |S

c
ε |

d̄(S,G) + τ
≥ |S

c
ε |
N

α

1 + α
>
α(1− ε)

1 + α

The first inequality is by dividing |Sε| in both numerator and denominator. The second inequality is
from the assumption τ ≥ αd̄(Sε, G). The last inequality is from assumption |Sε| < εN .

Proof of Proposition 4.6

Proof.

CoreCutτ (S) =
cut(S,G) + τ

N |S||S
c|

vol(S,G) + τ |S|
=
φ(S,G) + τ |Sc|/(Nd̄(S,G))

1 + τ/d̄(S,G)

<
φ(S,G) + τ/d̄(S,G)

1 + τ/d̄(S,G)
< φ(S,G) + δ

The second equality is by dividing vol(S) in both numerator and denominator. The first inequality is
from |Sc| < N . The second inequality is from τ/d̄(S,G) ∈ (0, δ).

Corollary 4.7 follows directly from Proposition 4.5 and Proposition 4.6.

4 More simulations and data examples

Figure 1 compares the leading eigenvectors of Vanilla-SC and Regularized-SC on the referral
network among Wisconsin primary physicians based on 2013 Medicare provider utilization and
payment data. Figure 2 compares the leading eigenvectors using the brain graph from https:
//neurodata.io.
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Figure 1: The leading eigenvectors of the Wisconsin physician referral network.
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Figure 2: The leading eigenvectors of the brain graphs. The left three columns contain eigenvectors
for Vanilla-SC and the right three columns contain eigenvectors for Regularized-SC.
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