Appendix

A Explanation Methods

We now provide additional overview of the different saliency methods that we assess in this work. As described
in the main text, an input is a vector € R?. A model describes a function S: R — R, where C' is the number
of classes in the classification problem. An explanation method provides an explanation map E: R — R? that
maps inputs to objects of the same shape. Each dimension then correspond to the ‘relevance’ or ‘importance’ of
that dimension to the final output, which is often a class-specific score as specified above.

A.1 Gradient with respect to input

This corresponds to the gradient of the scalar logit for a particular class wrt to the input.

S

Egraa (W) = 9z

A.2 Gradient © Input

Gradient element-wise product with the input. /Ancona et. al. show that this input gradient product is equivalent
to DeepLift, and e-LRP (other explanations methods), for a network with with only Relu(s) and no additive
biases.

oS
Egrad@input(x) =x© %

A.3 Guided Backpropagation (GBP)

GBP specifies a change in how to back-propagate gradienst for ReLus. Let { f L=t f 9} be the feature
maps derived during the forward pass through a DNN, and {Rl, R\ . R} be ‘intermediate representations’
obtained during the backward pass. Concretely, f' = relu(f'~1) = maz(f'=1,0), and R = gffx (for

regular back-propagation). GBP aims to zero out negative gradients during computation of R. The mask is
computed as:

! I+1
R =1git1s0lpsoR™

1 gi+15,o means keep only the positive gradients, and 1 i, means keep only the positive activations.

A.4 GradCAM and Guided GradCAM

Introduced by Selvaraju et al. [19], GradCAM explanations correspond to the gradient of the class score (logit)
with respect to the feature map of the last convolutional unit of a DNN. For pixel level granularity GradCAM,
can be combined with Guided Backpropagation through an element-wise product.

Following the exact notation by Selvaraju et al. [19], let A* be the feature maps derived from the last con-
volutional layer of a DNN. Conse%uently, GradCAM is defined as follows: first, neuron importance weights
s

are calculated, af = L 37, >_; 5ak» then the GradCAM mask corresponds to: ReLU (3, af A¥). This
ij

corresponds to a global average pooling of the gradients followed by weighted linear combination to which a
ReLU is applied. Now, the Guided GradCAM mask is then defined as:

’ Eguided—gradcam(l’) = Egradcam © Egbp

A.5 Integrated Gradients (IG)

1G is defined as:

oSz + a(z — ) do
ox

Eig(z) = (z — &) x /01

where 7 is the baseline input that represents the absence of a feature in the original sample x;. Z is typically set
to zero.
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A.6 SmoothGrad

Given an explanation, F, from one of the methods previously discussed, a sample x, the SmoothGrad explanation,
Eg, is defined as follows:

N
1
Bule) = 5 > Bla+ ),
=1

where noise vectors g; ~ N(0, 0)) are drawn i.i.d. from a normal distribution.

A.7 VarGrad
Similar to SmoothGrad, and as referenced in [37]] a variance analog of SmoothGrad can be defined as follows:

| Bue(@) = V(B +9), |

where noise vectors g; ~ N(0,0?)) are drawn i.i.d. from a normal distribution, and V corresponds to the
variance. In the visualizations presented here, explanations with VG correspond to the VarGrad equivalent of
such masks. Seo et al. [38] theoretically analyze VarGrad showing that it is independent of the gradient, and
captures higher order partial derivatives.

B DNN Architecture, Training, Randomization & Metrics

Experimental Details Data sets & Models. We perform our randomization tests on a variety of datasets and
models as follows: an Inception v3 model [39] trained on the ImageNet classification dataset [40] for object
recognition, a Convolutional Neural Network (CNN) trained on MNIST [41]] and Fashion MNIST [42]], and a
multi-layer perceptron (MLP), also trained on MNIST and Fashion MNIST.

Randomization Tests We perform 2 types of randomizations. For the model parameter randomization tests, we
re-initialized the parameters of each of the models with a truncated normal distribution. We replicated these
randomization for a uniform distribution and obtain identical results. For the random labels test, we randomize,
completely, the training labels for a each-model dataset pair (MNIST and Fashion MNIST) and then train the
model to greater than 95 percent training set accuracy. As expected the performance of these models on the tests
set is random.

Inception v3 trained on ImageNet. For Inception v3, we used a pre-trained network that is widely
distributed with the tensorflow package available at: https://github.com/tensorflow/models/tree/
master/research/slim#Pretrained. This model has a 93.9 top-5 accuracy on the ImageNet test set. For
the randomization tests, we re-initialized on a per-block basis. As noted in [43], each inception block consists of
multiple filters of different sizes. In this case, we randomize all the the filter weights, biases, and batch-norm
variables for each inception block. In total, this randomization occurs in 17 phases.

CNN on MNIST and Fashion MNIST. The CNN architecture is as follows: input -> conv (5x5, 32) ->
pooling (2x2)-> conv (5x5, 64) -> pooling (2x2) -> fully connected (1024 units) -> softmax (10 units). We
train the model with the ADAM optimizer for 20 thousand iterations. All non-linearities used are ReLU. We also
apply weight decay (penalty 0.001) to the weights of the network. The final test set accuracy of this model is
99.2 percent. For model parameter randomization test, we reinitialize each layer successively or independently
depending on the randomization experiment. The weight initialiazation scheme followed was a truncated normal
distribution (mean: 0, std: 0.01). We also tried a uniform distribution as well, and found that our results still
hold.

MLP trained on MNIST. The MLP architecture is as follows: input -> fully connected (2500 units) -> fully
connected (1500 units) -> fully connected (500 units) -> fully connected (10 units). We also train this model
with the ADAM optimizer for 20 thousand iterations. All non-linearities used are Relu. The final test set accuracy
of this model is 98.7 percent. For randomization tests, we reinitialize each layer successively or independently
depending on the randomization experiment.

Inception v4 trained on Skeletal Radiograms. We also analyzed an inception v4 model trained on skeletal
radiograms obtained as part of the pediatric bone age challenge conducted by the radiological society of north
America. This inception v4 model was trained retained the standard original parameters except it was trained
with a mixed L1 and L2 loss. In our randomization test as indicated in figure 1, we reinitialize all weights, biases,
and variables of the model.

Calibration for Similarity Metrics. As noted in the methods section, we measure the similarity of the saliency
masks obtained using the following metrics: Spearman rank correlation with absolute value (absolute value),
Spearman rank correlation without absolute value (diverging), the structural similarity index (SSIM), and the
Pearson correlation of the histogram of gradients (HOGs) derived from two maps. The SSIM and HOGs metrics
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are computed for ImageNet explanation masks. We do this because these metrics are suited to natural images,
and to avoid the somewhat artificial structure of Fashion MNIST and MNIST images. We conduct two kinds
of calibration exercises. First we measure, for each metric, the similarity between an explanation mask and a
randomly sampled (Uniform or Gaussian) mask. Second, we measure, for each metric, the similarity between
two randomly sampled explanation masks (Uniform or Gaussian). Together, these two tasks allow us to see if
high values for a particular metric indeed correspond to meaningfully high values.

We use the skimage HOG function with a (16, 16) pixels per cell. Note that the input to the HOG func-
tion is 299 by 229 with the values normalized to [-1, +1]. We also used the skimage SSIM function with
a window size of 5. We obtained the gradient saliency maps for 50 images in the ImageNet validation set.
We then compare these under the two settings described above; we report the average across these 50 im-
ages as the following tuple: (Rank correlation with no absolute value, Rank correlation with absolute value,
HOGs Metric, SSIM). The average similarity between the gradient mask and random Gaussian mask is:
(—0.00049, 0.00032, —0.0016, 0.00027). We repeat this experiment for Integrated gradient and gradient®input
and obtained: (0.00084,0.00059, 0.0048,0.00018), and (0.00081, 0.00099, —0.0024, 0.00023). We now re-
port results for the above metrics for similarity between two random masks. For uniform distribution [-1, 1],
we obtain the following similarity: (0.00016, —0.0015,0.078,0.00076). For Gaussian masks with mean zero
and unit variance that has been normalized to lie in the range [-1, 1], we obtain the following similarity metric:
(0.00018,0.00043, —0.0013, 0.00023).

C Additional Figures
We now present additional figures referenced in the main text.

Skeletal Radiograph

A

“ N\

Inception v4

1 Age Prediction l

Guided Backpropagation-SmoothGrad

Figure 7: No observable difference in explanations B & C. A): a skeletal radiogram from the
pediatric bone age challenge organized by the radiological society of north America (RSNA). Given
several thousand radiographs, challenge participants are tasked with building models to predict the
age (in months) of the patient. B) Guided Backprop explanation of sample A for an Inception v4
model trained on the radiograms. C) Guided Backprop explanation of sample A for an Inception v4
model with completely random weights. Both explanations are virtually indistinguishable.

15



2w AyLre[ruls sHOH Pue JAISS dY) SPNOUI OS[e AN *dFBUWI [OBI JI0J 10323)9P A3Pd PIM Suofe jndino Ludifes SuImoys 3.Ing1y UoISIIA I8Ie] :§ I3

(co0‘2z0-) (620‘6L'0) (20°L0°0-) (9v'0°‘220) (9¥0°ce0) (€2°0°‘8L0) (€10 ‘VI'0-)

FETIIET |
uajeaym

&

u109

pag
oounp

1010919
abp3

indu]  peipyjoowg SWSIPEIH  INVOPEID  doigsioeg pp JHylooWS  1USIPEID abew|
® sjusipesy Pajesbau]  paping papIny : euibuo
jusipely pajeibaju)

16



159) uoneziwopues 1jowered [OpoJN 6 2INSL]

Hg-sjualIpe.y pajesbalu|

sjualpe.n pajeibaju|

IWVOPEID papiny

NvOpesd

uonebedoud-yoeg
papiny

induj ©juaipeuy)

DS-1uBIpEID

waipesn

s19Ae| wopnoq o1 doj wouy
uoleziwopues Buipeossen

- A.hﬁ‘
o o o o o 3
¢ § § § g § ¢ 8 % % % % 2 2 & :3
< < < < < o o o o H o o o o F 8
N ) ) ) ) o 8 g P 2 o o o o 5
o o g o o | | | | _ | | | | e D
[ | | | | a o @ o > - =3 ~ ~
2 N ¥ (%) S S5 o a g o o 14 c o e m
_e _e _a. _q _e ° m
® (2 (%) - © =]
X X X o
© © > o © A ° 5
o B
o
o
° 3

abew| [euibLQ

17



Normal Uniform

o Similarity Metrics (ImageNet) o Similarity Metrics (ImageNet)
. - 55IM . - 55
HOGs Matric HOGs Matric:
0.8 == RC Abs 08 = RC Abs
= RC Mo-Abs == RC Mo-Abs
086 086
z z
& &
ImageNet = =
& 0.4 & 04
0.2 02
B " Y N
(o, 1) 5, 5) {10, 10} (0, 1) 5, 5) {10, 10}
Normal Uniform
Similarity Metrics (FMNIST) Similarity Metrics (FMNIST)
1.4 — S5IM 14 - SEIM
HOGs Matric HOGs Matric
i 12 . RC Abs 12 = RC Abs
Fashion m— RC No-Abs - AC No-Abs
MNIST 1.0 10
z
E 08 g‘ o8
= E
v 08 uh 08
0.4 0.4
0.2 0.2
0.0 | 0.0 | | |
(0,1 (5. 5) {10, 10) 0, 1) {5, 5 {10, 10}

Figure 10: Input © Random gradient experiment.
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Figure 12: Rank Correlation Metric (without absolute values) on all architectures and
datasets.
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Figure 16: Cascading Randomization for Corn Class Image.
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Figure 17: Cascading Randomization for Corn Class Image: Diverging Visualization.
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Figure 22: Independent and successive re-initialization for CNN trained on MNIST. Left: inde-
pendent randomization of each layer of the CNN. Right:successive randomization of each layer of
the CNN. Note: VG represents Vargrad (See. Methods section in appendix for method definition.)
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Figure 23: Independent and successive re-initialization for CNN trained on MNIST. Left: inde-
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MLP MNIST
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Figure 24: Independent and successive re-initialization for MLP (3-hidden layers) trained on
MNIST. Left: independent randomization of each layer of the MLP. Right: successive randomization
of each layer of the MLP.
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Figure 25: Independent and successive re-initialization for MLP (3-hidden layers) trained on
MNIST. Left: independent randomization of each layer of the MLP. Right: successive randomization
of each layer of the MLP.
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Figure 26: Saliency Methods on a 1-laver Convolutional Sum Model.
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Figure 27: Top: Saliency maps for an input image. Bottom: Saliency maps for an input © edge
detector. This corresponds to an input where all the non-edges have been zeroed out. We see that,
qualitatively, both maps look visually similar for GBP and Guided GradCAM.
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A Reverse Randomization
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Figure 28: A: Reverse Cascading Randomization. B: Cascading Randomization on MNIST for
DeepLIFT (Orange) and e-LRP (Green). C: Cascading Randomization (no absolute value for spear-
man metric) on MNIST for DeepLIFT (Orange) and e-LRP (Green). D: Cascading randomization for
the perturbation method ([20]. E: Spearman Rank Correlation metric for perturbation method ([20].
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