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A Omitted mathematical reformulations

A.1 Single level reformulation for the Inverse Linear Optimization Problem

When the objective function is linear, namely, the optimization problem has the following form

min
x∈Rn

+

cTx

s.t. Ax ≥ b.
LP

Suppose that the right hand side b changes over time t. That is, b = bt at time t. When trying to learn
c, the single level reformulation the inverse problem is

min
c∈Θ

1
2‖c− ct‖22 + ηt‖yt − x‖22

s.t. Ax ≥ bt, x ≥ 0,

ATu ≤ c,

x ≤M1z1,

c−ATu ≤M1(1− z1),

u ≤M2z2,

Ax− bt ≤M2(1− z2),

x ∈ Rn+, u ∈ Rm+ , z1 ∈ {0, 1}n, z2 ∈ {0, 1}m,

where M1 and M2 are appropriate numbers used to bound x and c−ATu, u and Ax− bt respectively.
We have a similar single level reformulation when learning the Right-hand side b. Clearly, this is a

Mixed Integer Second Order Cone program(MISOCP) when learning either c or b.

A.2 Single level reformulation for the Inverse Quadratic Optimization Problem

When the objective functions are quadratic, namely, the optimization problem has the following form

min
x∈Rn

1
2x

TQx + cTx

s.t. Ax ≥ b.
QP

Suppose that c changes over time t. That is, c = ct at time t. When trying to learn b, the single level
reformulation for the inverse problem is

min
b∈Θ

1
2‖b− bt‖22 + ηt‖yt − x‖22

s.t. Ax ≥ b,

u ≤Mz,

Ax− b ≤M(1− z),

Qx + ct −ATu = 0,

b ∈ Rm, x ∈ Rn, u ∈ Rm+ , z ∈ {0, 1}m,
where M is an appropriate number used to bound u and Ax− b.

We have a similar single level reformulation when learning the objective c. Clearly, this is a Mixed
Integer Second Order Cone program(MISOCP) when learning either c or b.

1



Generalized Inverse Optimization through Online Learning

B Omitted Proofs

B.1 Proof of Lemma 3.1

Proof. By Assumption 3.1(b), we know that S(u, θ) is a single-valued set for each u ∈ U .
∀y ∈ Y, ∀u ∈ U , ∀θ1, θ2 ∈ Θ, without of loss of generality, let l(y, u, θ1) ≥ l(y, u, θ2). Then,

|l(y, u, θ1)− l(y, u, θ2)| = l(y, u, θ1)− l(y, u, θ2)

= ‖y − S(u, θ1)‖22 − ‖y − S(u, θ2)‖22
= 〈S(u, θ2)− S(u, θ1), 2y − S(u, θ1)− S(u, θ2)〉
≤ 2(B +R)‖S(u, θ2)− S(u, θ1)‖2.

(1)

The last inequality is due to Cauchy-Schwartz inequality and the Assumptions 3.1(a), that is

‖2y − S(u, θ1)− S(u, θ2)‖2 ≤ 2(B +R). (2)

Next, we will apply Proposition 6.1 in Bonnans and Shapiro [1998] to bound ‖S(u, θ2)− S(u, θ1)‖2.
Under Assumptions 3.1 - 3.2, the conditions of Proposition 6.1 in Bonnans and Shapiro [1998] are

satisfied. Therefore,

‖S(u, θ2)− S(u, θ1)‖2 ≤
2κ

λ
‖θ1 − θ2‖2. (3)

Plugging (2) and (3) in (1) yields the claim.

B.2 Proof of Theorem 3.2

Proof. we will use Theorem 3.2 in Kulis and Bartlett [2010] to prove our theorem.
Let Gt(θ) = 1

2‖θ − θt‖
2
2 + ηtl(yt, ut, θ).

We will now show the loss function is convex. The first step is to show that if Assumption 3.3 holds,
then the loss function l(y, u, θ) is convex in θ. ∀y ∈ Y, ∀u ∈ U , ∀θ1, θ2 ∈ Θ, we have

αl(y, u, θ1) + βl(y, u, θ2)− l(y, u, αθ1 + βθ2)

= α‖y − S(u, θ1)‖22 + β‖y − S(u, θ2)‖22 − ‖y − S(u, αθ1 + βθ2)‖22
= α‖y − S(u, θ1)‖22 + β‖y − S(u, θ2)‖22 − ‖y − αS(u, θ1)− βS(u, θ2)‖22

+‖y − αS(u, θ1)− βS(u, θ2)‖22 − ‖y − S(u, αθ1 + βθ2)‖22
= αβ‖S(u, θ1)− S(u, θ2)‖22 + ‖y − αS(u, θ1)− βS(u, θ2)‖22 − ‖y − S(u, αθ1 + βθ2)‖22
= αβ‖S(u, θ1)− S(u, θ2)‖22
−〈αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2), 2y − S(u, αθ1 + βθ2)− αS(u, θ1)− βS(u, θ2)〉

≥ αβ‖S(u, θ1)− S(u, θ2)‖22 − ‖αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2)‖2‖2y − S(u, αθ1

+βθ2)− αS(u, θ1)− βS(u, θ2)‖2.

(4)

The last inequality is by Cauchy-Schwartz inequality. Note that

‖αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2)‖2‖2y − S(u, αθ1 + βθ2)− αS(u, θ1)− βS(u, θ2)‖2
≤ 2(B +R)‖αS(u, θ1) + βS(u, θ2)− S(u, αθ1 + βθ2)‖2
≤ αβ‖S(u, θ1)− S(u, θ2)‖2 (By Assumption 3.3).

(5)

Plugging (5) in (4) yields the result.

Using Theorem 3.2 in Kulis and Bartlett [2010], for αt ≤ Gt(θt+1)
Gt(θt)

, we have

RT ≤
∑T

t=1
1
ηt

(1− αt)ηtl(yt, ut, θt) + 1
2ηt

(‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22). (6)
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Notice that

Gt(θt)−Gt(θt+1) = ηt(l(yt, ut, θt)− l(yt, ut, θt+1))− 1
2‖θt − θt+1‖22

≤ 4(B+R)κηt
λ ‖θt − θt+1‖2 − 1

2‖θt − θt+1‖22
≤ 8(B+R)2κ2η2t

λ2
.

(7)

The first inequality follows by applying Lemma 3.1.
Let αt = Gt(θt+1)

Gt(θt)
. Using (7), we have

(1− αt)ηtl(yt, ut, θt) = (1− αt)Gt(θt) = Gt(θt)−Gt(θt+1) ≤ 8(B+R)2κ2η2t
λ2

. (8)

Plug (8) in (6), and note the telescoping sum,

RT ≤
T∑
t=1

8(B +R)2κ2ηt
λ2

+
T∑
t=1

1

2ηt
(‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22).

Setting ηt = Dλ
2(B+R)κ

√
2t

, we can upper bound the second summation by 4
√

2(B+R)Dκ
λ

√
T since ‖θ1 − θ∗‖2 ≤

2D,
√
t ≤
√
T , and then the sum telescopes. The first sum simplifies using

∑T
t=1

1√
t
≤ 2
√
T − 1 to obtain

the result

RT ≤
8
√

2(B +R)Dκ

λ

√
T .

Note that choosing ηt = 1√
t

also yields O(
√
T ) regret, but the result above is tighter.

B.3 Proof of Theorem 3.3

Proof. Since f(x, u, θ) is strongly convex in x on Rn by Assumption 3.1, it is also strictly convex in x on
Rn. Then, all the conditions required in Theorem 3. of Aswani et al. [2018] are naturally satisfied under
our assumptions. Applying that theorem yields

1

T

∑
t∈[T ]

l(yt, ut, θ
T )

p−→ E [l(y, u, θ∗)] , (9)

where θT = arg min
θ∈Θ
{
∑
t∈[T ]

l(yt, ut, θ)} is the estimation of the parameter in batch setting.

From Theorem 3.2 we have

1

T

∑
t∈[T ]

l(yt, ut, θt)−
1

T

∑
t∈[T ]

l(yt, ut, θ
T ) ≤ 8

√
2(B +R)Dκ

λ
√
T

p−→ 0. (10)

Adding (9) and (10) up, we have the risk consistency result

1

T

∑
t∈[T ]

l(yt, ut, θt)
p−→ E [l(y, u, θ∗)] .

B.4 Proof of Corollary 3.3.1

Proof. Note that ∀θ ∈ Θ,

E [l(y, u, θ)] = E
[

min
x̃∈S(u,θ)

‖x + ε− x̃‖22
]

= E
[

min
x̃∈S(u,θ)

‖x− x̃‖22
]

+ E[εT ε] ≥ E[εT ε].

We further notice that E
[
minx̃∈S(u,θ0)‖x− x̃‖22

]
= 0, since x ∈ S(u, θ0). Therefore, we have

E [l(y, u, θ∗)] = E [l(y, u, θ0)] = E[εT ε].

Then, applying Theorem 3.3 yields the result, since we have shown E [l(y, u, θ∗)] = E[εT ε].
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C Omitted Examples

C.1 Examples for which Assumption 3.3 holds

Consider for example the following quadratic program

min
x∈Rn

1
2x

TQx + (c + u)Tx

s.t. Ax ≥ b.

where Q is a positive semidefinite matrix, and u is the external signal.
Suppose that the parameter we seek to learn is c, all the others are given. If for each u ∈ U , the optimal

solution for the above program is in the interior of the feasible region, which essentially occurs when the
external signal u does not has a large range for the constrained QP. Then,

S(u, c1) = −Q−1(c1 + u); S(u, c2) = −Q−1(c2 + u); S(u, αc1 + βc2) = −Q−1(αc1 + βc2 + u);

Then, we have

0 = ‖αS(u, c1) + βS(u, c2)− S(u, αc1 + βc2)‖2 ≤ αβ‖S(u, θ1)− S(u, θ2)‖2/(2(B +R)).

D Data for the applications

D.1 Data for learning the consumer behavior

Table 1: True r

1.180 1.733 1.564 0.040 2.443 1.055 4.760 5.000 1.258 4.933

Table 2: True Q

2.360 0 0 0 0 0 0 0 0 0

0 3.465 0 0 0 0 0 0 0 0
0 0 3.127 0 0 0 0 0 0 0
0 0 0 0.0791 0 0 0 0 0 0
0 0 0 0 4.886 0 0 0 0 0
0 0 0 0 0 2.110 0 0 0 0
0 0 0 0 0 0 9.519 0 0 0
0 0 0 0 0 0 0 9.999 0 0

0 0 0 0 0 0 0 0 2.517 0
0 0 0 0 0 0 0 0 0 9.867

D.2 Data for learning the transportation cost

We let λ1 = 2, λ2 = 10, ue = 1.3 for all e ∈ E, y1 = 3 and y2 = 1.5.

Table 3: True transportation cost for each edge
c13 c14 c23 c25 c34 c35

3.124 4.119 3.814 1.071 5.398 2.899
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