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In this supplementary material, we provide proofs of theorems in the main paper and implementation
details of our algorithms. We first show that the maximum causal Tsallis entropy (MCTE) problem is
concave with respect to the state-action visitation ρ(s, a). Then, the optimality condition of an MCTE
problem is derived from Karush–Kuhn–Tucker (KKT) conditions. We also show that the proposed
framework can be interpreted as robust Bayes estimation with the Brier score. Finally, to convert our
problem into the generative adversarial training framework, the interchangability of maximization
and minimization is proved.

1 Analysis

We consider the maximum causal Tsallis entropy problem defined as follows:

maximize
π

αW (π)

subject to Eπ [φ(s, a)] = EπE [φ(s, a)] ,

∀ s, a
∑
a′

π(a′|s) = 1, π(a|s) ≥ 0.

(1)

Note that the constraints for Π are explicitly added. For the remainder of this supplementary material,
we will explicitly write all constraints for Π and M.

1.1 Change of Variables

Before proving the concavity of (1), we first see two important theorem as follows:
Theorem 1 (Theorem 2 of Syed et al. [1]). If ρ satisfies Bellman flow constraints, then it is a state
action visitation for πρ(a|s) , ρ(s,a)∑

a ρ(s,a) , and πρ is the unique policy whose state action visitation is
ρ where Bellman flow constraints are defined as

∑
a ρ(s, a) = d(s) +

∑
s′,a′ T (s|s′, a′)ρ(s′, a′).

Proof. The proof can be found in [1] or in Puterman [2].

Theorem 2. Let W̄ (ρ) = 1
2

∑
s,a ρ(s, a)

(
1− ρ(s,a)∑

a′ ρ(s,a
′)

)
. Then, for any stationary policy π ∈ Π

and any state-action visitation measure ρ ∈M, W (π) = W̄ (ρπ) and W̄ (ρ) = W (πρ) hold.

Proof. The proof is simply done by checking two equalities. First,

W (π) =
1

2
Eπ [1− π(a|s)] =

1

2

∑
s,a

ρπ(s, a) (1− π(a|s))

=
1

2

∑
s,a

ρπ(s, a)

(
1− ρπ(s, a)∑

a′ ρπ(s, a′)

)
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and, second,

W̄ (ρ) =
1

2

∑
s,a

ρ(s, a)

(
1− ρ(s, a)∑

a′ ρ(s, a′)

)
=

1

2

∑
s,a

ρπρ(s, a) (1− πρ(a|s))

= W (πρ).

Base on Theorem 1 and Theorem 2, we convert the problem (1) into

maximize
ρ

αW̄ (ρ)

subject to
∑
s,a

ρ(s, a)φ(s, a) =
∑
s,a

ρE(s, a)φ(s, a),

∀ s, a, ρ(s, a) ≥ 0,
∑
a

ρ(s, a) = d(s) + γ
∑
s′,a′

T (s|s′, a′)ρ(s′, a′)

(2)

where W̄ (ρ) = W ( ρ∑
a ρ

), the second constraints are Bellman flow constraints for M, and ρE is the
state action visitation corresponding to πE .

1.2 Concavity of Maximum causal Tsallis Entropy

The following theorem shows that the objective function W̄ (ρ) of the problem (2) is a concave
function.

Theorem 3. W̄ (ρ) is strictly concave with respect to ρ ∈M.

Proof. Proof of concavity of W̄ (ρ) is equivalent to show that following inequality is satisfied for all
state s and action a pairs:

(λ1ρ1(s, a) + λ2ρ2(s, a))

(
1− λ1ρ1(s, a) + λ2ρ2(s, a)

λ1

∑
a′ ρ1(s, a′) + λ2

∑
a′ ρ2(s, a′)

)
≥ λ1ρ1(s, a)

(
1− ρ1(s, a)∑

a′ ρ1(s, a′)

)
+ λ2ρ2(s, a)

(
1− ρ2(s, a)∑

a′ ρ2(s, a′)

)
where λ1 ≥ 0, λ2 ≥ 0, and λ1 + λ2 = 1. For notational simplicity, ρi(s, a) and

∑
a′ ρi(s, a

′) are
replaced with ai and bi, respectively. Then, the right-hand side is

∑
i=1,2

λiai

(
1− ai

bi

)
=
∑
i=1,2

λiai

(
1− λiai

λibi

)

=

∑
j=1,2

λjbj

 ∑
i=1,2

 λibi(∑
j=1,2 λjbj

) λiai
λibi

(
1− λiai

λibi

) .
Let F (x) = x(1 − x), which is a concave function. Then the above equation can be expressed as
follows,

∑
i=1,2

λiai

(
1− ai

bi

)
=

∑
j=1,2

λjbj

 ∑
i=1,2

 λibi(∑
j=1,2 λjbj

)F (λiai
λibi

) .
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By using the property of concave function F (x)1, we obtain the following inequality:∑
j=1,2

λjbj

 ∑
i=1,2

 λibi(∑
j=1,2 λjbj

)F (λiai
λibi

)
≤

∑
j=1,2

λjbj

F

∑
i=1,2

 λibi(∑
j=1,2 λjbj

) λiai
λibi

 =

∑
j=1,2

λjbj

F

(∑
i=1,2 λiai∑
j=1,2 λjbj

)

=

∑
j=1,2

λjbj

 ∑
i=1,2 λiai∑
j=1,2 λjbj

(
1−

∑
i=1,2 λiai∑
j=1,2 λjbj

)
=
∑
i=1,2

λiai

(
1−

∑
i=1,2 λiai∑
j=1,2 λjbj

)
.

Finally, we have the following inequality for every state and action pair,

(λ1ρ1(s, a) + λ2ρ2(s, a))

(
1− λ1ρ1(s, a) + λ2ρ2(s, a)

λ1

∑
a′ ρ1(s, a′) + λ2

∑
a′ ρ2(s, a′)

)
≥ λ1ρ1(s, a)

(
1− ρ1(s, a)∑

a′ ρ1(s, a′)

)
+ λ2ρ2(s, a)

(
1− ρ2(s, a)∑

a′ ρ2(s, a′)

)
,

and, by summing up with respect to s, a, we get

W̄ (λ1ρ1 + λ2ρ2) ≥ λ1W̄ (ρ1) + λ2W̄ (ρ2).

Therefore, W̄ (ρ) is a concave function.

Theorem 3 tells us that the problem (2) is a concave problem and, hence, strong duality holds. The
dual problem can be found as follows:

max
θ,c,λ

min
ρ

LW (θ, c, λ, ρ)

subject to ∀ s, a, λ(s, a) ≥ 0
(3)

where LW (θ, c, λ, ρ) = −αW̄ (ρ) −
∑
s,a ρ(s, a)θᵀφ(s, a) +

∑
s,a ρE(s, a)θᵀφ(s, a) −∑

s,a λsaρ(s, a) +
∑
s cs

(∑
a ρ(s, a)− d(s)− γ

∑
s′,a′ T (s|s′, a′)ρ(s′, a′)

)
and θ, c, and λ are

Lagrangian multipliers. Since strong duality holds, the optimal solutions of primal and dual variables
necessarily and sufficiently satisfy the KKT conditions.

1.3 Optimality Condition from Karush–Kuhn–Tucker (KKT) conditions

The following theorem explains the optimality condition of the maximum causal Tsallis entropy
problem and also tells us that the optimal policy distribution has a sparse and multi-modal distribution.
Theorem 4. The optimal solution of (2) sufficiently and necessarily satisfies the following condition:

qsa , θᵀφ(s, a) + γ
∑
s′

cs′T (s′|s, a),

cs = α

1

2

∑
a∈S(s)

((qsa
α

)2

− τ
(qs
α

)2
)

+
1

2

 , and

πρ(a|s) = max
(qsa
α
− τ

(qs
α

)
, 0
)
,

where πρ(a|s) = ρ(s,a)∑
a ρ(s,a) , qsa is an auxiliary variable, and qs = [qsa1 · · · qsa|A| ]

ᵀ.

Proof. These conditions are derived from the stationary condition of KKT, where the derivative of
LW is equal to zero,

∂LW
∂ρ(s, a)

= 0.

1 ∑
i µiF (xi) ≤ F (

∑
i µixi), for some (xi, . . . , xn) and (µi, . . . , µn) such that µi ≥ 0 and

∑
i µi = 1.
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We first compute the derivative of W̄ as follows:

∂W̄

∂ρ(s, a)
=

1

2
− ρ(s, a)∑

a′ ρ(s, a′)
+

1

2

∑
a′

(
ρ(s, a′)∑
a′ ρ(s, a′)

)2

.

We also check the derivative of Bellman flow constraints as follows:

∂
∑
s cs

(∑
a′ ρ(s, a′)− d(s)− γ

∑
s′,a′ T (s|s′, a′)ρ(s′, a′)

)
∂ρ(s′′, a′′)

= cs′′ − γ
∑
s

csT (s|s′′, a′′).

Hence, the stationary condition can be obtained as

∂LW
∂ρ(s, a)

=α

[
−1

2
+

ρ(s, a)∑
a′ ρ(s, a′)

− 1

2

∑
a′

(
ρ(s, a′)∑
a′ ρ(s, a′)

)2
]
− θᵀφ(s, a)

+ cs − γ
∑
s′

cs′T (s′|s, a)− λsa = 0.

(4)

First, let us consider a positive a ∈ S(s) = {a|ρ(s, a) > 0}. From the complementary slackness, the
corresponding λsa is zero. By replacing ρ(s,a)∑′

a ρ(s,a
′)

with πρ(a|s) and using the definition of qsa, the
following equation is obtained from the stationary condition (4).

π(a|s)− qsa
α

=
1

2
+

1

2

∑
a′

(π(a′|s))2 − cs
α
. (5)

It can be observed that the right hand side of the equation only depends on the state s and is constant
for the action a. In this regards, by summing up with respect to the action with positive ρ(s, a) > 0,
cs is obtained as follows:

1−
∑

a∈S(s)

qsa
α

= K

(
1

2
+

1

2

∑
a′

(π(a′|s))2 − cs
α

)
cs
α

=
1

2
+

1

2

∑
a′

(π(a′|s))2
+

∑
a∈S(s)

qsa
α − 1

K
,

where K is the number of actions with positive ρ(s, a) > 0. By plug in cs
α into (5), we obtain a policy

as follows:

π(a|s) =
qsa
α
−

(∑
a∈S(s)

qsa
α − 1

K

)

Now, we define τ( qsα ) ,
∑
a∈S(s)

qsa
α −1

K , and, interestingly, τ is the same as the threshold of a
sparsemax distribution [3]. Then, we can obtain the optimality condition for the policy distribution
π(a|s) as follows:

∀s, a π(a|s) = max
(qsa
α
− τ(s), 0

)
.

where τ(s) indicates τ( qsα ).
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The Lagrangian multiplier cs can be found from π as follows:

cs
α

=
1

2
+

1

2

∑
a′

(π(a′|s))2
+ τ(s)

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α
− τ(s)

)2

+ τ(s)

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α

)2

−
∑

a′∈S(s)

qsa′

α
τ(s) +

K

2
τ(s)2 + τ(s)

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α

)2

−K
∑
a′∈S(s)

qsa′
α − 1

K
τ(s) +

K

2
τ(s)2

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α

)2

− K

2
τ(s)2

cs = α

1

2

∑
a∈S(s)

((qsa
α

)2

− τ
(qs
α

)2
)

+
1

2

 .
To summarize, we obtain the optimality condition of (2) as follows:

qsa , θᵀφ(s, a) + γ
∑
s′

cs′T (s′|s, a),

cs = α

1

2

∑
a∈S(s)

((qsa
α

)2

− τ
(qs·
α

)2
)

+
1

2

 ,
π(a|s) = max

(qsa
α
− τ

(qs·
α

)
, 0
)
.

1.4 Interpretation as Robust Bayes

In this section, the connection between MCTE estimation and a minimax game between a decision
maker and the nature is explained. We prove that the proposed MCTE problem is equivalent to a
minimax game with the Brier score.

Theorem 5. The maximum causal Tsallis entropy distribution minimizes the worst case prediction
Brier score, i.e.,

min
π∈Π

max
π̃∈Π

Eπ̃

[∑
a′

1

2

(
1{a′=a} − π(a′|s)

)2]
subject to Eπ [φ(s, a)] = EπE [φ(s, a)] (6)

where B(s, a) =
∑
a′

1
2

(
1{a′=a} − π(a′|s)

)2
is the Brier score.

Proof. The objective function can be reformulated as

Eπ̃

[∑
a′

1

2

(
1{a′=a} − π(a′|s)

)2]
= Eπ̃ [B(s, a)] =

∑
s,a

ρπ̃(s, a)B(s, a)

=
1

2

∑
s,a

ρπ̃(s, a)

(
1− 2π(a|s) +

∑
a′

π(a′|s)2

)
,

Hence, the objective function is quadratic with respect to π(a|s) and is linear with respect to
ρπ̃(s, a). By using the one-to-one correspondence between π̃ and ρπ̃ , we change the variable of inner
maximization into the state action visitation. After changing the optimization variable, by using the
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minimax theorem [4], the minimization and maximization of the problem (6) are interchangeable as
follows:

min
π∈Π

max
ρπ̃∈M

Eπ̃

[∑
a′

1

2

(
1{a′=a} − π(a|s)

)2]

= max
ρπ̃∈M

min
π∈Π

Eπ̃

[∑
a′

1

2

(
1{a′=a} − π(a|s)

)2]
where sum-to-one, positivity, and Bellman flow constraints are omitted here. After converting the
problem, an optimal solution of the inner minimization with respect to π is easily computed as π = π̃
using ∇π(a′′|s′′)Eπ̃ [B(s, a)] = 0. After applying π = π̃ and recovering the variables from ρπ̃ to π̃,
the problem (6) is converted into

max
π̃∈Π

1

2

∑
s

ρπ̃(s)

(
1−

∑
a

π̃(a|s)2

)
= max

π̃∈Π
W (π̃),

where ρπ̃(s) =
∑
a ρπ̃(s, a). Hence, the problem (6) is equivalent to the maximum causal Tsallis

entropy problem.

In summary, the policy found in the maximum causal Tsallis entropy problem can be interpreted as
the optimal decision maker considering the worst nature in sense of the Brier score.

1.5 Generative Adversarial Setting with Maximum Causal Tsallis Entropy

In this section, we convert the maximum causal Tsallis entropy problem (3) into the generative
adversarial setting by adding a reward regularization defined as follows:

max
θ

min
π

− αW (π)− Eπ [θᵀφ(s, a)] + EπE [θᵀφ(s, a)]− ψ(θ)

subject to ∀ s, a
∑
a′

π(a′|s) = 1, π(a|s) ≥ 0
(7)

The proof consists of two parts. We first show that the maximization and minimization of the problem
(7) are interchangable, which means that the solution of the maxi-min problem is equivalent to that of
the mini-max problem.
Theorem 6. The maximum causal Tsallis entropy problem (7) is equivalent to the following problem:

min
π

ψ∗ (Eπ [φ(s, a)]− EπE [φ(s, a)])− αW (π)

subject to ∀ s, a
∑
a′

π(a′|s) = 1, π(a|s) ≥ 0

where ψ∗(x) = supy{yᵀx− ψ(y)}.

Proof. We first change the variable from π to ρ as follows:

max
θ

min
ρ

− αW̄ (ρ)− θᵀ
∑
s,a

ρ(s, a)φ(s, a)− θᵀ
∑
s,a

ρE(s, a)φ(s, a)− ψ(θ)

subject to ∀s, a,
∑
s,a

ρ(s, a)φ(s, a) =
∑
s,a

ρE(s, a)φ(s, a),

ρ(s, a) ≥ 0,
∑
a

ρ(s, a) = d(s) + γ
∑
s′,a′

T (s|s′, a′)ρ(s′, a′),

(8)

where ρE is ρπE . Let

L̄(ρ, θ) , −αW̄ (ρ)− ψ(θ)− θᵀ
∑
s,a

ρ(s, a)φ(s, a) + θᵀ
∑
s,a

ρE(s, a)φ(s, a). (9)

From Theorem 3, W̄ (ρ) is a concave function with respect to ρ for a fixed θ. Hence, L̄(ρ, θ) is also
a concave function with respect to ρ for a fixed θ. From the convexity of ψ, L̄(ρ, θ) is a convex
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function with respect to θ for a fixed ρ. Furthermore, the domain of ρ is compact and convex and the
domain of θ is convex. Based on this property of L̄(ρ, θ), we can use minimax duality [4]:

max
θ

min
ρ

L̄(ρ, θ) = min
ρ

max
θ

L̄(ρ, θ).

Hence, the maximization and minimization are interchangable. By using this fact, we have:

max
θ

min
ρ

L̄(ρ, θ) = min
ρ

max
θ

L̄(ρ, θ)

= min
ρ
− αW̄ (ρ) + max

θ

(
−ψ(θ) + θᵀ

∑
s,a

(ρ(s, a)− ρE(s, a))φ(s, a)

)

= min
ρ
− αW̄ (ρ) + ψ∗

(∑
s,a

(ρ(s, a)− ρE(s, a))φ(s, a)

)
= min

π
ψ∗ (Eπ [φ(s, a)]− EπE [φ(s, a)])− αW (π)

1.6 Tsallis Entropy of a Mixture of Gaussians

The Tsallis entropy of a mixture of Gaussian distribution has an analytic form as follows:

Theorem 7. Let π(a|s) =
∑K
i wi(s)N (a;µi(s),Σi(s)). Then,

W (π) =
1

2

∑
s

ρπ(s)

1−
K∑
i

K∑
j

wi(s)wj(s)N (µi(s);µj(s),Σi(s) + Σj(s))

 , (10)

where N (x;µ,Σ) indicates a multivariate Gaussian density at point x with mean µ and covariance
matrix Σ

Proof. The causal Tsallis entropy of a mixture of Gaussian distribution can be obtained as follows:

W (π) =
1

2

∑
s

ρπ(s)

(
1−

∫
A
π(a|s)2da

)

=
1

2

∑
s

ρπ(s)

1−
∫
A

(
K∑
i

wi(s)N (a;µi(s),Σi(s))

)2

da


=

1

2

∑
s

ρπ(s)

1−
K∑
i

K∑
j

wi(s)wj(s)

∫
A
N (a;µi(s),Σi(s))N (a;µj(s),Σj(s))da


=

1

2

∑
s

ρπ(s)

1−
K∑
i

K∑
j

wi(s)wj(s)N (µi(s);µj(s),Σi(s) + Σj(s))



(11)

2 Causal Entropy Approximation

In our implementation of maximum causal Tsallis entropy imitation learning (MCTEIL), we approxi-
mate W (π) using sampled trajectories as follows:

W (π) = Eπ

[
1

2
(1− π(a|s))

]
≈ 1

N

N∑
i=0

Ti∑
t=0

γt

2

(
1−

∫
A
π(a|si,t)2da

)
, (12)

where {(si,t, ai,t)Tit=0}Ni=0 are N trajectories and Ti is the length of the ith trajectory. Since the
integral part of (12) is analytically computed by Theorem 7, there is no additional computational cost.
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We have also tested the following approximation:

W (π) = Eπ

[
1

2
(1− π(a|s))

]
≈ 1

N

N∑
i=0

Ti∑
t=0

γt

2
(1− π(ai,t|si,t)) .

However, this approximation has performed poorly compared to (12).

For soft GAIL, H(π) is approximated as the sum of discounted likelihoods

H(π) = Eπ [− log (π(a|s))] ≈ 1

N

N∑
i=0

Ti∑
t=0

−γt log (π(ai,t|si,t)) .

Note that the same approximation (12) of W (π) is not available for H(π) since
−
∫
A π(a|s) log (π(a|s))da is intractable when we model π(a|s) as a mixture of Gaussians.

3 Additional Experimental Results

In the multi-goal environment, the experimental results with other hyperparameters are shown in
Figure 1.
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(a) Average Return (b) Reachability

(c) Average Return (d) Reachability

(e) Average Return (f) Reachability

Figure 1: (a) and (b) show the average return and reachability of MCTEIL, respectively. (c) and (d)
show the average return and reachability of soft GAIL, respectively. (e) and (f) show the average
return and reachability of info GAIL, respectively. k indicates the number of mixtures, α indicates an
entropy regularization coefficient, and c indicates a dimension of the latent code of Info GAIL.
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