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Abstract

We derive an online learning algorithm with improved regret guarantees for “easy”
loss sequences. We consider two types of “easiness”: (a) stochastic loss sequences
and (b) adversarial loss sequences with small effective range of the losses. While
a number of algorithms have been proposed for exploiting small effective range
in the full information setting, Gerchinovitz and Lattimore [2016] have shown
the impossibility of regret scaling with the effective range of the losses in the
bandit setting. We show that just one additional observation per round is sufficient
to circumvent the impossibility result. The proposed Second Order Difference
Adjustments (SODA) algorithm requires no prior knowledge of the effective range
of the losses, ε, and achieves an O(ε

√
KT lnK) + Õ(εK 4

√
T ) expected regret

guarantee, where T is the time horizon and K is the number of actions. The scaling
with the effective loss range is achieved under significantly weaker assumptions
than those made by Cesa-Bianchi and Shamir [2018] in an earlier attempt to
circumvent the impossibility result. We also provide a regret lower bound of
Ω(ε
√
TK), which almost matches the upper bound. In addition, we show that in

the stochastic setting SODA achieves an O
(∑

a:∆a>0
Kε2

∆a

)
pseudo-regret bound

that holds simultaneously with the adversarial regret guarantee. In other words,
SODA is safe against an unrestricted oblivious adversary and provides improved
regret guarantees for at least two different types of “easiness” simultaneously.

1 Introduction

Online learning algorithms with both worst-case regret guarantees and refined guarantees for “easy”
loss sequences have come into research focus in recent years. In our work we consider prediction
with limited advice games [Seldin et al., 2014], which are an interpolation between full information
games [Vovk, 1990, Littlestone and Warmuth, 1994, Cesa-Bianchi and Lugosi, 2006] and games with
limited (a.k.a. bandit) feedback [Auer et al., 2002b, Bubeck and Cesa-Bianchi, 2012].1 In prediction
with limited advice the learner faces K unobserved sequences of losses {`at }t,a, where a indexes
the sequence number and t indexes the elements within the a-th sequence. At each round t of the
game the learner picks a sequence At ∈ {1, . . . ,K} and suffers the loss `Att , which is then observed.
After that, the learner is allowed to observe the losses of M additional sequences in the same round t,
where 0 ≤M ≤ K − 1. For M = K − 1 the setting is equivalent to a full information game and for
M = 0 it becomes a bandit game.

1There exists an orthogonal interpolation between full information and bandit games through the use of
feedback graphs Alon et al. [2017], which is different and incomparable with prediction with limited advice, see
Seldin et al. [2014] for a discussion.
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For a practical motivation behind prediction with limited advice imagine that the loss sequences
correspond to losses of K different algorithms for solving some problem, or K different parametriza-
tions of one algorithm, or K different experts. If we had the opportunity we would have executed all
the algorithms or queried all the experts before making a prediction. This would correspond to a full
information game. But in reality we may be constrained by time, computational power, or monetary
budget. In such case we are forced to select algorithms or experts to query. Being able to query just
one expert or algorithm per prediction round corresponds to a bandit game, but we may have time
or money to get a bit more, even though not all of it. This is the setting modeled by prediction with
limited advice.

Our goal is to derive an algorithm for prediction with limited advice that is robust in the worst case and
provides improved regret guarantees in “easy” cases. There are multiple ways to define “easiness” of
loss sequences. Among them, loss sequences generated by i.i.d. sources, like the classical stochastic
bandit model [Robbins, 1952, Lai and Robbins, 1985, Auer et al., 2002a], and adversarial sequences
with bounded effective range of the losses within each round [Cesa-Bianchi et al., 2007]. For the
former a simple calculation shows that in the full information setting the basic Hedge algorithm
[Vovk, 1990, Littlestone and Warmuth, 1994] achieves an improved “constant” (independent of time
horizon) pseudo-regret guarantee without sacrificing the worst-case guarantee. Much more work is
required to achieve adaptation to this form of easiness in the bandit setting if we want to keep the
adversarial regret guarantee simultaneously [Bubeck and Slivkins, 2012, Seldin and Slivkins, 2014,
Auer and Chiang, 2016, Seldin and Lugosi, 2017, Wei and Luo, 2018, Zimmert and Seldin, 2018].

An algorithm that adapts to the second form of easiness in the full information setting was first
proposed by Cesa-Bianchi et al. [2007] and a number of variations have followed [Gaillard et al.,
2014, Koolen and van Erven, 2015, Luo and Schapire, 2015, Wintenberger, 2017]. However, a recent
result by Gerchinovitz and Lattimore [2016] have shown that such adaptation is impossible in the
bandit setting. Cesa-Bianchi and Shamir [2018] proposed a way to circumvent the impossibility result
by either assuming that the ranges of the individual losses are provided to the algorithm in advance or
assuming that the losses are smooth and an “anchor” loss of one additional arm is provided to the
algorithm. The latter assumption has so far only lead to a substantial improvement when the “anchor”
loss is always the smallest loss in the corresponding round.

We consider adaptation to both types of easiness in prediction with limited advice. We show that
M = 1 (just one additional observation per round) is sufficient to circumvent the impossibility result
of Gerchinovitz and Lattimore [2016]. This assumption is weaker than the assumptions in Cesa-
Bianchi and Shamir [2018]. We propose an algorithm, which achieves improved regret guarantees
both when the effective loss range is small and when the losses are stochastic (generated i.i.d.). The
algorithm is inspired by the BOA algorithm of Wintenberger [2017], but instead of working with
exponential weights of the cumulative losses and their second moment corrections it uses estimates
of the loss differences. The algorithm achieves an O(ε

√
KT lnK) + Õ(εK 4

√
T ) expected regret

guarantee with no prior knowledge of the effective loss range ε or time horizon T . We also provide
regret lower bound of Ω(ε

√
KT ), which matches the upper bound up to logarithmic terms and

smaller order factors. Furthermore, we show that in the stochastic setting the algorithm achieves an
O
(∑

a:∆a>0
Kε2

∆a

)
pseudo-regret guarantee. The improvement in the stochastic setting is achieved

without compromising the adversarial regret guarantee.

The paper is structured in the following way. In Section 2 we lay out the problem setting. In Section 3
we present the algorithm and in Section 4 the main results about the algorithm. Proofs of the main
results are presented in Section 5.

2 Problem Setting

We consider sequential games defined by K infinite sequences of losses {`a1 , `a2 , . . . }a∈{1,...,K},
where `at ∈ [0, 1] for all a and t. At each round t ∈ {1, 2, . . . } of the game the learner selects an
action (a.k.a. “arm”) At ∈ [K] := {1, . . . ,K} and then suffers and observes the corresponding loss
`Att . Additionally, the learner is allowed to choose a second arm, Bt, and observe `Btt . The loss of
the second arm, `Btt , is not suffered by the learner. (This is analogous to the full information setting,
where the losses of all arms a 6= At are observed, but not suffered). It is assumed that `Btt is observed
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after At has been selected, but other relative timing of events within a round is unimportant for our
analysis.

The performance of the learner up to round T is measured by expected regret defined as

RT := E

[
T∑
t=1

`Att

]
− min
a∈[K]

E

[
T∑
t=1

`at

]
, (1)

where the expectation is taken with respect to potential randomization of the loss generation process
and potential randomization of the algorithm. We note that in the adversarial setting the losses
are considered deterministic and the second expectation can be omitted, whereas in the stochastic
setting the definition coincides with the definition of pseudo-regret [Bubeck and Cesa-Bianchi, 2012,
Seldin and Lugosi, 2017]. In some literature RT is termed excess of cumulative predictive risk
[Wintenberger, 2017].

Below we define adversarial and stochastic loss generation models and effective range of loss
sequences.

Adversarial losses

In the adversarial setting the loss sequences are selected arbitrarily by an adversary. We restrict
ourselves to the oblivious model, where the losses are fixed before the start of the game and do not
depend on the actions of the learner.

Stochastic losses

In the stochastic setting the losses are drawn i.i.d., so that E[`at ] = µa independently of t. Since we
have a finite number of arms, there exists a best arm a? (not necessarily unique) such that µa? ≤ µa
for all a. We further define the suboptimality gaps by

∆a := µa − µa? ≥ 0.

In the stochastic setting the expected regret can be rewritten as

RT =
∑

a∈[K]:∆a>0

∆a E

[
T∑
t=1

1(At = a)

]
, (2)

where 1 is the indicator function.

Effective loss range

For both the adversarial and stochastic losses, we define the effective loss range as the smallest
number ε, such that for all t ∈ [T ] and a, a′ ∈ [K]:

|`at − `a
′

t | ≤ ε almost surely. (3)

Since we have assumed that `at ∈ [0, 1], we have ε ≤ 1, where ε = 1 corresponds to an unrestricted
setting.

3 Algorithm

We introduce the Second Order Difference Adjustments (SODA) algorithm, summarized in Algo-
rithm 1. SODA belongs to the general class of exponential weights algorithms. The algorithm
has two important distinctions from the common members of this class. First, it uses cumulative
loss difference estimators instead of cumulative loss estimators for the exponential weights updates.
Instantaneous loss difference estimators at round t are defined by

∆̃`
a

t = (K − 1)1(Bt = a)
(
`Btt − `

At
t

)
. (4)

SODA samples the “secondary” action Bt (the additional observation) uniformly from K − 1 arms,
all except At, and the (K − 1) term above corresponds to importance weighting with respect to the
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sampling of Bt. The loss difference estimators scale with the effective range of the losses and they
can be positive and negative. Both of these properties are distinct from the traditional loss estimators.
The second difference is that we are using a second order adjustment in the weighting inspired by
Wintenberger [2017]. We define the cumulative loss difference estimator and its second moment by

Dt(a) :=

t∑
s=1

∆̃`
a

s , St(a) :=

t∑
s=1

(
∆̃`

a

s

)2

. (5)

We then have the distribution pt for selecting the primary action At defined by

pat =
exp

(
−ηtDt−1(a)− η2

tSt−1(a)
)∑K

a=1 exp (−ηtDt−1(a)− η2
tSt−1(a))

, (6)

where ηt is a learning rate scheme, defined as

ηt = min

{√
lnK

maxa St−1(a) + (K − 1)2
,

1

2(K − 1)

}
. (7)

The learning rate satisfies ηt ≤ 1/(2ε(K − 1)) for all t, which is required for the subsequent analysis.

The algorithm is summarized below:

Initialize p1 ← (1/K, . . . , 1/K).
for t = 1, 2, . . . do

Draw At according to pt;
Draw Bt uniformly at random from the remaining actions [K] \ {At};
Observe `Att , `Btt and suffer `Att ;
Construct ∆̃`

a

t by equation (4);
Update Dt(a), St(a) by (5);
Define pt+1 by (6);

end
Algorithm 1: Second Order Difference Adjustments (SODA)

4 Main Results

We are now ready to present the regret bounds for SODA. We start with regret upper and lower
bounds in the adversarial regime and then show that the algorithm simultaneously achieves improved
regret guarantee in the stochastic regime.

4.1 Regret Upper Bound in the Adversarial Regime

First we provide an upper bound for the expected regret of SODA against oblivious adversaries that
produce loss sequences with effective loss range bounded by ε. Note that this result does not depend
on prior knowledge of the effective loss range ε or time horizon T .
Theorem 1. The expected regret of SODA against an oblivious adversary satisfies

RT ≤ 4ε
√

(K − 1) lnK

√√√√T + (K − 1)
√
T

(
2 +

√
ln
(√

T (K − 1)
)
/2

)
+ 4(K − 1) lnK.

A proof of this theorem is provided in Section 5.1.2 The upper bound scales as O(ε
√
KT lnK) +

Õ(εK 4
√
T ), which nearly matches the lower bound provided below.

2It is straightforward to extended the analysis to time-varying ranges, εt : |`at − `a
′

t | ≤ εt for all a, a′ a.s.,

which leads to an O

(√∑T
t=1(ε

2
t )K lnK

)
+ Õ

(
K 4

√∑T
t=1 ε

2
t

)
regret bound . For the sake of clarity we

restrict the presentation to a constant ε.
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4.2 Regret Lower Bound in the Adversarial Regime

We show that in the worst case the regret must scale linearly with the effective loss range ε.

Theorem 2. In prediction with limited advice with M = 1 (one additional observation per round or,
equivalently, two observations per round in total), for loss sequences with effective loss range ε, we
have for T ≥ 3K/32:

inf supRT ≥ 0.02ε
√
KT,

where the infimum is with respect to the choices of the algorithm and the supremum is over all
oblivious loss sequences with effective loss range bounded by ε.

The theorem is proven by adaptation of the Ω(
√
KT ) lower bound by Seldin et al. [2014] for

prediction with limited advice with unrestricted losses in [0, 1] and one extra observation. We provide
it in Appendix A. Note that the upper bound in Theorem 1 matches the lower bound up to logarithmic
terms and lower order additive factors. In particular, changing the selection strategy for the second
arm, Bt, from uniform to anything more sophisticated is not expected to yield significant benefits in
the adversarial regime.

4.3 Regret Upper Bound in the Stochastic Regime

Finally, we show that SODA enjoys constant expected regret in the stochastic regime. This is achieved
without sacrificing the adversarial regret guarantee.

Theorem 3. The expected regret of SODA applied to stochastic loss sequences with gaps ∆a satisfies

RT ≤
∑

a:∆a>0

[(
8K

lnK
+ 16

)
ε2

∆a
+ 4K +

∆a

K

]
. (8)

A brief sketch of a proof of this theorem is given in Section 5.2, with the complete proof provided in
Appendix C.

Note that ε is the effective range of realizations of the losses, whereas the gaps ∆a are based on
the expected losses. Naturally, ∆a ≤ ε. For example, if the losses are Bernoulli then the range is
ε = 1, but the gaps are based on the distances between the biases of the Bernoulli variables. When
the losses are not {0, 1}, but confined to a smaller range ε, Theorem 3 yields a tighter regret bound.
The scaling of the regret bound in K is suboptimal and it is currently unknown whether it could be
improved without compromising the worst-case guarantee. Perhaps changing the selection strategy
for Bt could help here. We leave this improvement for future work.

To summarize, SODA achieves adversarial regret guarantee that scales with the effective loss range
and almost matches the lower bound and simultaneously has improved regret guarantee in the
stochastic regime.

5 Proofs

This section contains the proof of Theorem 1 and a proof sketch for Theorem 3. The proof of
Theorem 2 is provided in Appendix A.

5.1 Proof of Theorem 1

The proof of the theorem is prefaced by two lemmas, but first we show some properties of the loss
difference estimators. We use EBt to denote expectation with respect to selection of Bt conditioned
on all random outcomes prior to this selection. For oblivious adversaries, the expected cumulative
loss difference estimators are equal to the negative expect regret against the corresponding arm a:

E

[
T∑
t=1

∆̃`
a

t

]
= E

[
T∑
t=1

E
Bt

[
∆̃`

a

t

]]
= E

[
T∑
t=1

(
`at − `

At
t

)]
=

T∑
t=1

`at − E

[
T∑
t=1

`Att

]
=: −RaT ,
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where we have used the fact that ∆̃`
a

t is an unbiased estimate of `at −`
At
t due to importance weighting

with respect to the choice of Bt. Similarly, we have

E

[
T∑
t=1

(
∆̃`

a

t

)2
]

= (K − 1) E

[
T∑
t=1

(
`at − `

At
t

)2
]
. (9)

Similar to the analysis of the anytime version of EXP3 in Bubeck and Cesa-Bianchi [2012], which
builds on Auer et al. [2002b], we consider upper and lower bounds on the expectation of the
incremental update. This is captured by the following lemma:
Lemma 1. With a learning rate scheme ηt for t = 1, 2, . . . , where ηt ≤ 1/2ε(K− 1), SODA fulfills:

−
T∑
t=1

∆̃`
a

t ≤
lnK

ηT
+ ηT

T∑
t=1

(
∆̃`

a

t

)2

−
T∑
t=1

E
a∼pt

[
∆̃`

a

t

]
+
∑
t

(Φt(ηt+1)− Φt(ηt)) (10)

for all a, where we define the potential

Φt(η) :=
1

η
ln

(
1

K

K∑
a=1

exp
(
−ηDt(a)− η2St(a)

))
. (11)

Note that unlike in the analysis of EXP3, here the learning rates ηt do not have to be non-increasing.
A proof of this lemma is based on modification of standard arguments and is found in Appendix B.1.

The second lemma is a technical one and is proven in Appendix B.2.
Lemma 2. Let σt with t ∈ N be an increasing positive sequence with bounded differences such that
σt − σt−1 ≤ c for a finite constant c. Let further σ0 = 0. Then

T∑
t=1

σt

(
1√

σt−1 + c
− 1√

σt + c

)
≤ 2
√
σT−1 + c.

Proof of Theorem 1 We apply Lemma 1, which leads to the following inequality for any learning
rate scheme ηt for t = 1, 2, . . . , where ηt ≤ 1/2ε(K − 1):

−
T∑
t=1

∆̃`
a

t ≤
lnK

ηT︸ ︷︷ ︸
1st

+ ηT

T∑
t=1

(
∆̃`

a

t

)2

︸ ︷︷ ︸
2nd

−
T∑
t=1

E
a∼pt

[
∆̃`

a

t

]
︸ ︷︷ ︸

3rd

+

T∑
t=1

(Φt(ηt+1)− Φt(ηt))︸ ︷︷ ︸
4th

. (12)

Note that in expectation, the left hand side of (12) is the regret against arm a. We are thus interested
in bounding the expectation of the terms on the right hand side, where we note that the third term
vanishes in expectation. We first consider the case where ηt =

√
lnK/(maxa St(a) + (K − 1)2),

postponing the initial value for now.

The first term becomes:
lnK

ηT
=
√

lnK
√

max
a

ST−1(a) + (K − 1)2. (13)

The second term becomes:

ηTST (a) =
√

lnK
ST (a)√

maxa ST−1(a) + (K − 1)2
≤
√

lnK
√

max
a

ST−1(a) + (K − 1)2, (14)

where we use that St(a) ≤ St−1(a) + (K − 1)2 for all t by design.

Finally, for the fourth term in equation (12), we need to consider the potential differences. Unlike in
the anytime analysis of EXP3, where this term is negative [Bubeck and Cesa-Bianchi, 2012], in our
case it turns to be related to the second moment of the loss difference estimators. We let

qηt =
exp

(
−ηDt(a)− η2St(a)

)∑K
a=1 exp (−ηDt(a)− η2St(a))

(15)
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denote the exponential update using the loss estimators up to t, but with a free learning rate η. We
further suppress some indices for readability, such that Da = Dt(a) and Sa = St(a) in the following.
We have

Φ′t(η) = − 1

η2
ln

(
1

K

∑
a

exp
(
−ηDa − η2Sa

))
+

1

η

∑
a exp

(
−ηDa − η2Sa

)
· (−Da − 2ηSa)∑

a exp (−ηDa − η2Sa)

=

∑
a

(
exp

(
−ηDa − η2Sa

)
·

(
−ηDa − 2η2Sa − ln

(
1

K

∑
a

exp
(
−ηDa − η2Sa

))))
η2
∑
a exp (−ηDa − η2Sa)

.

By using −ηDa − 2η2Sa = ln
(
exp(−ηDa − η2Sa) exp(−η2Sa)

)
the above becomes

Φ′t(η) =
1

η2
E

a∼qηt

[
ln

(
qηt (a)

1/K
exp(−η2Sa)

)]
=

1

η2
KL (qηt ‖1/K)− E

a∼qηt
[St(a)] , (16)

where we have used that 1/K is the pmf. of the uniform distribution over K arms. Since the
KL-divergence is always positive, we can rewrite the potential differences as

Φt(ηt+1)− Φt(ηt) = −
∫ ηt

ηt+1

Φ′t(η)dη ≤
∫ ηt

ηt+1

E
a∼qηt

[St(a)] dη ≤
∫ ηt

ηt+1

max
a

St(a)dη

=
√

lnK max
a

St(a)

 1√
max
a

St−1(a) + (K − 1)2
− 1√

max
a

St(a) + (K − 1)2

 .

By Lemma 2 we then have

T∑
t=1

Φt(ηt+1)− Φt(ηt) ≤ 2
√

lnK
√

max
a

ST−1(a) + (K − 1)2. (17)

Collecting the terms (13), (14) and (17) and noting that these bounds hold for all a, by taking
expectations and using Jensen’s inequality we get

RT ≤ E
[
4
√

lnK
√

max
a

ST−1(a) + (K − 1)2

]
≤ 4
√

lnK

√
E
[
max
a

ST−1(a)
]

+ (K − 1)2. (18)

The remainder of the proof is to bound this inner expectation:

E
[
max
a

ST−1(a)
]
≤ (K − 1)2ε2 E

[
max
a

T−1∑
t=1

1[Bt = a]

]
.

Let Zat =
∑t
s=1 1[Bs = a] and note that ZaT−1 ≤ T − 1. We now consider a partioning of the

probability for a cutoff α > 0:

E[max
a

ZaT−1] ≤ αP
{

max
a

ZaT−1 ≤ α
}

+ (T − 1)P
{

max
a

ZaT−1 > α
}

≤ α+ (T − 1)K P
{
ZaT−1 > α

}
,

using a union bound for the final inequality. To continue we need to address the fact that the Bt’s are
not independent. We can however note that P{Bt = a} ≤ (K − 1)−1 for all t and a. By letting xat
be Bernoulli with parameter (K − 1)−1 and Xa

T =
∑T
t=1 x

a
t we then get

P
{
ZaT−1 > α

}
≤ P

{
Xa
T−1 > α

}
. (19)

In the upper bound we can thus substitute Xa
T−1 for ZaT−1 and exploit the fact that the xat ’s are

independent by construction. Note further that E[Xa
T−1] = T−1

K−1 , so by choosing α = T−1
K−1 + δ for
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δ > 0, we obtain by Hoeffding’s inequality:

E[max
a

ZaT−1] ≤ T − 1

K − 1
+ δ + (T − 1)K P

{
Xa
T−1 −

T − 1

K − 1
> δ

}
≤ T − 1

K − 1
+ δ + (T − 1)K exp

(
− 2δ2

T − 1

)
.

We now choose δ =

√
T
2 ln

(√
T (K − 1)

)
, which gives us

E[max
a

ZaT−1] ≤ T − 1

K − 1
+

√
T

2
ln
(√

T (K − 1)
)

+ 2
√
T .

Inserting this in (18) gives us the desired bound.

For the case where the learning rate at T is instead given by 1/2(K − 1) implying 4(K − 1)2 lnK ≥
maxa ST−1(a) + (K − 1)2, the first term is lnK

ηT
= 2(K − 1) lnK, and the second term is

ηTST (a) =
1

2(K − 1)
ST (a) ≤ ST−1(a) + (K − 1)2

2(K − 1)
≤ 4(K − 1)2 lnK

2(K − 1)
≤ 2(K − 1) lnK.

Since the learning rate is constant the potential differences vanish, completing the proof. �

5.2 Proof sketch of Theorem 3

Here we present the key ideas used to prove Theorem 3. The complete proof is provided in Ap-
pendix C.

Recall that the expected regret in the stochastic setting is given by (2), where E[1(At = a)] = E[pat ].
Thus, we need to bound E[

∑
t p
a
t ]. The first step is to bound this as

E [pat ] ≤ σ + P {pat > σ} ≤ σ + P
{
Ke−ηt

∑t−1
i=1 Xi > σ

}
(20)

for a positive threshold σ, where we show that pat ≤ Ke−ηt
∑t−1
i=1 Xi for Xi := ∆̃`

a

i − ∆̃`
a?

i . This

approach is motivated by the fact that EBi [∆̃`
a

i − ∆̃`
a?

i ] ∝ ∆a, where the expectation is with respect
to selection of Bi and the loss generation, conditioned on all prior randomness.

The next step is to tune σ ∝ exp(
∑

Ei[Xi]), which allows us to bound the second term using
Azuma’s inequality and balance the two terms. Finally, this bound is summed over t using a technical
lemma for the limit of this sum.

6 Discussion

We have presented the SODA algorithm for prediction with limited advice with two observations
per round (the “primary” observation of the loss of the action that was played and one additional
observation). We have shown that the algorithm adapts to two types of simplicity of loss sequences
simultaneously: (a) it provides improved regret guarantees for adversarial sequences with bounded
effective range of the losses and (b) for stochastic loss sequences. In both cases the regret scales
linearly with the effective range and the knowledge of the range is not required. In the adversarial
case we achieveO(ε

√
KT lnK)+ Õ(εK 4

√
T ) regret guarantee and in the stochastic case we achieve

O
(∑

a:∆a>0
Kε2

∆a

)
regret guarantee. Our result demonstrates that just one extra observation per

round is sufficient to circumvent the impossibility result of Gerchinovitz and Lattimore [2016] and
significantly relaxes the assumptions made by Cesa-Bianchi and Shamir [2018] to achieve the same
goal.

There are a number of open questions and interesting directions for future research. One is to improve
the regret guarantee in the stochastic regime. Another is to extend the results to bandits with limited
advice in the spirit of Seldin et al. [2013], Kale [2014].
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A Proof of Theorem 2

The lower bound is a straightforward adaptation of Theorem 2 in Seldin et al. [2014], which states
that for prediction with limited advice where M ′ = M + 1 of K experts are queried, we have for
T ≥ 3

16
K
M ′ :

inf supRT ≥ 0.03

√
K

M ′T
,

where the infimum is over learning strategies and the supremum over oblivious adversaries.

Our case of M = 1 additional expert corresponds to M ′ = 2. The proof of the above is based
upon the standard technique for lower bounding, where Bernoulli losses with varying biases are
constructed. As this is a stochastic setting, the regret of playing a suboptimal arm a is analysed as

(νa − νa?)E[NT (a)],

where the ν’s are the biases of the Bernoulli variables and NT (a) is the number of times an arm is
played. The rest of analysis consists of lower bounding the expected number of plays and tuning the
biases.

By changing the constructed losses to Bernoulli variables times ε (i.e. taking values in {0, ε}), the
expected values become ενa, which means we get a factor of ε in the above expression. Since the
bound on E[NT (a)] does not depend on the values taken by the distributions, but only the ability to
discern them, the proof follows directly from that in Seldin et al. [2014]. �

B Supplement for the proof of Theorem 1 (Section 5.1)

B.1 Proof of Lemma 1

We first derive two inequalities, which are combined and rearranged into the statement of the lemma.

Consider the quantity

T∑
t=1

1

ηt
ln E
a∼pt

[
exp

(
−ηt∆̃`

a

t − η2
t

(
∆̃`

a

t

)2
)]
≤

T∑
t=1

1

ηt
ln E
a∼pt

[
1− ηt∆̃`

a

t

]
=

T∑
t=1

1

ηt
ln

(
1− ηt E

a∼pt

[
∆̃`

a

t

])

≤ −
T∑
t=1

E
a∼pt

[
∆̃`

a

t

]
,

where the first step is based on the inequality ez−z
2 ≤ 1 + z for z = −ηt∆̃`

a

t ≥ −1/2 [Cesa-Bianchi
et al., 2007]. The upper bound on ηt ≤ (2ε(K − 1))−1 guarantees that the condition of the inequality
holds. The last step is based on ln(1 + z) ≤ z for z > −1.

Using the potential (11) we can rewrite the same quantity as

1

ηt
ln E
a∼pt

[
exp

(
−ηt∆̃`

a

t − η2
t

(
∆̃`

a

t

)2
)]

=
1

ηt
ln

K∑
a=1

exp

(
−ηt∆̃`

a

t − η2
t

(
∆̃`

a

t

)2
)
· pat

=
1

ηt
ln

∑K
a=1 exp

(
−ηtDt(a)− η2

tSt(a)
)∑K

a=1 exp (−ηtDt−1(a)− η2
tSt−1(a))

= Φt(ηt)− Φt−1(ηt).

Summing over t and reindexing the sum we get

T∑
t=1

(Φt(ηt)− Φt−1(ηt)) =

T−1∑
t=1

(Φt(ηt)− Φt(ηt+1)) + ΦT (ηT )− Φ0(η1).

11



Since by definition D0 = 0 and S0 = 0, we have Φ0(η1) = 0. Next, we lower bound the middle
term:

ΦT (ηT ) =
1

ηT
ln

(
1

K

K∑
a=1

exp
(
−ηTDT (a)− η2

TST (a)
))

≥ − lnK

ηT
+

1

ηT
ln
(
exp

(
−ηTDT (a)− η2

TST (a)
))

= − lnK

ηT
−DT (a)− ηTST (a),

where we have used that the logarithm is monotonously increasing and all the terms in the inner sum
are positive.

By using the lower and upper bounds simultaneously and moving everything except for −DT (a)
from the left hand side, the proof is complete. �

B.2 Proof of Lemma 2

By the boundedness we have:
T∑
t=1

σt

(
1√

σt−1 + c
− 1√

σt + c

)
≤

T∑
t=1

(σt−1 + c)

(
1√

σt−1 + c
− 1√

σt + c

)

=

T−1∑
t=0

σt + c√
σt + c

−
T∑
t=1

σt−1 + c√
σt + c

=

T−1∑
t=1

σt − σt−1√
σt + c

+
σ0 + c√
σ0 + c

− σT−1 + c√
σT + c

.

Here the second term is
√
c and the third is negative and can thus be discarded in the upper bound.

The first term is a lower Riemann sum of x 7→ 1/
√
x+ c, giving us:

T∑
t=1

σt

(
1√

σt−1 + c
− 1√

σt + c

)
≤
√
c+

∫ σT−1

σ1

1√
x+ c

dx

=
√
c+ 2

√
x+ c

∣∣∣∣σT−1

σ1

≤ 2
√
σT−1 + c,

where the final inequality uses 2
√
σ1 + c >

√
c. �

C Proof of Theorem 3

Before proving the theorem we need the following technical lemma:
Lemma 3. For c > 0 we have

∞∑
t=1

e−c
√
t ≤ 2

c2
, and

∞∑
t=1

e−ct ≤ 1

c
.

Proof. For the first part, note that∫
e−c
√
tdt = −2

c

√
te−c

√
t − 2

c2
e−c
√
t,

which is confirmed by differentiation. Then
∞∑
t=1

e−c
√
t ≤

∫ ∞
0

e−c
√
tdt = −2

c

√
te−c

√
t − 2

c2
e−c
√
t

∣∣∣∣∞
0

=
2

c2
,
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where we use that the summand is decreasing, making the series a lower Riemann sum of the intergral.
For the second part we use the exact limit and that ex − 1 ≥ x with the same sign for all x:

∞∑
t=1

e−ct =
1

ec − 1
≤ 1

c
.

Proof of Theorem 3 Recall that the expected regret in the stochastic setting is given by

RT =
∑

a:∆a>0

∆a E

[
T∑
t=1

1(At = a)

]
,

where we identify E[1(At = a)] = E[pat ]. Since pa1 = 1/K by definition, we need to bound

E

[
T∑
t=2

pat

]
= E

[
T∑
t=2

E[pat ]

]
.

Consider first the case where the learning rate is ηt =
√

lnK
maxa St−1(a)+(K−1)2 . We bound the

individual probabilities as :

pat =
exp

(
−ηtDt−1(a)− η2

tSt−1(a)
)∑K

a=1 exp (−ηtDt−1(a)− η2
tSt−1(a))

=
exp

(
−ηt(Dt−1(a)−Dt−1(a?))− η2

t (St−1(a)− St−1(a?))
)∑K

a=1 exp (−ηt(Dt−1(a)−Dt−1(a?))− η2
t (St−1(a)− St−1(a?)))

≤ exp
(
−ηt(Dt−1(a)−Dt−1(a?))− η2

t (St−1(a)− St−1(a?))
)

≤ exp (−ηt(Dt−1(a)−Dt−1(a?)) exp
(
η2
tSt−1(a?)

)
≤ K exp

(
−ηt

t−1∑
i=1

Xi

)
, (21)

where we have defined
∑
Xi = Da

t−1 −Da?

t−1 and used η2
tSt−1(a?) ≤ lnK.

Next we split up the expectation in two parts around a threshold σ > 0, using pat ≤ 1 and (21):

E[pat ] ≤ σ P {pat ≤ σ}+ 1 · P {pat > σ} ≤ σ + P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ

}
, (22)

Since ηt is a random variable correlated with the Xi’s, we cannot directly bound this expression.
We can however split the event under the probability into two separate cases, and upper bound the
expression using upper and lower bounds on ηt in the cases where

∑
Xi is negative or positive:

P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ

}
= P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ &

t−1∑
i=1

Xi ≤ 0

}

+ P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ &

t−1∑
i=1

Xi > 0

}

≤ P

{
K exp

(
−η̄t

t−1∑
i=1

Xi

)
> σ

}

+ P

{
K exp

(
−
∑t−1
i=1 Xi

2(K − 1)

)
> σ

}
,

where we have introduced η̄t :=
√

lnK
(t−1)ε2+1

1
K−1 , which is a lower bound on ηt. Introducing

E =
∑
i EBi [Xi] = (t− 1)(K − 1)∆a and the shorthand V =

∑t−1
i=1 Xi − E, we can rewrite the

probabilities, resulting in

E[pat ] ≤ σ + P
{
V < − ln(σ/K)

η̄t
− E

}
+ P {V < −2(K − 1) ln(σ/K)− E} .
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Since V is the sum of martingale difference sequences we want to use Azuma’s inequality, which
requires that the right hand sides are negative. Choosing a positive splitting point σ as

σ = K exp

(
− (t− 1)∆a

2

√
lnK

(t− 1)ε2 + 1

)
, (23)

the two right hand sides become

− ln(σ/K)

η̄t
− E = −E

2
, (24)

−2(K − 1) ln(σ/K)− E = E

(√
lnK

(t− 1)ε2 + 1
− 1

)
≤ −E

2
, (25)

using
√

lnK
(t−1)ε2+1 = (K − 1)η̄t ≤ 1/2 for the final inequality. As these are negative, we can use

Azuma’s inequality which since the range of the Xi’s is 2(K − 1)ε gives us

E[pat ] ≤ K exp

(
− (t− 1)∆a

2

√
lnK

(t− 1)ε2 + 1

)
+ 2 exp

(
− E2/4

2(t− 1)(K − 1)2ε2

)
, (26)

where the inequality comes from substitution of (23), (24) and (25), and the two probabilities becomes
one expression using the final inequality of (25).

We now consider two cases of the first term in (26). If (t− 1)ε2 ≥ 1, then

exp

(
− (t− 1)∆a

2

√
lnK

(t− 1)ε2 + 1

)
≤ exp

(
−1

2

√
lnK

2

∆a

ε

√
t− 1

)
.

If instead (t− 1)ε2 ≤ 1, then

exp

(
− (t− 1)∆a

2

√
lnK

(t− 1)ε2 + 1

)
≤ exp

(
−∆a

2

√
lnK

2
t

)
.

For both cases the second term in (26) becomes

2 exp

(
−1

8

∆2
a

ε2
(t− 1)

)
.

For ηt = 1
2(K−1) , we first note that ηt ≤

√
lnK

maxa St−1(a)+(K−1)2 , so the bound used for pat in (22)
still applies. Since ηt is no longer a random variable, we have

E[pat ] ≤ σ + P
{
K exp

(
−

∑
Xi

2(K − 1)

)
> σ

}
.

Rewriting this as before and choosing σ = K exp
(
− (t−1)∆a

4

)
, we get by Azuma’s inequality

E[pat ] ≤ K exp

(
− (t− 1)∆a

4

)
+ exp

(
−1

8

∆2
a

ε2
(t− 1)

)
.

We now have three cases of bounds on E [pat ]. For each of these the analysis is completed by summing
over t = 2 to∞, using Lemma 3 and then summing over the arms times the gaps. For all cases, the
result is smaller than the right hand side in Theorem 3. �
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