
A Proofs

We use v̂i(s), q̂i(s, ai) and Q(τ) to represent v̂i(s;π, r), q̂i(s, ai;π, r) and Q(τ ;π, r), where we
implicitly assume dependency over π and r.

A.1 Proof to Lemma 1

For any policy π, fr(π, v̂) = 0 when v̂ is the value function of π (due to Bellman equations).
However, only policies that form a Nash equilibrium satisfies the constraints in Eq. 2; we formalize
this in the following Lemma.
Lemma 1. Let v̂i(s;π, r) be the solution to the Bellman equation

v̂i(s) = Ea∼π[ri(s,a) + γ
∑
s′∈S

P (s′|s,a)v̂i(s
′)]

and q̂i(s, ai) = Ea−i∼π−i [ri(s,a) + γ
∑
s′∈S P (s′|s,a)v̂i(s

′)]. Then for any π,

fr(π, v̂(π)) = 0

Furthermore, π is Nash equilibrium under r if and only if v̂i(s) ≥ q̂i(s, ai) for all i ∈ [N], s ∈
S, ai ∈ Ai.

Proof. By definition of v̂i(s) we have:

v̂i(s) = Ea∼π[ri(s,a) + γ
∑
s′∈S

P (s′|s,a)v̂i(s
′)]

= Eai∼πiEa−i∼π−i [ri(s,a) + γ
∑
s′∈S

P (s′|s,a)v̂i(s
′)]

= Ea−i∼πi [q̂i(s, ai)]

which uses the fact that ai and a−i are independent conditioned on s. Hence fr(π, v̂) = 0 immedi-
ately follows.

If π is a Nash equilibrium, and at least one of the constrains does not hold, i.e. there exists some
i and s, ai such that v̂(s) < q̂(s, ai), then agent i can achieve a strictly higher expected return if it
chooses to take actions ai whenever it encounters state si and follow πi for rest of the states, which
violates the Nash equilibrium assumption.

If the constraints hold, i.e. for all i and (s, ai), v̂i(s) ≥ q̂i(s, ai) then

v̂i(s) ≥ Eπi [q̂i(s, ai)] = v̂i(s)

so value iteration over v̂i(s) converges. If we can find another policy π′ such that v̂i(s) <
Eπ′i [q̂i(s, ai)], then there should be at least one violation in the constraints since π′i must be a
convex combination (expectation) over actions ai. Therefore, for any policy π′i and action ai for
any agent i, Eπi [q̂i(s, ai)] ≥ Eπ′i [q̂i(s, ai)] always hold, so πi is the optimal response to π−i, and π
constitutes a Nash equilibrium when we repeat this argument for all agents.

Notably, Theorem 3.8.2 in [21] discusses the equivalence by assuming fr(π, v) = 0 for some v; if v
satisfies the assumptions, then v = v̂′.

A.2 Proof to Theorem 1

Proof. If π is a Nash equilibrium, and at least one of the constraints does not hold, i.e. there exists
some i and {s(j), a

(j)
i }tj=0, such that

v̂i(s
(0)) < Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i)]

Then agent i can achieve a strictly higher expected return on its own if it chooses a particular sequence
of actions by taking a(j)

i whenever it encounters state s(j), and follow πi for the remaining states. We
note that this is in expectation over the policy of other agents. Hence, we construct a policy for agent

13

i that has strictly higher value than πi without modifying π−i, which contradicts the definition of
Nash equilibrium.

If the constraints hold, i.e for all i and {s(j), a
(j)
i }tj=0,

v̂i(s
(0)) ≥ Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i)]

then we can construct any q̂i(s(0), a
(0)
i) via a convex combination by taking the expectation over πi:

q̂i(s
(0), a

(0)
i) = Eπi [Eπ−i [q̂

(t)
i ({s(j),a(j)}t−1

j=0, s
(t), a

(t)
i)]]

where the expectation over πi is taken over actions {a(j)
i }tj=0 (the expectation over states are contained

in the inner expectation over π−i). Therefore, ∀i ∈ [N], s ∈ S, ai ∈ Ai,
v̂i(s) ≥ q̂i(s, ai)

and we recover the constraints in Eq. 2. By Lemma 1, π is a Nash equilibrium.

A.3 Proof to Theorem 2

Proof. We use Q?, q̂?, v̂? to denote the Q, q̂ and v̂ quantities defined for policy π?. For the two terms
in L(t+1)

r (π?, λ?π) we have:

L(t+1)
r (π?, λ?π) =

N∑
i=1

∑
τi∈Ti

λ?(τi)(Q
?
i (τi)− v̂?i (s(0))) (15)

For any agent i, we note that∑
τi∈Ti

λ?(τi)Q
?
i (τi) = EπiEπ?−i [

t−1∑
j=0

γjri(s
(j), a(j)) + γtq̂?i (st, a

(t)
i)]

which amounts to using πi for agent i for the first t steps and using π?i for the remaining steps, whereas
other agents follow π?−i. As t→∞, this converges to Eπi,π?−i [ri] since γt → 0 and q?i (s(t), a

(t)
i) is

bounded. Moreover, for v̂?i (s(0)), we have∑
τi∈Ti

λ?(τi)v̂
?
i (s(0)) = Es(0)∼η[v̂?i (s(0))] = Eπ? [ri]

Combining the two we have

L(t+1)
r (π?, λ?π) =

N∑
i=1

Eπi,π?−i [ri]−
N∑
i=1

Eπ? [ri]

which describes the differences in expected rewards.

A.4 Proof to Theorem 3

Proof. Define the “MARL” objective for a single agent i where other agents have policy πEi :
MARLi(ri) = max

πi
Hi(πi) + Eπi,πE−i [ri]

Define the “MAIRL” objective for a single agent i where other agents have policy πE :
MAIRLi,ψ(π?) = arg max

ri

ψi(ri) + EπE [ri]− (max
πi

Hi(πi) + Eπi,πE−i [ri])

Since ri and πi’s are independent in the MAIRL objective, the solution to MAIRLψ can be represented
by the solutions of MAIRLi,ψ for each i:

MAIRLψ = [MAIRL1,ψ, . . . ,MAIRLN,ψ]

Moreover, the single agent “MARL” objective MARLi(ri) has a unique solution πEi , which also
composes the (unique) solution to MARL (which we assumed in Section 3. Therefore,

MARL(r) = [MARL1(r1), . . . ,MARLN (rN)]

So we can use Proposition 3.1 in [16] for each agent i with MARLi(ri) and MAIRLi,ψ(π?) and
achieve the same solution as MARL ◦MAIRLψ .

14

A.5 Proof to Proposition 2

Proof. From Corollary A.1.1 in [16], we have

ψ?GA(ρπ − ρπE) = max
D∈(0,1)S×A

Eπ[logD(s, a)] + EπE [log(1−D(s, a))] ≡ DJS(ρπ, ρπE)

where DJS denotes Jensen-Shannon divergence (which is a squared metric), and ≡ denotes equiva-
lence up to shift and scaling.

Taking the min over this we obtain

arg min
π

N∑
i=1

ψ?GA(ρπ − ρπE) = πE

Similarly,

arg min
π

N∑
i=1

ψ?GA(ρπi,πE−i − ρπE) = πE

So these two quantities are equal.

B MAGAIL Algorithm

We include the MAGAIL algorithm as follows:

Algorithm 1 Multi-Agent GAIL (MAGAIL)

Input: Initial parameters of policies, discriminators and value (baseline) estimators θ0, ω0,
φ0; expert trajectories D = {(sj , aj)}Mj=0; batch size B; Markov game as a black box
(N,S,A, η, T, r,o, γ); initial policy π.
Output: Learned policies πθ and reward functions Dω .

for u = 0, 1, 2, . . . do
Obtain trajectories of size B from π by the process

s0 ∼ η(s),at ∼ πθu(at|st), st+1 ∼ P (st|at)
Sample state-action pairs from D with batch size B.
Denote state-action pairs from π and D as χ and χE .
for i = 1, . . . , n do

Update ωi to increase the objective
Eχ[logDωi(s, ai)] + EχE [log(1−Dωi(s, ai))]

end for
for i = 1, . . . , n do

Compute value estimate V ? and advantage estimate Ai for (s,a) ∈ χ.
Update φi to decrease the objective

Eχ[(Vφ(s, a−i)− V ?(s, a−i))2]

Update θi by policy gradient with small step sizes:
Eχ[∇θiπθi(ai|oi)Ai(s,a)]

end for
end for

15

Table 2: Performance in cooperative navigation.
Expert Episodes 100 200 300 400

Expert -13.50 ± 6.3
Random -128.13 ± 32.1

Behavior Cloning -56.82 ± 18.9 -43.10 ± 16.0 -35.66 ± 15.2 -25.83 ± 12.7
Centralized -46.66 ± 20.8 -23.10 ± 12.4 -21.53 ± 12.9 -15.30 ± 7.0

Decentralized -50.00 ± 18.6 -25.61 ± 12.3 -24.10 ± 13.3 -15.55 ± 6.5
GAIL -55.01 ± 17.7 -39.21 ± 16.5 -29.89 ± 13.5 -18.76 ± 12.1

Table 3: Performance in cooperative communication.
Expert Episodes 100 200 300 400

Expert -6.22 ± 4.5
Random -62.49 ± 28.7

Behavior Cloning -21.25 ± 10.6 -13.25 ± 7.4 -11.37 ± 5.9 -10.00 ± 5.36
Centralized -15.65 ± 10.0 -7.11 ± 4.8 -7.11 ± 4.8 -7.09 ± 4.8

Decentralized -18.68 ± 10.4 -8.06 ± 5.3 -8.16 ± 5.5 -7.34 ± 4.9
GAIL -20.28 ± 10.1 -11.06 ± 7.8 -10.51 ± 6.6 -9.44 ± 5.7

C Experiment Details

C.1 Hyperparameters

For the particle environment, we use two layer MLPs with 128 cells in each layer, for the policy
generator network, value network and the discriminator. We use a batch size of 1000. The policy
is trained using K-FAC optimizer [46] with learning rate of 0.1. All other parameters for K-FAC
optimizer are the same in [25].

For the cooperative control task, we use two layer MLPs with 64 cells in each layer for all the
networks. We use a batch size of 2048, and learning rate of 0.03. We obtain expert trajectories by
training the expert with MACK and sampling demonstrations from the same environment. Hence, the
expert’s demonstrations are imperfect (or even flawed) in the environment that we test on.

The particle environments are setup exactly as in OpenAI MultiAgent Particle Environment, except
for two minor differences. One, we set the environment to have maximum episode length of 50. Two,
we end the episode once the agents have reached their targets in the cooperative environments.

C.2 Detailed Results

We use the particle environment introduced in [14] and the multi-agent control environment [35] for
experiments. We list the exact performance in Tables 2, 3 for cooperative tasks, and Table 4 and
competitive tasks. The means and standard deviations are computed over 100 episodes. The policies
in the cooperative tasks are trained with varying number of expert demonstrations. The policies in
the competitive tasks are trained with on a dataset with 100 expert trajectories.

The environment for each episode is drastically different (e.g. location of landmarks are randomly
sampled), which leads to the seemingly high standrad deviation across episodes.

C.3 Video Demonstrations

We show certain trajectories generated by our methods. The vidoes are here: videos4.

For the particle case:

Navigation-BC-Agents.gif Agents trained by behavior cloning in the navigation task.
Navigation-GAIL-Agents.gif Agents trained by proposed framework in the navigation task.
Predator-Prey-BC-Agent-BC-Adversary.gif Agent (green) trained by behavior cloning play

against adversaries (red) trained by behavior cloning.
4https://drive.google.com/open?id=1Oz4ezMaKiIsPUKtCEOb6YoHJ9jLk6zbj

16

https://github.com/openai/multiagent-particle-envs
https://drive.google.com/open?id=1Oz4ezMaKiIsPUKtCEOb6YoHJ9jLk6zbj
https://drive.google.com/open?id=1Oz4ezMaKiIsPUKtCEOb6YoHJ9jLk6zbj

Table 4: Performance in competitive tasks.
Task Agent Policy Adversary Policy Agent Reward

Predator-Prey

Behavior Cloning

Behavior Cloning -93.20 ± 63.7
GAIL -93.71 ± 64.2

Centralized -93.75 ± 61.9
Decentralized -95.22 ± 49.7

Zero-Sum -95.48 ± 50.4
GAIL

Behavior Cloning

-90.55 ± 63.7
Centralized -91.36 ± 58.7

Decentralized -85.00 ± 42.3
Zero-Sum -89.4 ± 48.2

Keep-Away

Behavior Cloning

Behavior Cloning 24.22 ± 21.1
GAIL 24.04 ± 18.2

Centralized 23.28 ± 20.6
Decentralized 23.56 ± 19.9

Zero-Sum 23.19 ± 19.9
GAIL

Behavior Cloning

26.22 ± 19.1
Centralized 26.61 ± 20.0

Decentralized 28.73 ± 18.3
Zero-Sum 27.80 ± 19.2

1M 2M 4M 6M 8M 10M

0.5

0.0

0.5

1.0

Cooperative Communication

1M 2M 4M 6M 8M 10M

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Cooperative Navigation

Powered by TCPDF (www.tcpdf.org)

Cooperative Decentralized BC Expert

Number of Timesteps

Ep
iso

de
 R

ew
ar

ds

Number of Timesteps

Figure 3: Sample complexity of multi-agent GAIL methods under cooperative tasks. Performance
of experts is normalized to one, and performance of behavior cloning is normalized to zero. The
standard deviation is computed with respect to episodes, and is noisy due to randomness in the
environment.

Predator-Prey-GAIL-Agent-BC-Adversary.gif Agent (green) trained by proposed framework
play against adversaries (red) trained by behavior cloning.

For the cooperative control case:

Multi-Walker-Expert.mp4 Expert demonstrations in the “easy” environment.

Multi-Walker-GAIL.mp4 Centralized GAIL trained on the “hard” environment.

Multi-Walker-BC.mp4 BC trained on the “hard” environment.

Interestingly, the failure modes for the agents in “hard” environment is mostly having the plank fall
off or bounce off, since by decreasing the weight of the plank will decrease its friction force and
increase its acceleration.

C.4 Potential Alternatives for RL Algorithms

There have been a range of deep reinforcement learning algorithms proposed recently; in this paper
that all our MAGAIL / GAIL [16] algorithms in our experiments are using MACK / ACKTR [25]

17

as the underlying RL algorithm, so the performance gain for MAGAIL over GAIL is caused by the
multi-agent formulation, instead of the specific RL algorithm used.

In fact, our MAGAIL formulation (similar to GAIL) does not restrict the choice of RL algorithm. We
choose to use ACKTR as the RL algorithm because its scalability (as opposed to TRPO [47], which
requires some form of inverse Fisher) and its ability to deal with discrete action spaces directly (as
opposed to DDPG [14], which requires continuous relaxation of the discrete actions).

18

