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Abstract

We introduce the factored bandits model, which is a framework for learning with
limited (bandit) feedback, where actions can be decomposed into a Cartesian
product of atomic actions. Factored bandits incorporate rank-1 bandits as a special
case, but significantly relax the assumptions on the form of the reward function. We
provide an anytime algorithm for stochastic factored bandits and up to constants
matching upper and lower regret bounds for the problem. Furthermore, we show
how a slight modification enables the proposed algorithm to be applied to utility-
based dueling bandits. We obtain an improvement in the additive terms of the regret
bound compared to state-of-the-art algorithms (the additive terms are dominating
up to time horizons that are exponential in the number of arms).

1 Introduction

We introduce factored bandits, which is a bandit learning model, where actions can be decomposed
into a Cartesian product of atomic actions. As an example, consider an advertising task, where the
actions can be decomposed into (1) selection of an advertisement from a pool of advertisements and
(2) selection of a location on a web page out of a set of locations, where it can be presented. The
probability of a click is then a function of the quality of the two actions, the attractiveness of the
advertisement and the visibility of the location it was placed at. In order to maximize the reward the
learner has to maximize the quality of actions along each dimension of the problem. Factored bandits
generalize the above example to an arbitrary number of atomic actions and arbitrary reward functions
satisfying some mild assumptions.
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Figure 1: Relations between factored bandits and other bandit models.
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In a nutshell, at every round of a factored bandit game the player selects L atomic actions, a1, . . . , aL,
each from a corresponding finite set A` of size |A`| of possible actions. The player then observes a
reward, which is an arbitrary function of a1, . . . , aL satisfying some mild assumptions. For example,
it can be a sum of the quality of atomic actions, a product of the qualities, or something else that does
not necessarily need to have an analytical expression. The learner does not have to know the form of
the reward function.

Our way of dealing with combinatorial complexity of the problem is through introduction of unique
identifiability assumption, by which the best action along each dimension is uniquely identifiable. A
bit more precisely, when looking at a given dimension we call the collection of actions along all other
dimensions a reference set. The unique identifiability assumption states that in expectation the best
action along a dimension outperforms any other action along the same dimension by a certain margin
when both are played with the same reference set, irrespective of the composition of the reference
set. This assumption is satisfied, for example, by the reward structure in linear and generalized linear
bandits, but it is much weaker than the linearity assumption.

In Figure 1, we sketch the relations between factored bandits and other bandit models. We distinguish
between bandits with explicit reward models, such as linear and generalized linear bandits, and
bandits with weakly constrained reward models, including factored bandits and some relaxations of
combinatorial bandits. A special case of factored bandits are rank-1 bandits [7]. In rank-1 bandits the
player selects two actions and the reward is the product of their qualities. Factored bandits generalize
this to an arbitrary number of actions and significantly relax the assumption on the form of the reward
function.

The relation with other bandit models is a bit more involved. There is an overlap between factored
bandits and (generalized) linear bandits [1; 6], but neither is a special case of the other. When actions
are represented by unit vectors, then for (generalized) linear reward functions the models coincide.
However, the (generalized) linear bandits allow a continuum of actions, whereas factored bandits
relax the (generalized) linearity assumption on the reward structure to uniform identifiability.

There is a partial overlap between factored bandits and combinatorial bandits [3]. The action set
in combinatorial bandits is a subset of t0, 1ud. If the action set is unrestricted, i.e. A “ t0, 1ud,
then combinatorial bandits can be seen as factored bandits with just two actions along each of the d
dimensions. However, typically in combinatorial bandits the action set is a strict subset of t0, 1ud and
one of the parameters of interest is the permitted number of non-zero elements. This setting is not
covered by factored bandits. While in the classical combinatorial bandits setting the reward structure
is linear, there exist relaxations of the model, e.g. Chen et al. [4].

Dueling bandits are not directly related to factored bandits and, therefore, we depict them with faded
dashed blocks in Figure 1. While the action set in dueling bandits can be decomposed into a product
of the basic action set with itself (one for the first and one for the second action in the duel), the
observations in dueling bandits are the identities of the winners rather than rewards. Nevertheless, we
show that the proposed algorithm for factored bandits can be applied to utility-based dueling bandits.

The main contributions of the paper can be summarized as follows:

1. We introduce factored bandits and the uniform identifiability assumption.

2. Factored bandits with uniformly identifiable actions are a generalization of rank-1 bandits.

3. We provide an anytime algorithm for playing factored bandits under uniform identifiability
assumption in stochastic environments and analyze its regret. We also provide a lower bound
matching up to constants.

4. Unlike the majority of bandit models, our approach does not require explicit specification
or knowledge of the form of the reward function (as long as the uniform identifiability
assumption is satisfied). For example, it can be a weighted sum of the qualities of atomic
actions (as in linear bandits), a product thereof, or any other function not necessarily known
to the algorithm.

5. We show that the algorithm can also be applied to utility-based dueling bandits, where the
additive factor in the regret bound is reduced by a multiplicative factor of K compared to
state-of-the-art (where K is the number of actions). It should be emphasized that in state-
of-the-art regret bounds for utility-based dueling bandits the additive factor is dominating
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for time horizons below ΩpexppKqq, whereas in the new result it is only dominant for time
horizons up to OpKq.

6. Our work provides a unified treatment of two distinct bandit models: rank-1 bandits and
utility-based dueling bandits.

The paper is organized in the following way. In Section 2 we introduce the factored bandit model
and uniform identifiability assumption. In Section 3 we provide algorithms for factored bandits and
dueling bandits. In Section 4 we analyze the regret of our algorithm and provide matching upper and
lower regret bounds. In Section 5 we compare our work empirically and theoretically with prior work.
We finish with a discussion in Section 6.

2 Problem Setting

2.1 Factored bandits

We define the game in the following way. We assume that the set of actions A can be represented as a
Cartesian product of atomic actions, A “

ÂL
`“1A`. We call the elements of A` atomic arms. For

rounds t “ 1, 2, ... the player chooses an action At P A and observes a reward rt drawn according
to an unknown probability distribution pAt

(i.e., the game is “stochastic”). We assume that the
mean rewards µpaq “ Errt|At “ as are bounded in r´1, 1s and that the noise ηt “ rt ´ µpAtq is
conditionally 1-sub-Gaussian. Formally, this means that

@λ P R E
“

eληt |Ft´1

‰

ď exp

ˆ

λ2

2

˙

,

where Ft :“ tA1, r1,A2, r2, ...,At, rtu is the filtration defined by the history of the game up to and
including round t. We denote a˚ “ pa˚1 , a

˚
2 , ..., a

˚
Lq “ argmaxaPA µpaq.

Definition 1 (uniform identifiability). An atomic set Ak has a uniformly identifiable best arm a˚k if
and only if

@a P Akzta˚ku : ∆kpaq :“ min
bP

Â

`‰k A`
µpa˚k ,bq ´ µpa,bq ą 0. (1)

We assume that all atomic sets have uniformly identifiable best arms. The goal is to minimize the
pseudo-regret, which is defined as

RegT “ E

«

T
ÿ

t“1

µpa˚q ´ µpAtq

ff

.

Due to generality of the uniform identifiability assumption we cannot upper bound the instantaneous
regret µpa˚q ´ µpAtq in terms of the gaps ∆`pa`q. However, a sequential application of (1) provides
a lower bound

µpa˚q ´ µpaq “ µpa˚q ´ µpa1, a
˚
2 , ..., a

˚
Lq ` µpa1, a

˚
2 , ..., a

˚
Lq ´ µpaq

ě ∆1pa1q ` µpa1, a
˚
2 , ..., a

˚
Lq ´ µpaq ě ... ě

L
ÿ

`“1

∆`pa`q. (2)

For the upper bound let κ be a problem dependent constant, such that µpa˚q´µpaq ď κ
řL
`“1 ∆`pa`q

holds for all a. Since the mean rewards are in r´1, 1s, the condition is always satisfied by κ “
mina,` 2∆´1

` pa`q and by equation (2) κ is always larger than 1. The constant κ appears in the regret
bounds. In the extreme case when κ “ mina,` 2∆´1

` pa`q the regret guarantees are fairly weak.
However, in many specific cases mentioned in the previous section, κ is typically small or even 1.
We emphasize that algorithms proposed in the paper do not require the knowledge of κ. Thus, the
dependence of the regret bounds on κ is not a limitation and the algorithms automatically adapt to
more favorable environments.
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2.2 Dueling bandits

The set of actions in dueling bandits is factored intoAˆA. However, strictly speaking the problem is
not a factored bandit problem, because the observations in dueling bandits are not the rewards.1 When
playing two arms, a and b, we observe the identity of the winning arm, but the regret is typically
defined via average relative quality of a and b with respect to a “best” arm in A.

The literature distinguishes between different dueling bandit settings. We focus on utility-based
dueling bandits [14] and show that they satisfy the uniform identifiability assumption.

In utility-based dueling bandits, it is assumed that each arm has a utility upaq and that the winning
probabilities are defined by Pra wins against bs “ νpupaq´upbqq for a monotonously increasing link
function ν. Let wpa, bq be 1 if a wins against b and 0 if b wins against a. Let a˚ :“ argmaxaPA upaq
denote the best arm. Then for any arm b P A and any a P Aza˚, it holds that Erwpa˚, bqs ´
Erwpa, bqs “ νpupa˚q ´ upbqq ´ νpupaq ´ upbqq ą 0, which satisfies the uniform identifiability
assumption. For the rest of the paper we consider the linear link function νpxq “ 1`x

2 . The regret is
then defined by

RegT “ E

«

T
ÿ

t“1

upa˚q ´ upAtq

2
`
upa˚q ´ upBtq

2

ff

. (3)

3 Algorithms

Although in theory an asymptotically optimal algorithm for any structured bandit problem was
presented in [5], for factored bandits this algorithm does not only require solving an intractable semi-
infinite linear program at every round, but it also suffers from additive constants which are exponential
in the number of atomic actions L. An alternative naive approach could be an adaptation of sparring
[16], where each factor runs an independent K-armed bandit algorithm and does not observe the
atomic arm choices of other factors. The downside of sparring algorithms, both theoretically and
practically, is that each algorithm operates under limited information and the rewards become non
i.i.d. from the perspective of each individual factor.

Our Temporary Elimination Algorithm (TEA, Algorithm 1) avoids these downsides. It runs indepen-
dent instances of the Temporary Elimination Module (TEM, Algorithm 3) in parallel, one per each
factor of the problem. Each TEM operates on a single atomic set. The TEA is responsible for the
synchronization of TEM instances. Two main ingredients ensure information efficiency. First, we use
relative comparisons between arms instead of comparing absolute mean rewards. This cancels out
the effect of non-stationary means. The second idea is to use local randomization in order to obtain
unbiased estimates of the relative performance without having to actually play each atomic arm with
the same reference, which would have led to prohibitive time complexity.

1 @` : TEM`
Ð new TEM(A`)

2 tÐ 1
3 for s “ 1, 2, . . . do
4 Ms Ð

argmax` |TEM` . getActiveSetpfptq´1
q|

5 Ts Ð pt, t` 1, . . . , t`Ms ´ 1q
6 for ` P t1, . . . , Lu in parallel do
7 TEM` . scheduleNextpTsq
8 for t P Ts do
9 rt Ð playppTEM` .Atq`“1,...,Lq

10 for ` P t1, . . . , Lu in parallel do
11 TEM` . feedbackpprt1qt1PTsq
12 tÐ t` |Ts|

Algorithm 1: Factored Bandit TEA

1 TEM Ð new TEM(A)
2 tÐ 1
3 for s “ 1, 2, . . . do
4 As Ð TEM . getActiveSetpfptq´1

q

5 Ts Ð pt, t` 1, . . . , t` |As| ´ 1q
6 TEM . scheduleNextpTsq
7 for b P As do
8 rt Ð playpTEM .At, bq
9 tÐ t` 1

10 TEM . feedbackpprt1qt1PTsq
Algorithm 2: Dueling Bandit TEA

1In principle, it is possible to formulate a more general problem that would incorporate both factored bandits
and dueling bandits. But such a definition becomes too general and hard to work with. For the sake of clarity we
have avoided this path.
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The TEM instances run in parallel in externally synchronized phases. Each module selects active
arms in getActiveSetpδq, such that the optimal arm is included with high probability. The length of a
phase is chosen such that each module can play each potentially optimal arm at least once in every
phase. All modules schedule all arms for the phase in scheduleNext. This is done by choosing arms
in a round robin fashion (random choices if not all arms can be played equally often) and ordering
them randomly. All scheduled plays are executed and the modules update their statistics through the
call of feedback routine. The modules use slowly increasing lower confidence bounds for the gaps in
order to temporarily eliminate arms that are with high probability suboptimal. In all algorithms, we
use fptq :“ pt` 1q log2

pt` 1q.

Dueling bandits For dueling bandits we only use a single instance of TEM. In each phase the
algorithm generates two random permutations of the active set and plays the corresponding actions
from the two lists against each other. (The first permutation is generated in Line 6 and the second in
Line 7 of Algorithm 2.)

3.1 TEM

The TEM tracks empirical differences between rewards of all arms ai and aj in Dij . Based on these
differences, it computes lower confidence bounds for all gaps. The set K˚ contains those arms where
all LCB gaps are zero. Additionally the algorithm keeps track of arms that were never removed from
B. During a phase, each arm from K˚ is played at least once, but only arms in B can be played more
than once. This is necessary to keep the additive constants at M logpKq instead of MK.

global :Ni,j , Di,j ,K˚,B
1 Function initialize(K)
2 @ai, aj P K : Ni,j , Di,j Ð 0, 0
3 B Ð K
4

5 Function getActiveSet(δ)
6 if DNi,j “ 0 then
7 K˚ Ð K
8 else
9 for ai P K do

10 ∆̂LCB
paiq Ð maxaj‰ai

Dj,i
Nj,i

´
c

12 logp2KfpNj,iqδ´1q

Nj,i

11 K˚ Ð tai P K|∆̂LCB
paiq ď 0u

12 if |K˚| “ 0 then
13 K˚ Ð K
14 B Ð B XK˚
15 if |B| “ 0 then
16 B Ð K˚
17 return K˚
18

19 Function scheduleNext(T )
20 for a P K˚ do
21 t̃Ð random unassigned index in T
22 At̃ Ð a
23 while not all Ats , . . . , Ats`|T |´1 assigned

do
24 for a P B do
25 t̃Ð random unassigned index in T
26 At̃ Ð a
27

28 Function feedback(tRtuts,...,ts`Ms´1)
29 @ai : N i

s, R
i
s Ð 0, 0

30 for t “ ts, . . . , ts `Ms ´ 1 do
31 RAts Ð RAts `Rt
32 NAt

s Ð NAt
s ` 1

33 for ai, aj P K˚ do
34 Di,j Ð Di,j`mintNs

i , N
s
j up

Ris
Nis
´
Rjs

N
j
s
q

35 Ni,j Ð Ni,j `mintNs
i , N

s
j u

Algorithm 3: Temporary Elimination Mod-
ule (TEM) Implementation

4 Analysis

We start this section with the main theorem, which bounds the number of times the TEM pulls
sub-optimal arms. Then we prove upper bounds on the regret for our main algorithms. Finally, we
prove a lower bound for factored bandits that shows that our regret bound is tight up to constants.

4.1 Upper bound for the number of sub-optimal pulls by TEM

Theorem 1. For any TEM submodule TEM` with an arm set of size K “ |A`|, running in the
TEA algorithm with M :“ max` |A`| and any suboptimal atomic arm a ‰ a˚, let Ntpaq denote the
number of times TEM has played the arm a up to time t. Then there exist constants Cpaq ďM for
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a ‰ a˚, such that

ErNtpaqs ď
120

∆paq2

˜

logp2Kt log2
ptqq ` 4 log

ˆ

48 logp2Kt log2
ptqq

∆paq2

˙

¸

` Cpaq,

where
ř

a‰a˚ Cpaq ďM logpKq ` 5
2K in the case of factored bandits and Cpaq ď 5

2 for dueling
bandits.

Proof sketch. [The complete proof is provided in the Appendix.]

Step 1 We show that the confidence intervals are constructed in such a way that the probability
of all confidence intervals holding at all epochs up from s1 is at least 1 ´ maxsěs1 fptsq

´1. This
requires a novel concentration inequality (Lemma 3) for a sum of conditionally σs-sub-gaussian
random variables, where σs can be dependent on the history. This technique might be useful for other
problems as well.

Step 2 We split the number of pulls into pulls that happen in rounds where the confidence intervals
hold and those where they fail: Ntpaq “ N conf

t paq `N conf
t paq.

We can bound the expectation of N conf
t paq based on the failure probabilities given by

Prconf failure at round ss ď 1
fptsq

.

Step 3 We define s1 as the last round in which the confidence intervals held and awas not eliminated.
We can split N conf

t paq “ N conf
ts1

paq ` Cpaq and use the confidence intervals to upper bound
N conf
ts1

paq. The upper bound on
ř

a Cpaq requires special handling of arms that were eliminated once
and carefully separating the cases where confidence intervals never fail and those where they might
fail.

4.2 Regret Upper bound for Dueling Bandit TEA

A regret bound for the Factored Bandit TEA algorithm, Algorithm 1, is provided in the following
theorem.
Theorem 2. The pseudo-regret of Algorithm 1 at any time T is bounded by

RegT ď κ

¨

˝

L
ÿ

`“1

ÿ

a`‰a
˚
`

120

∆`pa`q

˜

logp2|A`|t log2
ptqq ` 4 log

ˆ

48 logp2|A`|t log2
ptqq

∆`pa`q

˙

¸¸

`max
`
|A`|

ÿ

`

logp|A`|q `
ÿ

`

5

2
|A`|.

Proof. The design of TEA allows application of Theorem 1 to each instance of TEM. Using µpa˚q ´
µpaq ď κ

řL
`“1 ∆`pa`q, we have that

RegT “ Er
T
ÿ

t“1

µpa˚q ´ µpatqss ď κ
L
ÿ

l“1

ÿ

a`‰a
˚
`

ErNT pa`qs∆`pa`q.

Applying Theorem 1 to the expected number of pulls and bounding the sums
ř

a Cpaq∆paq ď
ř

a Cpaq completes the proof.

4.3 Dueling bandits

A regret bound for the Dueling Bandit TEA algorithm (DBTEA), Algorithm 2, is provided in the
following theorem.
Theorem 3. The pseudo-regret of Algorithm 2 for any utility-based dueling bandit problem at any
time T (defined in equation (3) satisfies RegT ď O

´

ř

a‰a˚
logpT q
∆paq

¯

`OpKq.
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Proof. At every round, each arm in the active set is played once in position A and once in position B
in playpA,Bq. Denote by NA

t paq the number of plays of an arm a in the first position, NB
t paq the

number of plays in the second position, and Ntpaq the total number of plays of the arm. We have

RegT “
ÿ

a‰a˚

ErNtpaqs∆paq “
ÿ

a‰a˚

ErNA
t paq `N

B
t paqs∆paq “

ÿ

a‰a˚

2ErNA
t paqs∆paq.

The proof is completed by applying Theorem 1 to bound ErNA
t paqs.

4.4 Lower bound

We show that without additional assumptions the regret bound cannot be improved. The lower
bound is based on the following construction. The mean reward of every arm is given by µpaq “
µpa˚q ´

ř

` ∆`pa`q. The noise is Gaussian with variance 1. In this problem, the regret can be
decomposed into a sum over atomic arms of the regret induced by pulling these arms, RegT “
ř

`

ř

a`PA` ErNT pa`qs∆`pa`q. Assume that we only want to minimize the regret induced by a single
atomic set A`. Further, assume that ∆kpaq for all k ‰ ` are given. Then the problem is reduced to a
regular K-armed bandit problem. The asymptotic lower bound for K-armed bandit under 1-Gaussian
noise goes back to [10]: For any consistent strategy θ, the asymptotic regret is lower bounded by
lim infTÑ8

RegθT
logpT q ě

ř

a‰a˚
2

∆paq . Due to regret decomposition, we can apply this bound to every
atomic set separately. Therefore, the asymptotic regret in the factored bandit problem is

lim inf
TÑ8

RegθT
logpT q

ě

L
ÿ

`“1

ÿ

a`‰a`˚

2

∆`pa`q
.

This shows that our general upper bound is asymptotically tight up to leading constants and κ.

κ-gap We note that there is a problem-dependent gap of κ between our upper and lower bounds.
Currently we believe that this gap stems from the difference between information and computational
complexity of the problem. Our algorithm operates on each factor of the problem independently
of other factors and is based on the “optimism in the face of uncertainty” principle. It is possible
to construct examples in which the optimal strategy requires playing surely sub-optimal arms for
the sake of information gain. For example, this kind of constructions were used by Lattimore and
Szepesvári [11] to show suboptimality of optimism-based algorithms. Therefore, we believe that
removing κ from the upper bound is possible, but requires a fundamentally different algorithm
design. What is not clear is whether it is possible to remove κ without significant sacrifice of the
computational complexity.

5 Comparison to Prior Work

5.1 Stochastic rank-1 bandits

Stochastic rank-1 bandits introduced by Katariya et al. [7] are a special case of factored bandits.
The authors published a refined algorithm for Bernoulli rank-1 bandits using KL confidence sets in
Katariya et al. [8]. We compare our theoretical results with the first paper because it matches our
problem assumptions. In our experiments, we provide a comparison to both the original algorithm
and the KL version.

In the stochastic rank-1 problem there are only 2 atomic sets of size K1 and K2. The matrix of
expected rewards for each pair of arms is of rank 1. It means that for each u P A1 and v P A2, there
exist u, v P r0, 1s such that Errpu, vqs “ u ¨v. The proposed Stochastic rank-1 Elimination algorithm
introduced by Katariya et al. is a typical elimination style algorithm. It requires knowledge of the
time horizon and uses phases that increase exponentially in length. In each phase, all arms are played
uniformly. At the end of a phase, all arms that are sub-optimal with high probability are eliminated.

Theoretical comparison It is hard to make a fair comparison of the theoretical bounds be-
cause TEA operates under much weaker assumptions. Both algorithms have a regret bound of
O
´´

ř

uPA1zu˚
1

∆1puq
`
ř

vPA2zv˚
1

∆2pvq

¯

logptq
¯

. The problem independent multiplicative factors
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hidden under O are smaller for TEA, even without considering that rank-1 Elimination requires
a doubling trick for anytime applications. However, the problem dependent factors are in favor
of rank-1 Elimination, where the gaps correspond to the mean difference under uniform sampling
pu˚ ´ uq

ř

vPA2 v{K2. In factored bandits, the gaps are defined as pu˚ ´ uqminvPA2 v, which is
naturally smaller. The difference stems from different problem assumptions. Stronger assumptions
of rank-1 bandits make elimination easier as the number of eliminated suboptimal arms increases.
The TEA analysis holds in cases where it becomes harder to identify suboptimal arms after removal
of bad arms. This may happen when highly suboptimal atomic actions in one factor provide more
discriminative information on atomic actions in other factors than close to optimal atomic actions in
the same factor (this follows the spirit of illustration of suboptimality of optimistic algorithms in [11]).
We leave it to future work to improve the upper bound of TEA under stronger model assumptions.

In terms of memory and computational complexity, TEA is inferior to regular elimination style
algorithms, because we need to keep track of relative performances of the arms. That means both
computational and memory complexities are Op

ř

` |A`|2q per round in the worst case, as opposed to
rank-1 Elimination that only requires O

`

|A1| ` |A2|
˘

.

Empirical comparison The number of arms is set to 16 in both sets. We always fix u˚ ´ u “
v˚ ´ v “ 0.2. We vary the absolute value of u˚v˚. As expected, rank1ElimKL has an advantage
when the Bernoulli random variables are strongly biased towards one side. When the bias is close to 1

2 ,
we clearly see the better constants of TEA. In the evaluation we clearly outperform rank-1 Elimination

Figure 2: Comparison of Rank1Elim, Rank1ElimKL, and TEA for K “ L “ 16. The results are
averaged over 20 repetitions of the experiment.

over different parameter settings and even beat the KL optimized version if the means are not too
close to zero or one. This supports that our algorithm does not only provide a more practical anytime
version of elimination, but also improves on constant factors in the regret. We believe that our
algorithm design can be used to improve other elimination style algorithms as well.

5.2 Dueling Bandits: Related Work

To the best of our knowledge, the proposed Dueling Bandit TEA is the first algorithm that satisfies
the following three criteria simultaneously for utility-based dueling bandits:

• It requires no prior knowledge of the time horizon (nor uses the doubling trick or restarts).

• Its pseudo-regret is bounded by Op
ř

a‰a˚
logptq
∆paq q.

• There are no additive constants that dominate the regret for time horizons T ą OpKq.

We want to stress the importance of the last point. For all state-of-the-art algorithms known to us,
when the number of actions K is moderately large, the additive term is dominating for any realistic
time horizon T . In particular, Ailon et al. [2] introduces three algorithms for the utility-based dueling
bandit problem. The regret of Doubler scales with Oplog2

ptqq. The regret of MultiSBM has an
additive term of order

ř

a‰a˚
K

∆paq that is dominating for T ă ΩpexppKqq. The last algorithm,
Sparring, has no theoretical analysis.

Algorithms based on the weaker Condorcet winner assumption apply to utility-based setting, but
they all suffer from equally large or even larger additive terms. The RUCB algorithm introduced
by Zoghi et al. [17] has an additive term in the bound that is defined as 2D∆max logp2Dq, for
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∆max “ maxa‰a˚ ∆paq and D ą 1
2

ř

ai‰a˚
ř

aj‰ai
4α

mint∆paiq2,∆pajq2u
. By unwrapping these defi-

nitions, we see that the RUCB regret bound has an additive term of order 2D∆max ě
ř

a‰a˚
K

∆paq .
This is again the dominating term for time horizons T ď ΩpexppKqq. The same applies to the
RMED algorithm introduced by Komiyama et al. [9], which has an additive term of OpK2q. (The
dependencies on the gaps are hidden behind the O-notation.) The D-TS algorithm by Wu and Liu
[13] based on Thompson Sampling shows one of the best empirical performances, but its regret
bound includes an additive constant of order OpK3q.

Other algorithms known to us, Interleaved Filter [16], Beat the Mean [15], and SAVAGE [12], all
require knowledge of the time horizon T in advance.

Empirical comparison We have used the framework provided by Komiyama et al. [9]. We use the
same utility for all sub-optimal arms. In Figure 3, the winning probability of the optimal arm over
suboptimal arms is always set to 0.7, we run the experiment for different number of arms K. TEA
outperforms all algorithms besides RMED variants, as long as the number of arms are sufficiently
big. To show that there also exists a regime where the improved constants gain an advantage over
RMED, we conducted a second experiment in Figure 4 (in the Appendix), where we set the winning
probability to 0.952 and significantly increase the number of arms. The evaluation shows that the
additive terms are indeed non-negligible and that Dueling Bandit TEA outperforms all baseline
algorithms when the number of arms is sufficiently large.

Figure 3: Comparison of Dueling Bandits algorithms with identical gaps of 0.4. The results are
averaged over 20 repetitions of the experiment.

6 Discussion

We have presented the factored bandits model and uniform identifiability assumption, which requires
no knowledge of the reward model. We presented an algorithm for playing stochastic factored bandits
with uniformly identifiable actions and provided matching upper and lower bounds for the problem
up to constant factors. Our algorithm and proofs might serve as a template to turn other elimination
style algorithms into improved anytime algorithms.

Factored bandits with uniformly identifiable actions generalize rank-1 bandits. We have also provided
a unified framework for the analysis of factored bandits and utility-based dueling bandits. Furthermore,
we improve the additive constants in the regret bound compared to state-of-the-art algorithms for
utility-based dueling bandits.

There are multiple potential directions for future research. One example mentioned in the text is
the possibility of improving the regret bound when additional restrictions on the form of the reward
function are introduced or improvements of the lower bound when algorithms are restricted in
computational or memory complexity. Another example is the adversarial version of the problem.

2Smaller gaps show the same behavior but require more arms and more timesteps.
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A Auxiliary Lemmas

Lemma 1. Given positive real numbers σ1, σ2, . . . , σn.. If pXiqi“1,...,n is a sequence of random
variables such that Xi conditioned on Xi´1, Xi´2, . . . is σi-sub-Gaussian. Then Z “

řn
i“1Xi is

a

řn
i“1 σ

2
i -sub-Gaussian.

We believe this is a standard result, however we only found references for independent sub-Gaussian
random variables.

Proof of Lemma 1. For t “ 1, ..., n define Ms,t “ expps
řt
i“1Xi ´

1
2

řt
i“1 s

2σ2
i q. We

claim Ms,t is a super-martingale. Given that Xi are conditionally sub-Gaussian, we have

ErexppsXt`1q|Xt, Xt´1, ...s ď expp
s2σ2

t`1

2 q. So

ErMs,t`1|Ms,ts “ ErexppsXt`1 ´
1

2
s2σ2

t`1qMs,t|Ms,ts

“ ErexppsXt`1 ´
1

2
s2σ2

t`1q|Ms,tsMs,t ďMs,t.

Additionally by definition of sub-Gaussian ErMs,1s ď 1. Therefore ErMs,ns ď 1. Finally we

get that ErexppsZqs “ ErMs,n ¨ expp
řn
i“1

s2σ2
i

2 qs ď expp
řn
i“1

s2σ2
i

2 q. So Z is
a

řn
i“1 σ

2
i -sub-

Gaussian.

Lemma 2. Let y ě 1, z ě 10, then for any x ą zy ` 4z logpzyq:

zplogpfpxqq ` yq

x
ă 1.

Proof. We can reparameterize x “ zy ` αz logpzyq for α ą 4. Then

zy ` z logpf pzy ` αz logpzyqqq

zy ` αz logpzyq
ă 1

ô
logpf pzy ` αz logpzyqqq

α logpzyq
ă 1

ô f pzy ` αz logpzyqq ă pzyqα

ð f pzy ` αzy logpzyqq ă pzyqα.

Using logpxq ď
?
x´ 1

2 and α ą 4, we have that

f pzy ` αzy logpzyqq ă f

ˆ

zy ` αzyp
?
zy ´

1

2
q

˙

ă fpαpzyq
3
2 ´ 1q “ αpzyq

3
2 log2

pαpzyq
3
2 q.

It is therefore sufficient to prove that for all x̃ ą 10 and α ą 4:

α log2
pαx̃

3
2 q ă x̃α´

3
2

ð αp
?
α` x̃

3
4 q2 ă x̃α´

3
2

ô
?
αp
?
αx̃

3
4´

α
2 ` x̃

3
2´

α
2 q ă 1.

The minimum on the left hand side is obtained for α “ 4 and x̃ “ 10 for with it holds true.

Lemma 3. Let σ P R and X1, X2, . . . be a sequence of sub-Gaussian random variables adapted to

the filtration F1,F2, . . . , i.e. EresXt |X1, X2, . . . , Xt´1s ď e´
σ2t s

2

2 . Assume for all t :
řt
i“1 σ

2
i “

ntσ
2, with nt P N almost surely. Then

P

«

Dt P N :
t
ÿ

i“1

Xi ě

d

2σ2nt log

ˆ

fpntq

δ

˙

ff

ď δ,

where fpntq “ 2p1` ntq log2
p1` ntq.
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Note that unlike in Lemma 1, we do not require σt to be independent of X1, . . . , Xt´1.

Proof. The proof follows closely the arguments presented in the proofs of Lemma 8 in Abbasi-
Yadkori et al. [1] and Lemma 14 in Lattimore and Szepesvári [11]. For ψ P R define

Mt,ψ “ exp

˜

t
ÿ

s“1

ψXs ´
ψ2σ2

s

2

¸

.

If t0 ď τ ď t is a stopping time with respect to F , then as in the proof of Abbasi-Yadkori et al. [1,
Lemma 8] we have ErMτ,ψs ď 1. By Markov’s inequality, we have

PrMτ,ψ ě 1{δs ď δ ô P

«

τ
ÿ

s“1

Xs ě
logpδ´1q

ψ
`
ψnτσ

2

2

ff

ď δ.

An optimal choice of ψ would be ψ “
b

2 logp1{δq
nτσ2 , however ψXt would not be Ft-measurable for

t ď τ and Mt,ψ would not be well defined. Instead, for k ě 1 we define

ψk :“

c

2 logpfpkqδ´1q

kσ2
.

With a union bound, we get that

P

«

Dk ě 1 :
τ
ÿ

s“1

Xs ě
logpfpkqδ´1q

ψk
`
ψnτσ

2

2

ff

ď

8
ÿ

k“1

δ

fpkq
ď δ.

Using now k “ nτ , for which this also holds, we get that

P

«

τ
ÿ

s“1

Xs ě

d

2σ2nτ log

ˆ

fpnτ q

δ

˙

ff

ď δ.

The proof is completed by choosing a stopping time τ :

τ “ min

˜

8Y

#

t ě 1 :
t
ÿ

s“1

Xs ě

d

2ntσ2 log

ˆ

fpntq

δ

˙

+¸

.

Lemma 4. Given X1, X2, . . . , Xn random variables with means p1, p2, . . . , pn P r´1, 1s, such that
all Xi ´ pi are 1-sub-Gaussian. (e.g. Bernoulli random variables) Given further two sample sizes
m, k ě 1, such that m` k ď n. Then for Im : |Im| “ m and Ik : |Ik| “ k disjoint uniform samples
of indices in p1, 2, . . . , nq without replacement, the random variable

Z “
1

m

ÿ

iPIm

Xi ´
1

k

ÿ

iPIk

Xi,

is
b

3pm`kq
mk -sub-Gaussian.

Proof. Without loss of generality, we set m ď k. By definition, the random variables Xi can be
decomposed into Xi “ pi ` ηi, where ηi are conditionally independent 1-sub-Gaussian random
variables. Decomposing Z gives:

Z “
1

m

ÿ

iPIm

pi ´
1

k

ÿ

iPIk

pi `
1

m

ÿ

iPIm

ηi ´
1

k

ÿ

iPIk

ηi.

We define I “ t1, ..., nuzpIm Y Ikq, the indices of remaining Xi’s and p “ 1
n

řn
i“1 pi the mean of

means. In order to show that 1
m

ř

iPIm
pi´

1
k

ř

iPIk
pi is sub-Gaussian, we first draw the elements in

12



ppiqiPI “ pP iqi“1,...,n´m´k and then the set ppiqiPIm “ pP
m
i qi“1,...,m. Drawing the first element

P 1 can be written as P 1 “ p` ζ1, where ζ1 is sub-Gaussian. With continuous drawings, it holds that

ErP 2|P 1s “ p´
1

n´ 1
ζ1

P 2 “ p´
1

n´ 1
ζ1 ` ζ2

ErP 3|P 1, P 2s “ p´
1

n´ 1
ζ1 ´

1

n´ 2
ζ2

P 3 “ p´
1

n´ 1
ζ1 ´

1

n´ 2
ζ2 ` ζ3

...

ErPn´m´k|P 1, ..., Pn´m´k´1s “ p´
n´m´k´1

ÿ

i“1

1

n´ i
ζi

Pn´m´k “ p´
n´m´k´1

ÿ

i“1

1

n´ i
ζi ` ζn´m´k

n´m´k
ÿ

i“1

P i “ pn´m´ kqp`
n´m´k
ÿ

i“1

m` k

n´ i
ζi

The noise variables ζi are all conditionally independent and 1-sub-Gaussian.

We continue with Pmi in the same fashion:

ErPm1 |P s “ p´
n´m´k
ÿ

i“1

1

n´ i
ζi

Pm1 “ p´
n´m´k
ÿ

i“1

1

n´ i
ζi ` ζn´k´m`1

ErPm2 |P , Pm1 s “ p´
n´m´k`1

ÿ

i“1

1

n´ i
ζi

Pm2 “ p´
n´m´k
ÿ

i“1

1

n´ i
ζi ` ζn´k´m`2

...

ErPmm |P , Pm1 , ..., Pmm´1s “ p´
n´k´1
ÿ

i“1

1

n´ i
ζi

Pmm “ p´
n´k´1
ÿ

i“1

1

n´ i
ζi ` ζn´k

m
ÿ

i“1

Pmm “ pn´ kqp`
n´k
ÿ

i“1

k

n´ i
ζi ´

n´m´k
ÿ

i“1

P i

“ mp´
n´m´k
ÿ

i“1

m

n´ i
ζi `

n´k
ÿ

i“n´m´k`1

k

n´ i
ζi.

We can now use

1

k

ÿ

iPIk

pi “
1

k

˜

np´
n´m´k
ÿ

i“1

P i ´
m
ÿ

i“1

Pmi

¸

,
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to substitute

1

m

ÿ

iPIm

pi ´
1

k

ÿ

iPIk

pi “
1

m

m
ÿ

i“1

Pmi ´
1

k

˜

np´
n´m´k
ÿ

i“1

P i ´
m
ÿ

i“1

Pmi

¸

“
m` k

mk

m
ÿ

i“1

Pmi `
1

k

n´m´k
ÿ

i“1

P i ´
n

k
p

“
m` k

mk

˜

mp´
n´m´k
ÿ

i“1

m

n´ i
ζi `

n´k
ÿ

i“n´m´k`1

k

n´ i
ζi

¸

`
1

k

˜

pn´m´ kqp`
n´m´k
ÿ

i“1

m` k

n´ i
ζi

¸

´
n

k
p

“

n´k
ÿ

i“n´m´k`1

m` k

mpn´ iq
ζi

“

m´1
ÿ

i“0

m` k

mpk ` iq
ζn´k´i.

With these substitutions Z can be written as a weighted sum of conditionally independent sub-
Gaussian random variables:

Z “
m´1
ÿ

i“0

m` k

mpk ` iq
ζn´k´i `

1

m

ÿ

iPIm

ηi ´
1

k

ÿ

iPIk

ηi.

Therefore Z is according to Lemma 1 at least
g

f

f

e

m´1
ÿ

i“0

ˆ

m` k

mpk ` iq

˙2

`

m
ÿ

i“1

1

m2
`

k
ÿ

i“1

1

k2
ď

c

3pm` kq

mk

-sub-Gaussian.

The last step uses the inequality

m´1
ÿ

i“0

1

pk ` iq2
“

ż m

0

1

pk ` xq2
dx`

m´1
ÿ

i“0

ˆ

1

pk ` iq2
´

ż i`1

x“i

1

pk ` xq
dx

˙

“
m

pk `mqk
`

m´1
ÿ

i“0

1

pk ` iq2pk ` i` 1q

ď
m

pk `mqk
`

1

k ` 1

m´1
ÿ

i“0

1

pk ` iq2

ď
mpk ` 1q

pk `mqk2

ď
2m

pk `mqk
.

B Proof of Theorem 1

With the Lemmas from the previous section, we can proof our main theorem.

Proof of Theorem 1. We follow the steps from the sketch.
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Step 1 We define the following shifted random variables.

R̃t :“ Rt ` µtpa˚q ´ µtpAtq

R̃is :“
ÿ

tPTs

ItAt “ aiuR̃t

∆D̃i
s :“

R̃˚s
N˚s

´
R̃is
N i
s

D̃spaiq :“
s
ÿ

k“1

mintN i
s, N

˚
s u∆D̃

i
k

∆̃spaiq :“
D̃spaiq

N˚,ipsq
.

The reward functions satisfy µtpa˚q ´ µtpatq ą ∆patq for all at. Therefore Rt ą R̃t ´∆pAtq. So
we can bound D˚,i

N˚,i
ą ∆paiq ` ∆̃spaiq and Di,˚

Ni,˚
ă ´∆paiq ´ ∆̃spaiq.

Define the events

Es :“

#

@i : |∆̃spaiq| ď

d

12 logp2KfpN˚,iqδ
´1
s q

N˚,i

+

, F :“
č

sě2

Es

and their complements Es,F .

According to lemma 1, ∆D̃i
s is

b

6
mintN˚s ,Nisu

-sub-Gaussian. So D̃spaiq is a sum of conditionally

σi-sub-Gaussian random variables, such that
řs
i“1 σ

2
i “ 6N˚,ipsq, Therefore we can apply Lemma 3.

For both cases δs “ 1
fptsq

and δs “ δ, the probability never increases in time.

P

«

Ds1 ě s : ∆̃s1paiq ě

d

12 logp2Kfpδs1qN˚,iq

δs1

ff

ď P

«

Ds1 ě s : D̃s1paiq ě N˚,i

d

12 logp2KfpN˚,iqδsq

N˚,i

ff

ď
δs
2K

.

Using a union bound over ˘D̃spaiq for ai P A, we get

PrEss ď δs and PrFs ď δ2.

step 2 We split the number of pulls in two categories: those that appear in rounds where the
confidence intervals hold, and those that appear in rounds where they fail: NE

t paiq “
řsptq
s1“1 ItEsuN i

s,
NE
t paiq “

řsptq
s1“1 ItEsuN i

s.

Ntpaiq ď NE
t paiq `N

E
t paiq

ErNE
t paiqs “ PrFsErNE

t paiq|Fs ` PrFsErNE
t paiq|Fs.

In the high probability case, we are with probability 1 ´ δ in the event F and NE
t paiq is 0. In the

setting of δs “ fptsq
´1, we can exclude the first round and start with s “ 2 and t2 “M ` 1. This is

because we do not use the confidence intervals in the first round.

ErNE
t paiqs ď

8
ÿ

s“2

ts`1 ´ ts
fptsq

ď

8
ÿ

s“1

M

fpMsq

ď
M

fpMq
`

8
ÿ

s“2

M

fpMsq
ď

1

2
`

8
ÿ

s“1

1

fpsq
ď

3

2

We use the fact that 1
fptsq

is monotonically decreasing, so the expression gets minimized if all rounds
are maximally long.
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Step 3: bounding ErNE
t paiq|Fs,ErNE

t paiq|Fs
Let s1 be the last round at which the arm ai is not eliminated. We claim that Ni,˚ at the beginning of

round s1 must be surely smaller or equal to 48
∆paiq2

ˆ

logp2Kδ´1
s1 q ` 4 logp

48 logp2Kδ´1

s1
q

∆paiq2
q

˙

. Assume

the opposite holds, then according to Lemma 2 with z “ 48
∆paiq2

and y “ logp2Kδ´1
s1 q:

48
∆paiq2

plogpfpNi,˚ps
1qqq ` logp2Kδ´1

s1 qq

Ni,˚ps1q
ă 1 ô

d

12 logp2KfpN˚,iqδ
´1
s q

N˚,i
ă

1

2
∆paiq.

So we have that

∆̂LCB
s1 paiq ě ∆paiq ´ 2

d

12 logp2KfpN˚,iqδ
´1
s q

N˚,i
ą 0,

and ai would have been excluded at the beginning of round s1, which is a contradiction.

Let Cpaiq denote the number of plays of ai in round s1. Then for the different cases we have:

NE
t paiq ´ Cpaiq ď

$

&

%

M ¨Ni,˚ps
1q, under the event F

2 ¨Ni,˚ps
1q, under the event F

Ni,˚ps
1q, if Ms “ |AA|

ÿ

a‰a˚

Cpaq ď

$

&

%

MK, under the event F
M logpKq `K, under the event F
K if Ms “ |AA|

The first case is trivial because each arm can only be played M times in a single round and
mintN i

s, N
˚
s u ě 1 in rounds with Es. The second case follows from the fact that a˚ is always

in set B under the event F . So N˚s ě maxt1, N i
s ´ 1u and mintN i

s, N
˚
s u ě

Nis
2 . The amount of

pulls in a single round is naturally bounded by r M
|B| s ďM . Given that under the event F , the set B

never resets and the set B only decreases if an arm is eliminated, we can bound

ÿ

ai‰a˚

Cpaiq ď
K
ÿ

i“2

r
M

i
s ďM logpKq `K.

Finally the last case follows trivially because in the case of Ms “ |AA|, we have N i
s “ N˚s “

Cpaiq “ 1.

Step 4: combining everything

In the high probability case, we have with probability at least 1´ δ:

Ntpaiq ď NE
t paiq `N

E
t paiq

ď 2Ni,˚ps
1q ` Cpaiq

ď
96

∆paq2

˜

logp2Kδ´1q ` 4 log

ˆ

48 logp2Kδ´1q

∆paq2

˙

¸

` Cpaiq

and also
ÿ

a‰a˚

Cpaq ďM logpKq `K.

If additionally Ms “ |AA|, then the bound improves to

Ntpaiq ď NE
t paiq `N

E
t paiq

ď Ni,˚ps
1q ` 1

ď
48

∆paq2

˜

logp2Kδ´1q ` 4 log

ˆ

48 logp2Kδ´1q

∆paq2

˙

¸

` 1.
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In the setting of δs “ fptsq
´1, we have

ErNE
t paiq ´ Cpaiqs ď 2Ni,˚ps

1q `
1

fpMq
MNi,˚ps

1q

ď
120

∆paq2

˜

logp2Kt log2
ptqq ` 4 log

ˆ

48 logp2Kt log2
ptqq

∆paq2

˙

¸

.

So

ErNtpaiqs ď ErCpaq `NE
t paiqs `

120

∆paq2

˜

logp2Kt log2
ptqq ` 4 log

ˆ

48 logp2Kt log2
ptqq

∆paq2

˙

¸

.

where
ÿ

a‰a˚

ErCpaq `NE
t paiqs ďM logpKq `K `

1

fpMq
MK `

3

2
K

ďM logpKq `
5

2
K.

Finally if additionally Ms “ |AA|, this bound improves to

ErNtpaiqs ď ErNE
t paiqs `N˚,ips

1q ` 1

ď
5

3
`

48

∆paq2

˜

logp2Kt log2
ptqq ` 4 log

ˆ

48 logp2Kt log2
ptqq

∆paq2

˙

¸

.

C Additional experiment

The winning probability is set to 0.95. All sub-optimal arms are identical

Figure 4: Comparison with identical gaps of 0.9. The results are averaged over 20 repetitions of the
experiment.
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