
A Proof of Theorem 1

Proof. In order to prove Thm. 1, we first need the following proposition about the confidence intervals
used in computing the optimistic reward r̃(s, a).

Proposition 2. Let assume ‖θ∗a‖2 ≤ B. If θ̂t,a is computed as in Eq. 4 and ct,a is defined as in Eq. 6,
then
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w. Using Thm. 2 of [1], we have with probability 1− δ,
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Thus for all s ∈ S we have,

|r(s, a)− r̂(s, a)| = |xTs,aθ̂t,a − xTs,aθ∗a| ≤ ‖xs,a‖V−1
t,a
‖θ̂a − θ∗a‖Vt,a .

Using δ = t−α

K
concludes the proof.

An immediate result of Prop. 2 is that the estimated average reward of π̃k in the optimistic MDP M̃k

is an upper-confidence bound on the optimal average reward, i.e., for any t (the probability follows
by a union bound over actions)

P
(
η∗ > ηπ̃k(M̃k)

)
≤ t−α. (7)

We are now ready to prove the main result.

Proof of Thm. 1. We follow similar steps as in [9]. We split the regret over episodes as

∆(A, T ) =

m∑
k=1

tk+1−1∑
t=tk

(
η∗ − r(st, at)

)
=

m∑
k=1

∆k.

Let Tk,a = {tk ≤ t < tk+1 : at = a} be the steps when action a is selected during episode k. We
upper bound the per-episode regret as

∆k =
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,

where the inequality directly follows from the event that η̃k ≥ η∗ (Eq. 7) with probability 1− T−α.
Notice that the low-probability event of failing confidence intervals can be treated as in [9].

We proceed by bounding the first term of Eq. 8. Unlike in the general online learning scenario, in
our setting the transition function f is known and thus the regret incurred from bad estimates of the
dynamics is reduced to zero. Furthermore, since we are dealing with deterministic MDPs, the optimal
policy converges to a loop over states. When starting a new policy, we may start from a state outside
its loop. Nonetheless, it is easy to verify that starting from any state s, it is always possible to reach
any desired state s′ in at most w steps (i.e., the size of the history window). As a result, within each
episode k the difference between the cumulative reward (

∑
t r̃k(st, a)) and the (optimistic) average

reward ((tk+1 − tk)η̃k) in the loop never exceeds w. Furthermore, since episodes terminate when
one action doubles its number of samples, using a similar proof as [9], we have that the number of
episodes is bounded as m ≤ K log2( 8T

K ). As a result, the contribution of the first term of Eq. 8 to the
overall regret is bounded as

m∑
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)
≤ Kw log2

(8T

K

)
. (8)
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The second term in Eq. 8 refers to the (cumulative) reward estimation error and it can be decomposed
as

|r̃k(st, a)− r(st, a)| ≤ |r̃k(st, a)− r̂k(st, a)|+ |r̂k(st, a)− r(st, a)|.

We can bound the cumulative sum of the second term as (similar for the first, since r̃k belongs to the
confidence interval of r̂k by construction)
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where the first inequality follows from Prop. 2 with probability 1− T−α, and Ta is the total number
of times a has been selected at step T . Let Ta = ∪kTk,a, then using Lemma 11 of [1], we have∑
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,

and by Lem. 10 of [1], we have
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which leads to
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.

Bringing all the terms together gives the regret bound.

B Experiments Details

Genre θ∗a,0 θ∗a,1 θ∗a,2 θ∗a,3 θ∗a,4 θ∗a,5
Action 3.1 0.54 -1.08 0.78 -0.22 0.02

Comedy 3.34 0.54 -1.08 0.78 -0.22 0.02
Adventure 3.51 0.86 -2.7 3.06 -1.46 0.24
Thriller 3.4 1.26 -2.9 2.76 -1.14 0.16
Drama 2.75 1.0 0.94 -1.86 0.94 -0.16

Children 3.52 0.1 0.0 -0.3 0.2 -0.04
Crime 3.37 0.32 1.12 -3.0 2.26 -0.54
Horror 3.54 -0.68 1.84 -2.04 0.82 -0.12
SciFi 3.3 0.64 -1.32 1.1 -0.38 0.02

Animation 3.4 1.38 -3.44 3.62 -1.62 0.24
Table 3: Reward parameters of each genre for the movielens experiment.

The parameters used in the MovieLens experiment are reported in Table 3.
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