
A MMC with Known Subspaces and Full Data

Remark 1 points out that if we knew the subspace(s) containing the columns in X, then LRMC and
HRMC become almost trivial problems, while MMC still remains challenging. To see this, recall
that by definition, the columns in a rank-r matrix lie in an r-dimensional subspace. Recall that xω

denotes the jth column of XΩ, observed only on the entries indexed by ω ⊂ {1, . . . , d}, and that

U
k ∈ R

d×r spans the subspace containing the columns of Xk.

Next suppose that all the entries in xω correspond to the same subspace (as would be the case in
HRMC and LRMC), and that we know U

1, . . . ,UK. Then we can project xω onto the subspaces
generated by U

1
ω
, . . . ,UK

ω
to determine which subspace xω corresponds to. Say it is Uk. Then we

can compute the coefficient of xω as θ = (UkT
ω
U

k
ω
)−1

U
kT
ω
xω . Since the coefficient of x is the

same as the coefficient of xω , we can recover x = U
k
θ.

In contrast, in MMC the entries in xω may belong to multiple subspaces, and hence, even if we know
U

1, . . . ,UK, we cannot just project to identify the subspace corresponding to xω (if xω has entries
from more than one subspace, it will not lie in any of the K subspaces). Hence, MMC can be very
challenging even if we know U

1, . . . ,UK. This can be seen in our experiments. In particular pay
attention to the bottom row in Figure 2, which shows the MMC error when U

1, . . . ,UK are known.

Similarly, MMC is difficult even if X is fully observed! To build some intuition, consider HRMC.
If no data is missing, HRMC simplifies to subspace clustering (SC) [53], which has been studied
extensively in recent years to produce theory and algorithms to handle gross errors [54–58], noise
[59], privacy [60] and data constraints [61]. Furthermore, the renowned state-of-the-art algorithm
sparse subspace clustering [62], can efficiently, accurately and provably perform SC. Hence, if X is
fully observed, HRMC is well understood.

In contrast, even if X is fully observed, MMC remains MMC, because we still do not know which
entries belong together, and because for each entry in X that we observe, there are K − 1 that we
do not. For example, if we observe an entry of X corresponding to X

1, we still do not know that it
belongs to X

1, and we still need to recover the corresponding entries of X2, . . . ,XK. Furthermore,
as we discussed above, and in Section 5, even if U1, . . . ,UK were known, identifying the entries
that agree with the subspace is not a trivial problem. Hence, MMC remains a challenging problem
even with full data. This can be seen in our experiments. In particular pay attention to the last column
in Figure 2, which shows the MMC error when X is fully observed.

B Proofs

As discussed in Section 3, the main subtlety in MMC is that since we do not know a priori which
entries of XΩ correspond to each X

k, there could arise false mixtures that agree with XΩ. Fortunately,
Theorem 3 in [4] gives conditions to guarantee that a subset of entries correspond to the same X

k.
We restate this result as the following Lemma, with some adaptations to our context.

Lemma 1 (Theorem 3 in [4]). Let A2 hold. Let X′,Xτ be matrices formed with disjoint subsets of
the columns in X. Let Ω′,Ωτ indicate subsets of the observed entries in X

′ and X
τ with at least

r + 1 samples per column. Suppose there are only finitely many rank-r matrices that agree with X
′

Ω′ ,

and that Ωτ ∈ {0, 1}d×(d−r+1) satisfies condition (†) in Theorem 1. If there is a rank-r matrix that
agrees with [X′

Ω′ X
τ

Ωτ
], then such matrix is unique, and all entries in [X′

Ω′ X
τ

Ωτ
] correspond to the

same X
k.

The main insight behind Lemma 1 is that the observed entries in X
′

Ω′ impose restrictions on the rank-r
matrices that may agree with the observations. The restrictions produced by X

′

Ω′ may be enough
to narrow the possible solutions to a finite number of options. However, some of these restrictions
may come from X

1, others from X
2, and so on. In such case, it is possible that the combined

restrictions are compatible, leading to false rank-r matrices that agree with X
′

Ω′ . Incorporating
X

τ

Ωτ
adds more restrictions. The sampling pattern in Ωτ guarantees that the new restrictions will

add enough redundancy, such that if the restrictions do not come from the same X
k, they will be

inconsistent, implying that no rank-r matrix can possibly agree with [X′

Ω′ X
τ

Ωτ
]. Intuitively, Xτ

Ωτ

works as a checksum matrix.
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Lemma 1 requires that X′

Ω′ is finitely completable. Theorem 1 and Lemma 1 in [3] give conditions
on Ω

′ to guarantee that this is the case. We combine these results in the following Lemma, with some
adaptations to our context.

Lemma 2 (Theorem 1 and Lemma 1 in [3]). Let A2 hold. Suppose Ω
′ can be partitioned into r

matrices {Ωτ}τ=1
r, each of size d × (d − r + 1), such that condition (†) in Theorem 1 holds for

every τ . Then there are at most finitely many rank-r matrices that agree with X
′

Ω′ .

To summarize: Lemma 2 gives us conditions to guarantee that there are only finitely many rank-r
matrices that agree with a subset of entries. If these conditions are met, Lemma 1 provides further
conditions to guarantee that there is only one such rank-r matrix, and that all observations come from
the same X

k. Theorem 1 simply requires that each Ω
k satisfies the conditions of Lemmas 1 and

2. This way, we can just exhaustively search for all combinations of samplings that satisfy these
conditions, knowing by assumption that we will eventually find Ω

1, . . . ,ΩK. Then Lemmas 1 and
2 guarantee that we will be able to recover X1, . . . ,XK, and that we will find nothing else, i.e., no
false mixtures.

Proof of Theorem 1. We will exhaustively search all combinations of samplings Ω̃ with (r+ 1)(d−

r + 1) columns of Ω and r + 1 non-zero entries per column. For each such Ω̃ we will verify whether
it can be partitioned into matrices {Ωτ}τ=1

r+1 satisfying (†). If so, we will verify whether there is a

rank-r matrix that agrees with X̃
Ω̃

. In this case, Lemma 2 implies that X̃
Ω̃

is finitely completable

(because {Ωτ}τ=1
r satisfy (†)). Furthermore, since Ω

r+1 also satisfies (†), Lemma 1 implies that

X̃
Ω̃

is uniquely completable, and that all its entries correspond to the same X
k. It follows that Xk is

the only rank-r matrix that agrees with X̃
Ω̃

.

By assumption, each Ω
k can be partitioned into matrices {Ωτ}τ=1

r+1 satisfying (†). Hence the
output of the procedure above will partition XΩ into XΩ1 , . . . ,XΩK . By A1 each column in XΩk

has either 0 or r + 1 observations, so by Lemmas 1 and 2 we can recover all columns of Xk that have
observations in XΩ using LRMC techniques [3].

We now proceed to prove Theorem 2, which states that if an entry of Xk is observed with probability
p = O( 1d max{r, log d}), then with high probability Ω

k will satisfy the combinatorial conditions

of Theorem 1, guaranteeing that Xk is identifiable. To this end, we will use the following lemma,
stating that if Xk is observed on enough entries per column, then it will satisfy the combinatorial
conditions of Theorem 2.

Lemma 3. Suppose r ≤ d
6 . Let ǫ > 0 be given. Suppose that Xk has at least (r + 1)(d − r + 1)

columns, each observed on at least m locations, distributed uniformly at random, and independently
across columns, with

m ≥ max
{

2r, 12
(

log(d
ǫ
) + 1

)}

. (3)

Then with probability at least 1− (r + 1)ǫ, Ωk satisfies the sampling conditions of Theorem 1.

Fortunately, we can prove Lemma 3 using Lemma 9 in [3], which we restate here with some
adaptations as follows.

Lemma 4. [Lemma 9 in [3]] Let the sampling assumptions of Lemma 3 hold. Let Ωτ−j be a matrix

formed with d− r columns of Ωk. Then with probability at least 1− ǫ

d , every matrix Ω′ formed with
a subset of the columns in Ωτ−j (including Ωτ−j) has at least r fewer columns than non-zero rows.

With Lemma 4, the proof of Lemma 3 follows by two union bounds.

Proof of Lemma 3. Randomly select r + 1 disjoint matrices {Ωτ}
r+1
τ=1 from Ω

k, each with d− r + 1
columns. Let Ωτ−j denote the matrix formed with all but the jth column of Ωτ . Using a union bound

and Lemma 4, we can bound the probability that Ωτ fails to satisfy condition (†) by
∑d−r+1

j=1
ǫ

d ≤
∑d

j=1
ǫ

d < ǫ. Using an additional union bound, we can bound the probability that some Ωτ fails to

satisfy condition (†) by (r + 1)ǫ, as desired.

All that remains is to show that if an entry of Xk is observed with probability p as in Theorem 2, then
X

k will be observed on enough entries per column. We show this using a simple Chernoff bound.
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Proof of Theorem 2. Let m be the number of observations in a column of Xk. Since an entry of Xk

is observed with probability p, then E[m] = dp, so using the multiplicative form of the Chernoff
bound with β = 1/2 we get:

P

(

m ≤
1

2
dp

)

= P

(

m ≤ (1− β)E[m]
)

≤ e−
β2

2
E[m] = e−

1

8
dp ≤

ǫ

d
,

where the last inequality follows because p ≥ 8
d log d

ǫ
by assumption. This shows that with probability

≥ 1− ǫ

d , a column in X
k will have at least dp

2 = m observations, with m as in (3). Using a union
bound on (r + 1)d columns, we conclude that with probability ≥ 1 − (r + 1)ǫ, at least (r + 1)d
columns of Xk will have m or more observations, distributed uniformly at random, as required by
Lemma 3, which in turn implies that Ωk will satisfy the conditions of Theorem 1 with probability
≥ 1− 2(r + 1)ǫ, as claimed.

To guarantee that each X
k is observed with probability p, we can simply sample uniformly among

X
1, . . . ,XK with probability Kp, and hence we conclude that the sample complexity of MMC is

O(Kd max{r, log d}), as claimed.

Remark 3. Notice that we cannot apply Lemma 3 directly instead of Theorem 2, because if we
sample m entries selected uniformly at random from each column of Xk, there could be collisions
between multiple matrices in the mixture, which we do not allow, because that would imply observing
two values for the same entry in XΩ.

C More about our Assumptions

Essentially, A2 requires that X is a generic mixture of low-rank matrices. There are several equivalent
ways to interpret A1. For instance, A2 requires that the columns in X

k are drawn independently
according to an absolutely continuous distribution with respect to the Lebesgue measure on an
r-dimensional subspace in general position. Alternatively, recall that every rank-r matrix X

k ∈ R
d×n

can be expressed as Uk
Θ

k, where U
k ∈ R

d×r and Θ ∈ R
r×n. A2 equivalently requires that the

entries in U
k and Θ

k are drawn independently according to an absolutely continuous distribution
with respect to the Lebesgue measure on R.

A2 discards pathological cases, like matrices with identical columns or exact-zero entries, which
appear with zero-probability under A2. For instance, backgrounds in natural images can be highly
structured but are not perfectly constant, as there is always some degree of natural variation that is
reasonably modeled by an absolutely continuous (but possibly highly inhomogeneous) distribution.
For example, the sky in a natural image might be strongly biased towards blue values, but each sky
pixel will have at least small variations that will make the sky not perfectly constant blue. So while
these are structured images, these variations make them generic enough so that our theoretical results
are applicable.

Furthermore, since absolutely continuous distributions may be strongly inhomogeneous, they can be
used to represent highly coherent matrices (that is, matrices whose underlying subspace is highly
aligned with the canonical axes). Typical completion theory [1, 2, 5–20, 35, 36] cannot handle some
of the highly coherent cases that our new theory covers.

However, we point out that A2 does not imply coherence nor vice-versa. For example, coherence
assumptions indeed allow some identical columns, or exact-zero entries. However, they rule-out
cases that our theory allows. For example, consider a case where a few rows of Uk are drawn
i.i.d. N(0, σ1

2) and many rows of Uk are drawn i.i.d. N(0, σ2
2), with σ1 ≫ σ2. This is a good

model for some microscopy and astronomical applications that have a few high-intensity pixels, and
many low-intensity pixels. Such U

k would yield a highly coherent matrix, which typical theory and
algorithms cannot handle, while ours can. To sum up, our assumptions are different, not stronger nor
weaker than the usual coherence assumptions [1, 2, 5–20, 35, 36], and we believe they are also more
reasonable in many practical applications.

D Fine Tuning AMMC

Section 5 presents our alternating algorithm for MMC, summarized in Algorithm 1 below. Like other
mixture problems, MMC is highly non-convex, and can be quite challenging in practice. In fact, to
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date, there exist no provable practical algorithms for even the simplest mixture problems. Arguably
the most common approach is to use alternating EM-type algorithms [16–19, 67–69], which can only
be guaranteed to converge to a local optimum, but perform well in practice. Like these algorithms,
AMMC also suffers from local minima. Consequently, its performance depends on initialization. In
similar classification problems, it is usually convenient to initialize centers as far as possible. In our
case, the centers are the subspaces containing the columns of the matrices in the mixture. Following
these ideas, we initialize AMMC with random subspaces as orthogonal as possible.

In addition to initialization, AMMC can be further tailored to specific settings (e.g., noise) by making
small adaptations. For example, suppose instead of XΩ we observe

XΩ + ZΩ,

where Z represents a noise matrix with zero-mean and variance σ2. Then, in step 4 of AMMC we

can keep erasing entries of ω until all the entries in x
υ

k are within σ2 from Û
k. Alternatively, one

can keep in υ
k only the m entries of ω indicating the entries of xω that are most likely to correspond

to X
k, where m is a tuning parameter.

Similarly, when clustering in step 7, we can keep in Ω̂
k only the entries of XΩ that are within σ2

from X̂
k. Alternatively, we can keep in each Ω̂

k only the M entries corresponding to the entries of

XΩ that are most likely to correspond to X̂
k, where M is a tuning parameter that works as proxy

of the noise. At the end of the procedure, the entries that not assigned to any Ω̂
k can be considered

outliers, thus providing a robust version of MMC. In fact, this is precisely the approach that we use in
our background segmentation experiments in section 6.

Finally, if there is some side information about Xk, it may be beneficial to use a particular LRMC
algorithm in step 8 of AMMC. For example, a two-phase sampling procedure [14] may be better if Xk

is coherent. On the other hand, the inexact augmented lagrange multiplier method for LRMC [35, 36]
is faster. Iterative hard singular value thresholding [13] is easily implemented and often has similar
performance as others [3]. Soft singular value thresholding [6] is better understood and has stronger
theoretical guarantees. There are many other methods for LRMC, like OptSpace [7], GROUSE [8],
FPCA [10], alternating minimization [16], and LMaFit [11, 12], to name a few. Depending on X

k, it
may be better to use one LRMC method or an other in step 8 of AMMC.

Algorithm 1: Alternating Mixture Matrix Completion (AMMC).

1. input: Partially observed data matrix XΩ.

2. initialize: Guess Û1, . . . , ÛK ∈ R
d×r.

repeat
CLUSTER:
for j = 1, . . . , n, and k = 1, . . . ,K do

3. xω = jth column of XΩ.
4. Erase entries from ω to obtain υ

k ⊂ ω indicating entries likely to correspond to X
k.

5. Estimate coefficient of jth column of Xk:

θ̂
k = (ÛkT

υ
kÛ

k
υ

k)
−1

Û
kT
υ

kxυ
k .

6. The jth column of X̂k
Ω

is given by x̂
k
ω

= Û
k
ω
θ̂
k.

end for
7. Cluster the entries of XΩ according to their closest match among X̂

1
Ω
, . . . , X̂K

Ω

7.. to produce Ω̂
1, . . . , Ω̂K.

COMPLETE:
for k = 1, . . . ,K do

8. Complete X
Ω̂

k using LRMC to obtain X̂
k.

9. Ûk = leading r singular vectors of X̂k.
end for

until convergence.

10. output: Completed matrices X̂1, . . . , X̂K.
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E More Real Data Results

In Section 6 we gave one example of two images from the Yale B [64] dataset being reconstructed
from a single mixture. Figure 4 shows more results. Section 6 also shows the segmented foreground
of a video frame from the. Figure 5 shows more results from the Wallflower [65] and the I2R [66]
datasets.
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Figure 4: Top: Mixture matrix X, containing pixels from two face images. Bottom 2: Low-rank matrices X̂1

and X̂
2 recovered from X.
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Original ————- Robust PCA ————- ——— AMMC (this paper) ———

Figure 5: Video frames segmented into background and foreground using Robust PCA (displaying the best
results amongst [35–39]) and AMMC.
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