
6 Supplement

6.1 Smoothing lemma

In this section, we show that adding the strongly convex term on the primal indeed gives a smoothed
dual.
Lemma 6.1. Let f

µ

(x) be defined as above and let g
i

: X ! R, i = 1, 2, · · · , N be a sequence
of G-Lipschitz continuous convex functions, i.e. kg(x) � g(y)k  Gkx � yk, 8x,y 2 X , where
g(x) = [g

1

(x), . . . , g
N

(x)]. Then, the Lagrange dual function

d
µ

(�) := max

x2X
�h�,g(x)i � f

µ

(x), � 2 RN

is smooth with modulus G2/µ. In particular, if g(x) = Ax� b, then, the smooth modulus is equal
to �

max

(A

T

A)/µ, where �
max

(A

T

A) denotes the maximum eigenvalue of AT

A.

This proof of this lemma is rather standard (see also proof of Lemma 6 of Yu and Neely (2018)) and
the special case of g(x) = Ax� b can also be derived from Fenchel duality (Beck et al. (2014)).

Proof of Lemma 6.1. First of all, note that the function h
�

(x) = �h�,g(x)i � f
µ

(x) is strongly
concave, it follows that there exists a unique minimizer x(�) := argmax

x2Xh
�

(x). By Danskin’s
theorem (see Bertsekas (1999) for details), we have for any � 2 RN ,

rd
µ

(�) = g(x(�)).

Now, consider any �
1

,�
2

2 RN , we have

krd
µ

(�
1

)�rd
µ

(�
2

)k = kg(x(�
1

))� g(x(�
2

))k  Gkx(�
1

)� x(�
2

)k. (19)

where the equality follows from Danskin’s Theorem and the inequality follows from Lipschitz
continuity of g(x). Again, by the fact that h

µ

(x) is strongly concave with modulus µ,

h
�

1

(x(�
2

))  h
�

1

(x(�
1

))� µ

2

kx(�
1

)� x(�
2

)k2,

h
�

2

(x(�
1

))  h
�

2

(x(�
2

))� µ

2

kx(�
1

)� x(�
2

)k2,

which implies

�h�
1

,g(x(�
2

))i � f
µ

(x(�
2

))  �h�
1

,g(x(�
1

))i � f
µ

(x(�
1

))� µ

2

kx(�
1

)� x(�
2

)k2,

�h�
2

,g(x(�
1

))i � f
µ

(x(�
1

))  �h�
2

,g(x(�
2

)i � f
µ

(x(�
2

))� µ

2

kx(�
1

)� x(�
2

)k2.

Adding the two inequalities gives

µkx(�
1

))� x(�
2

))k2 h�
1

� �
2

,g(x(�
1

))� g(x(�
2

))i
k�

1

� �
2

k · kg(x(�
1

))� g(x(�
2

))k
Gk�

1

� �
2

k · kx(�
1

))� x(�
2

))k,
where the last inequality follows from Lipschitz continuity of g(x) again. This implies

kx(�
1

)� x(�
2

)k  G

µ
k�

1

� �
2

k.

Combining this inequality with (19) gives

krd
µ

(�
1

)�rd
µ

(�
2

)k  G2

µ
k�

1

� �
2

k,

finishing the first part of the proof. The second part of the claim follows easily from the fact that
kAx�Ayk  p

�
max

(A

T

A)kx� yk.
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6.2 Proof of Theorem 3.1

In this section, we give a convergence time proof of each stage. As a preliminary, we have the
following basic lemma which bounds the perturbation of the Lagrange dual due to the primal
smoothing.
Lemma 6.2. Let F (�) and F

µ

(�) be functions defined in (6) and (11), respectively. Then, we have
for any � 2 RN ,

0  F (�)� F
µ

(�)  µD2/2

and
0  F (�⇤

)� F
µ

(�⇤
µ

)  µD2/2,

for any �⇤ 2 ⇤

⇤ and �⇤
µ

2 ⇤

⇤
µ

.

Proof of Lemma 6.2. First of all, for any � 2 RN , define

h(x) := �h�,Ax� bi � f(x),

h
µ

(x) := �h�,Ax� bi � f
µ

(x).

Then, let

x(�) 2 argmax
x2X h(x),

x

µ

(�) 2 argmax
x2X h

µ

(x),

and we have for any � 2 RN ,

F (�)� F
µ

(�) =h(x(�))� h
µ

(x

µ

(�))

=h(x(�))� h
µ

(x(�)) + h
µ

(x(�))� h
µ

(x

µ

(�))

h(x(�))� h
µ

(x(�))

=f
µ

(x(�))� f(x(�))  µD2/2,

where the first inequality follows from the fact that x
µ

(�) maximizes h
µ

(�). Similarly, we have

F
µ

(�)� F (�) =h
µ

(x

µ

(�))� h(x(�))

=h
µ

(x

µ

(�))� h(x
µ

(�)) + h(x
µ

(�))� h(x(�))

h
µ

(x

µ

(�))� h(x
µ

(�))

=f(x(�))� f
µ

(x(�))  0,

where the first inequality follows from the fact that x(�) maximizes h(�). Furthermore, we have

F (�⇤
)� F

µ

(�⇤
µ

) = F (�⇤
)� F (�⇤

µ

) + F (�⇤
µ

)� F
µ

(�⇤
µ

)  F (�⇤
µ

)� F
µ

(�⇤
µ

)  µD2/2,

F
µ

(�⇤
µ

)� F (�⇤
) = F

µ

(�⇤
µ

)� F
µ

(�⇤
) + F

µ

(�⇤
)� F (�⇤

)  F
µ

(�⇤
)� F (�⇤

)  0,

finishing the proof.

To prove Theorem 3.1, we start by rewriting the primal-dual smoothing algorithm (Algorithm 1)
as the Nesterov’s accelerated gradient algorithm on the smoothed dual function F

µ

(�): For any
t = 0, 1, · · · , T � 1,

8

>

<

>

:

b�
t

= �
t

+ ✓
t

(✓�1

t�1

� 1)(�
t

� �
t�1

)

�
t+1

=

b�
t

� µrF
µ

(

b�
t

)

✓
t+1

=

p
✓

4

t+4✓

2

t�✓

2

t

2

(20)

where we use Danskin’s Theorem to claim that rF
µ

(

b�
t

) = b � Ax(

b�
t

). As t ! 1, we have
✓t

✓t�1

=

p
1� ✓

t

! 1. Classical results on the convergence time of accelerated gradient methods are
as follows:
Theorem 6.1 (Theorem 1 of Tseng (2010)). Consider the algorithm (20) starting from �

0

= ��1

=

e�.
For any � 2 RN , we have

F
µ

(�
t

)  F
µ

(�) + ✓2
t�1

�
max

(A

T

A)k�� e�k2
µ

, (21)
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Furthermore, for any slot t 2 {0, 1, 2, · · · , T � 1},

F
µ

(�
t+1

)  (1� ✓
t

)

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�
t

� b�
t

E⌘

+ ✓
t

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�� b�
t

E⌘

+

✓2
t

�
max

(A

T

A)

2µ

�k�� z

t

k2 � k�� z

t+1

k2� , (22)

where z

t

= �(✓�1

t

� 1)�
t

+ ✓�1

t

b�
t

.

This theorem bounds the convergence time of the dual function. Our goal is to pass this dual
convergence result to that of primal objective and constraint. Specifically, we aim to show the
following primal objective bound and constraint violation:

To prove Theorem 3.1, we start by proving the following bound:

Lemma 6.3. Consider running Algorithm 1 with a given initial condition e� in RN . For any � 2 RN ,
we have

f
µ

(x

T

)� hb�Ax

T

,�i � f⇤
µ

 �
max

(A

T

A)

2µS
T

⇣

k�� e�k2 � k�� z

T

k2
⌘

, (23)

where z

T

is defined in Theorem 6.1,

f⇤
µ

:= min

Ax�b=0, x2X
f
µ

(x), x

T

:=

1

S
T

T�1

X

t=0

x(

b�
t

)

✓
t

,

Proof of Lemma 6.3. First, subtracting F
µ

(�⇤
µ

) from both sides of (22) in Theorem 6.1, we have for
any � 2 RN and any t 2 {0, 1, 2, · · · , T � 1},

F
µ

(�
t+1

)� F
µ

(�⇤
µ

) (1� ✓
t

)

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�
t

� b�
t

E

� F
µ

(�⇤
µ

)

⌘

+ ✓
t

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�� b�
t

E

� F
µ

(�⇤
µ

)

⌘

+

✓2
t

�
max

(A

T

A)

2µ

�k�� z

t

k2 � k�� z

t+1

k2�

(1� ✓
t

)

�

F
µ

(�
t

)� F
µ

(�⇤
µ

)

�

+ ✓
t

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�� b�
t

E

� F
µ

(�⇤
µ

)

⌘

+

✓2
t

�
max

(A

T

A)

2µ

�k�� z

t

k2 � k�� z

t+1

k2� ,

where the second inequality follows from the convexity of F
µ

that F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�
t

� b�
t

E


F
µ

(�
t

). Dividing ✓2
t

from both sides gives 8t � 1,

1

✓2
t

�

F
µ

(�
t+1

)� F
µ

(�⇤
µ

)

� 1� ✓
t

✓2
t

�

F
µ

(�
t

)� F
µ

(�⇤
µ

)

�

+

1

✓
t

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�� b�
t

E

� F
µ

(�⇤
µ

)

⌘

+

�
max

(A

T

A)

2µ

�k�� z

t

k2 � k�� z

t+1

k2�

=

1

✓2
t�1

�

F
µ

(�
t

)� F
µ

(�⇤
µ

)

�

+

1

✓
t

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�� b�
t

E

� F
µ

(�⇤
µ

)

⌘

+

�
max

(A

T

A)

2µ

�k�� z

t

k2 � k�� z

t+1

k2� , (24)

where the last equality uses the identity (1� ✓
t

)/✓2
t

= 1/✓2
t�1

. On the other hand, applying equation
(24) at t = 0 and using ✓

0

= ✓�1

= 1 gives (1� ✓
0

)/✓2
0

= 0 and
1

✓2
0

�

F
µ

(�
1

)� F
µ

(�⇤
µ

)

�  1

✓
0

⇣

F
µ

(

b�
0

) +

D

rF
µ

(

b�
t

),�� b�
0

E

� F
µ

(�⇤
µ

)

⌘

+

�
max

(A

T

A)

2µ

�k�� z

0

k2 � k�� z

1

k2� .
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Taking telescoping sums from both sides from t = 0 to t = T � 1 gives

0  1

✓2
T�1

�

F
µ

(�
T

)� F
µ

(�⇤
µ

)

� 
T�1

X

t=0

1

✓
t

⇣

F
µ

(

b�
t

) +

D

rF
µ

(

b�
t

),�� b�
t

E

� F
µ

(�⇤
µ

)

⌘

+

�
max

(A

T

A)

2µ

�k�� z

0

k2 � k�� z

T

k2� .
By Assumption 2.1(a), the feasible set {Ax� b = 0} is not empty, and thus, strong duality holds
for problem

min

Ax�b=0, x2X
f
µ

(x)

(See, for example Proposition 5.3.1 of Bertsekas (2009)), and we have F
µ

(�⇤
µ

) = �f⇤
µ

. Since

rF
µ

(

b�
t

) = b�Ax(

b�
t

), F
µ

(

b�
t

) =

D

b�
t

,b�Ax(

b�
t

)

E

� f
µ

(x(

b�
t

)),

it follows,

0 
T�1

X

t=0

1

✓
t

⇣D

b�
t

,b�Ax(

b�
t

)

E

� f
µ

(x(

b�
t

)) +

D

b�Ax(

b�
t

),�� b�
t

E

+ f⇤
µ

⌘

+

�
max

(A

T

A)

2µ

�k�� z

0

k2 � k�� z

T

k2�

=

T�1

X

t=0

1

✓
t

⇣

�f
µ

(x(

b�
t

)) +

D

b�Ax(

b�
t

),�
E

+ f⇤
µ

⌘

+

�
max

(A

T

A)

2µ

�k�� z

0

k2 � k�� z

T

k2�

Rearranging the terms and divding S
T

=

P

T�1

t=0

1

✓t
from both sides,

1

S
T

T�1

X

t=0

1

✓
t

⇣

f
µ

(x(

b�
t

))�
D

b�Ax(

b�
t

),�
E

� f⇤
µ

⌘

 �
max

(A

T

A)

2µS
T

�k�� z

0

k2 � k�� z

T

k2� .

Note that z
0

=

e� by the definition of z
t

. By Jensen’s inequality, we can move the weighted average
inside the function f

µ

and finish the proof.

Proof of Theorem 3.1. First of all, we have by definition of ⇤⇤
µ

in (12) and strong duality, for any
�⇤
µ

2 ⇤

⇤
µ

,
f
µ

(x

T

) +

⌦

Ax

T

� b,�⇤
µ

↵ � f⇤
µ

.

Substituting this bound into (23) gives
⌦

Ax

T

� b,�� �⇤
µ

↵  �
max

(A

T

A)

2µS
T

⇣

k�� e�k2 � k�� z

T

k2
⌘

 �
max

(A

T

A)

2µS
T

k�� e�k2.

Since this holds for any � 2 RN , the following holds:

max

�2RN



⌦

Ax

T

� b,�� �⇤
µ

↵� �
max

(A

T

A)

2µS
T

k�� e�k2
�

 0.

The maximum is attained at � =

e�+

µST

�

max

(A

T
A)

(Ax

T

� b), which implies,
D

Ax

T

� b, e�� �⇤
µ

E

+

µS
T

2�
max

(A

T

A)

kAx

T

� bk2  0.

)
D

Ax

T

� b,P
A

⇣

e�� �⇤
µ

⌘E

+

µS
T

2�
max

(A

T

A)

kAx

T

� bk2  0,

where we used the fact that Ax

T

� b = P
A

(Ax

T

� b) because b is in the column space of A. By
Cauchy-Schwarz inequality, we have

µS
T

2�
max

(A

T

A)

kAx

T

� bk2  kAx

T

� bk · kP
A

⇣

e�� �⇤
µ

⌘

k

)kAx

T

� bk  2�
max

(A

T

A)

µS
T

kP
A

⇣

e�� �⇤
µ

⌘

k.
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Let e�⇤
= argmin

�

⇤2⇤

⇤k�⇤ � e�k, by triangle inequality,

kAx

T

� bk 2�
max

(A

T

A)

µS
T

⇣

kP
A

⇣

e�� e�⇤
⌘

k+ kP
A

⇣

e�⇤ � �⇤
µ

⌘

k
⌘

2�
max

(A

T

A)

µS
T

⇣

ke�� e�⇤k+ kP
A

⇣

e�⇤ � �⇤
µ

⌘

k
⌘

,

where the second inequality follows from the non-expansiveness of the projection. Now we look at
the second term on the right hand side of the above inequality, Using Assumption 2.1(d), there exists
a unique vector ⌫⇤ such that P

A

�⇤
= ⌫⇤, 8�⇤ 2 ⇤

⇤. Thus,

kP
A

⇣

e�⇤ � �⇤
µ

⌘

k = k⌫⇤ � P
A

�⇤
µ

k = min

�

⇤2⇤:PA�

⇤
=⌫

⇤
kP

A

�

�⇤ � �⇤
µ

� k
 min

�

⇤2RN
:PA�

⇤
=⌫

⇤
k�⇤ � �⇤

µ

k = dist(�⇤
µ

,⇤⇤
).

Thus, we get the constraint violation bound

kAx

T

� bk  2�
max

(A

T

A)

µS
T

⇣

ke�� e�⇤k+ dist(�⇤
µ

,⇤⇤
)

⌘

.

To get the objective suboptimality bound, we start from (23) again. Substituting � =

e�⇤
=

argmin
�

⇤2⇤

⇤k�⇤ � e�k into (23) gives

f
µ

(x

T

)�
D

b�Ax

T

, e�⇤
E

�f⇤
µ

 �
max

(A

T

A)

2µS
T

⇣

ke�⇤ � e�k2 � ke�⇤ � z

T

k2
⌘

 �
max

(A

T

A)

2µS
T

ke�⇤�e�k2.

By Cauchy-Schwarz inequality and the fact that Ax

T

� b = P
A

(Ax

T

� b), we have

f
µ

(x

T

)� f⇤
µ

 kb�Ax

T

kkP
A

e�⇤k+ �
max

(A

T

A)

2µS
T

ke�⇤ � e�k2.

By the fact that f(x
T

)  f
µ

(x

T

)  f(x
T

) +

µ

2

D2, and the fact that �f⇤
µ

= F
µ

(�⇤
µ

) � F (�⇤
) �

µ

2

D2

= �f⇤ � µ

2

D2 (from Lemma 6.2), we obtain

f(x
T

)� f⇤  kb�Ax

T

kkP
A

e�⇤k+ �
max

(A

T

A)

2µS
T

ke�⇤ � e�k2 + µ

2

D2,

finishing the proof.

6.3 Proof of Theorem 3.2

In this section, we give an analysis of the proposed homotopy method building upon the previous
results on the primal-dual smoothing. Our improved convergence time analysis under such a homotopy
method is built upon previous results, notably the following lemma:
Lemma 6.4 (Yang and Lin (2015)). Consider any convex function F : RN ! R such that the set of
optimal points ⇤⇤ defined in (8) is non-empty. Then, for any � 2 RN and any " > 0,

k�� �†
"

k  dist(�†
"

,⇤⇤
)

"

�

F (�)� F (�†
"

)

�

,

where �†
"

:= argmin
�"2S"

k�� �
"

k, and S
"

is the "-sublevel set defined in (7).

We start with the following easy corollary of Theorem 6.1.
Corollary 6.1. Suppose {�

t

}T
t=0

is the sequence produced by Algorithm 1 with the initial condition
�
0

= ��1

=

e�, then, for any � 2 RN , we have

F (�
t

)  F (�) + ✓2
t�1

�
max

(A

T

A)k�� e�k2
µ

+

D2

2

µ, (25)

The proof of this corollary is obvious combining (21) of Theorem 6.1 with Lemma 6.2.

The following result, which bounds the convergence time of the dual function, is proved via induction.
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Lemma 6.5. Suppose the assumptions in Theorem 3.2 hold. Let
�

�(k)

 

K

k=0

be generated from
Algorithm 2. For any k = 0, 1, 2, · · · ,K, we have

F (�(k)

)� F ⇤  "
k

+ ",

where "
k

= "
0

/2k.

Proof of Lemma 6.5. First of all, for k = 0, we have �(0)

= 0 and

F (�(0)

) = �max

x2X
f(x)  M,

thus, F (�(0)

) � F ⇤  2M  "
0

+ ", by the assumption that 2M  "
0

in Theorem 3.2. Now for
any k > 0, let �(k�1)

"

2 S
"

be the closest point to �(k�1) specified in Algorithm 2, i.e. �(k�1)

"

=

argmin
�"2S"

k�
"

� �(k�1)k. Suppose the claim holds for (k � 1)-th stage, where k > 0, then,
consider the k-th stage.

1. If F (�(k�1)

) � F ⇤  ", then, �(k�1) 2 S
"

, thus, k�(k�1)

"

� �(k�1)k = 0. By (25) with
e� = �(k�1) from Algorithm 2 and � chosen to be �

(k�1)

"

, we have

F (�(k)

)� F (�(k�1)

"

)  D2

2

µ
k

 "
k

2

,

Thus, it follows, F (�(k)

)� F ⇤
= F (�(k)

)� F (�
(k�1)

"

) + F (�
(k�1)

"

)� F ⇤  "
k

+ ".

2. If F (�(k�1)

)� F ⇤ > ", then, �(k�1) 62 S
"

and we claim that

F (�(k�1)

"

)� F ⇤
= ". (26)

Indeed, suppose on the contrary, F (�
(k�1)

"

)�F ⇤ < ", then, by the continuity of the function
F , there exists ↵ 2 (0, 1) and �0

= ↵�
(k�1)

"

+(1�↵)�(k�1) such that F (�0
)�F ⇤

= ", i.e.
�0 2 S

"

, and k�(k�1) � �0k = ↵k�(k�1) � �
(k�1)

"

k < k�(k�1) � �
(k�1)

"

k, contradicting
the fact that �(k�1)

"

= argmin
�"2S"

k�
"

� �(k�1)k.

On the other hand, by induction hypothesis, we have

F (�(k�1)

)� F ⇤  "
k�1

+ ",

which, combining with (26), implies F (�(k�1)

)� F (�
(k�1)

"

)  "
k�1

, and by Lemma 6.4,

k�(k�1) � �(k�1)

"

k  dist(�(k�1)

"

,⇤⇤
)

"

⇣

F (�(k�1)

)� F (�(k�1)

"

)

⌘


C

�

⇣

F (�
(k�1)

"

)� F ⇤
⌘

�

⇣

F (�(k�1)

)� F (�
(k�1)

"

)

⌘

"
 C

�

"
k�1

"1��

,

where the second inequality follows from "  � assumed in Theorem 3.2 and the local
error bound condition (9). Note that by definition of ✓

t

in Algorithm 1, 1

✓

2

T�1

� T 2 �
4D

2

C

2

��max

(A

T
A)(2M)

�

"

4/(2+�)

, and µ
k

= "
k

/D2. Substituting these quantities into (25) with
e� = �(k�1) and � chosen to be �

(k�1)

"

, we have

F (�(k)

)� F (�(k�1)

"

) D2

2

µ
k

+ ✓2
T�1

�
max

(A

T

A)k�(k�1)

"

� �(k�1)k2
µ
k

"
k

2

+

"4/(2+�)

2(2M)

�"2(1��)

"
k

=

"
k

2

+

"
2�(1+�)

2+�

2(2M)

�

"
k

"
k

2

✓

1 +

⇣ "

2M

⌘

�

◆

 "
k

,

where the second from the last inequality follows from "  1 and the last inequality follows
from "  2M assumed in Theorem 3.2. Thus, it follows F (�(k)

)� F ⇤  "
k

+ ".
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Overall, we finish the proof.

Proof of Theorem 3.2. Since the desired accuracy is chosen small enough so that "  �

2

, and the
number of stages K � dlog

2

("
0

/")e + 1, it follows "
K�1

 "  �

2

, and thus there exists some
threshold k0 2 {0, 1, 2, · · · ,K � 1} such that for any k � k0, "

k

+ "  �. As a consequence, by
Lemma 6.5, we have for any k � k0,

F (�(k)

)� F ⇤  "
k

+ "  �,

i.e. �(k) 2 S
�

, the �-sublevel set of the function F (�). By the local error bound condition (9), we
have

dist(�(k),⇤⇤
) 

⇣

F (�(k)

)� F ⇤
⌘

�

 ("
k

+ ")� .

Now, consider the (k + 1)-th stage in the homotopy method. By (14) in Theorem 3.1,

kAx

(k+1) � bk  2�
max

(A

T

A)

µ
k+1

S
T

⇣

k�(k)

⇤ � �(k)k+ dist(�⇤
µk+1

,⇤⇤
)

⌘

 2�
max

(A

T

A)

µ
k+1

S
T

⇣

("
k

+ ")� + dist(�⇤
µk+1

,⇤⇤
)

⌘

, (27)

where �
(k)

⇤ = argmin
�

⇤2⇤

⇤k�⇤ � �(k)k, and the second inequality follows from

k�(k)

⇤ � �(k)k = dist(�(k),⇤⇤
)  ("

k

+ ")� . (28)

To bound the second term on the right hand side of (27), note that µ
k+1

= "
k+1

/D2

= "
k

/(2D2

) 
�/(2D2

). Thus, by Lemma 6.2,

F (�⇤
µk+1

)� F (�⇤
) = F (�⇤

µk+1

)� F
µk+1

(�⇤
µk+1

) + F
µk+1

(�⇤
µk+1

)� F (�⇤
)

 µ
k+1

2

D2

+ 0 = µ
k+1

D2/2  �/2,

thus, it follows �⇤
µk+1

2 S
�

and by local error bound condition

dist(�⇤
µk+1

,⇤⇤
)  C

�

⇣

F (�⇤
µk+1

)� F (�⇤
)

⌘

�

 C
�

("
k

+ ")
�

.

Overall, substituting this bound into (27) ,we get

kAx

(k+1)�bk  2�
max

(A

T

A)

µ
k+1

S
T

(1 + C
�

) ("
k

+ ")
�  4�

max

(A

T

A)D2

"
k+1

T 2

(1 + C
�

) ("
k

+ ")
�

,

where we use the fact that µ
k+1

= "
k+1

/D2 and S
T

=

P

T�1

t=0

1

✓t
� P

T

t=1

t � T

2

2

. Substituting the

bound T 2 � 4D

2

C

2

��max

(A

T
A)(2M)

�

"

4/(2+�)

gives for any k � k0,

kAx

(k+1) � bk  1 + C
�

C2

�

(2M)

�

("
k

+ ")�"4/(2+�)

"
k+1

=

2(1 + C
�

)

C2

�

(2M)

�

("
k

+ ")�"4/(2+�)

"
k

 2(1 + C
�

)

C2

�

(2M)

�

(3"
k

)

�

(4"
k

)

4/(2+�)

"
k

 24(1 + C
�

)

C2

�

(2M)

�

"
1+

�2

2+�

k

, (29)

where the equality follows from "
k+1

= "
k

/2, and the second inequality follows from "  2"
k

, 8k 2
{0, 1, 2, · · · ,K � 1}. For the objective bound, we have by (13), for any k � k0,

f(x(k+1)

)� f⇤ kP
A

�⇤
0

k · kAx

(k+1) � bk+ �
max

(A

T

A)

2µ
k+1

S
T

k�(k)

⇤ � �(k)k2 + µ
k+1

D2

2

kP
A

�⇤
0

k24(1 + C
�

)

C2

�

(2M)

�

"
1+

�2

2+�

k

+

�
max

(A

T

A)

2µ
k+1

S
T

k�(k)

⇤ � �(k)k2 + µ
k+1

D2

2

, (30)
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where the second inequality follows from (29). Now, for the second term on the right hand side, we
have

�
max

(A

T

A)

2µ
k+1

S
T

k�(k)

⇤ � �(k)k2  "4/(2+�)

("
k

+ ")2�

4"
k+1

C2

�

(2M)

�

=

"4/(2+�)

("
k

+ ")2�

2"
k

C2

�

(2M)

�

 (4"
k

)

4/(2+�)

(3"
k

)

2�

2"
k

C2

�

(2M)

�

 6"
1+

2�(1+�)

2+�

k

C2

�

(2M)

�

,

where first inequality follows from (28), the equality follows from "
k+1

= "
k

/2, and the second
inequality follows from "  2"

k

, 8k 2 {0, 1, 2, · · · ,K � 1}. Substituting this bound and µ
k+1

=

"
k+1

/D2

= "
k

/2D2 into (30) gives for any k � k0,

f(x(k+1)

)� f⇤  24kP
A

�⇤
0

k(1 + C
�

)

C2

�

(2M)

�

"
1+

�2

2+�

k

+

6

C2

�

(2M)

�

"
1+

2�(1+�)

2+�

k

+

1

4

"
k

. (31)

Taking k = K � 1 in (29) and (31) with the fact that "
K�1

 "  1 gives the desired result.

6.4 Proof of Lemma 4.1

Proof. For simplicity of notations, we let x⇤
i

= x

i

(

b�
t

). First of all, let H
C

(x

i

) be the indicator
function for the set C := {x

i

: kx
i

� b

i

k  D}, which takes 0 if x
i

2 C and +1 otherwise. Then,
the optimization problem (18) can be equivalently written as an unconstrained problem:

x

⇤
i

= argmax
xi2Rd � µ

2

kx
i

� a

i

k2 � kx
i

� b

i

k �H
C

(x

i

) =: g(x
i

), (32)

where a

i

=

e

x

i

� 1

µ

P

j2Ni
W

ji

�
t,j

. Since x

⇤
i

is the solution, by the optimality condition, 0 2
@g (x⇤

i

), where @g(x⇤
i

) denotes the set of subdifferentials of g at point x⇤
i

, i.e.

0 2 µ (x

⇤
i

� a

i

) + @kx⇤
i

� b
i

k+N
C

(x

⇤
i

),

where for any x 2 Rd,

@kx� b

i

k =

(

n

x�bi
kx�bik

o

, if x 6= b

i

,
�

v 2 Rd, kvk  1

 

, otherwise,

and N
C

(x) is the normal cone of the set C = {x
i

: kx
i

� b

i

k  D} at the point x, i.e.

N
C

(x) :=

�

v 2 Rd

: v

T

x � v

T

y, 8y 2 C
 

.

This is equivalent to
�µ (x

⇤
i

� a

i

)� h 2 N
C

(x

⇤
i

), (33)

for some h 2 @kx⇤
i

� b

i

k. Note that the function g(·) is a strongly concave function, thus, the
solution to the maximization problem (32) is unique, which implies as long as one can find one x⇤

i

and h satisfying (33), such a x⇤
i

must be the only solution. To this point, we consider the following
three cases:

1. If kb
i

� a

i

k  1/µ. Let x⇤
i

= b

i

and h = µ(a
i

� b

i

), then, N
C

(x

⇤
i

) = {0} and khk  1

and �µ (x

⇤
i

� a

i

)� h = 0 2 N
C

(x

⇤
i

).

2. If 1/µ < kb
i

� a

i

k  1/µ+D, then, one can take

x

⇤
i

= b

i

� b

i

� a

i

kb
i

� a

i

k
✓

kb
i

� a

i

k � 1

µ

◆

= a

i

+

b

i

� a

i

kb
i

� a

i

k
1

µ

and h =

ai�bi
kai�bik . Note that kx⇤

i

� b

i

k = ka
i

� b

i

k � 1/µ  D, which again gives
N

C

(x

⇤
i

) = {0} and �µ (x

⇤
i

� a

i

)� h = 0 2 N
C

(x

⇤
i

).
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3. If kb
i

� a

i

k > 1/µ+D. Then, let x⇤
i

= b

i

� bi�ai
kbi�aikD and h =

ai�bi
kai�bik , which gives

�µ (x

⇤
i

� a

i

)� h =� µ

✓

b

i

� a

i

� b

i

� a

i

kb
i

� a

i

kD
◆

� a

i

� b

i

ka
i

� b

i

k
=� µ(b

i

� a

i

)

✓

1� D

kb
i

� a

i

k
◆

� a

i

� b

i

ka
i

� b

i

k
=� µ(b

i

� a

i

)

✓

1� D + 1/µ

kb
i

� a

i

k
◆

= µ

✓

1� D + 1/µ

kb
i

� a

i

k
◆

(a

i

� b

i

).

Note that the normal N
C

(x

⇤
i

) = {c(a
i

� b

i

), c � 0}, it follows �µ (x

⇤
i

� a

i

) � h 2
N

C

(x

⇤
i

).

Overall, we finish the proof.

6.5 Proof of Theorem 4.1

Since the null space of A is non-empty and the set

X :=

�

x 2 Rnd

: kx
i

� b

i

k  D, i = 1, 2, · · · , n 

is compact, strong duality holds with respect to (16-17). In view of Assumption 2.1(c)(d), we aim to
show that the Lagrange dual of (16-17) satisfies the local error bound condition (9) and the set of
optimal Lagrange multiplier is unique up to null space of A.

We start by rewriting (16-17) as follows: Let y
i

= x

i

� b

i

, and y = [y

T

1

, yT

2

, · · · , yT

n

]

T , then,
(16-17) is equivalent to

min

n

X

i=1

ky
i

k

s.t. Ay +Ab = 0, ky
i

k  D, i = 1, 2, · · · , n.
Then, for any � 2 Rnd, the Lagrange dual function

F (�) = max

kyikD, i=1,2,··· ,n
�

n

X

i=1

ky
i

k � h�,Ay +Abi

= max

kyikD, i=1,2,··· ,n
�

n

X

i=1

�ky
i

k+ ⌦

�,A
[i]

y

i

↵�

| {z }

(I)

�h�,Abi ,

where
A

[i]

= [W

1i

W

2i

· · · W
ni

]

T

i-th column block of the matrix A corresponding to y

i

. Note that maximization of (I) is separable
with respect to the index i, we have for any i 2 {1, 2, · · · , n},

max

kyikD

�ky
i

k � ⌦

�,A
[i]

y

i

↵

= max

kyikD

�ky
i

k �
D

A

T

[i]

�,y
i

E

=

(

0, if kAT

[i]

�k  1

(kAT

[i]

�k � 1) ·D, otherwise.

Thus, one can write F (�) as follows

F (�) = � ⌦

A

T�,b
↵

+D

n

X

i=1

(kAT

[i]

�k � 1) · I
⇣

kAT

[i]

�k > 1

⌘

, (34)

where I
⇣

kAT

[i]

�k > 1

⌘

is the indicator function which takes 1 if kAT

[i]

�k > 1 and 0 otherwise.

To this point, we make another change of variables by setting ⌫
i

= A

T

[i]

�, i = 1, 2, · · · , n and
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⌫ = [⌫T
1

⌫T
2

· · · ⌫T
n

]

T . Note that {AT� : � 2 Rnd} = R(A

T

). By the null space property (15), the
range space of AT has the following explicit representation:

R(A

T

) =

(

⌫ 2 Rnd

: u = [⌫T
1

, · · · , ⌫T
n

]

T ,

n

X

i=1

⌫
i

= 0

)

. (35)

Thus, minimizing (34) is equivalent to solving the following constrained optimization problem:

min

⌫2Rnd
� h⌫,bi+D

n

X

i=1

(k⌫
i

k � 1) · I (k⌫
i

k > 1) , (36)

s.t.

n

X

i=1

⌫
i

= 0, (37)

Denote

G(⌫) = �h⌫,bi+D

n

X

i=1

(k⌫
i

k � 1) · I (k⌫
i

k > 1) . (38)

The following lemma, which characterizes the set of solutions to (36-37), paves the way of our
analysis.

Lemma 6.6. The solution to (36-37) is attained within the region: B = {⌫ 2 Rnd, k⌫
i

k  1, 8i}.
Furthermore, for any ⌫0 2 Rnd satisfying (37) but not in B, there exists a point ⌫0 2 B such that (37)
is satisfied and

G(⌫0)�G(⌫0) �
✓

max

i,j

kb
i

� b

j

k
◆

k⌫0 � ⌫0k.

Proof of Lemma 6.6. Consider any ⌫0 2 Rnd not in the set B, then, define the set J as the set of
coordinates j in {1, ...., n} such that k⌫0

j

k > 1. Since ⌫0 is not in the set B, we know J is nonempty.
Then, let L := max

j2J k⌫0
j

k > 1. Consider the vector ⌫0 := ⌫0/L, then, since ⌫0 is a solution to
(36-37),

P

n

i=1

⌫0
i

= 0, which implies
P

n

i=1

⌫0
i

= 0. Furthermore, we obviously have k⌫0
i

k  1, 8i.
Now, we are going to show that G(⌫0) > G(⌫0), thereby reaching a contradiction. Consider the
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difference

G(⌫0)�G(⌫0)

= h⌫0 � ⌫0,bi+D

n

X

i=1

(k⌫0
i

k � 1) · I (k⌫0
i

k > 1)

=

n�1

X

i=1

h⌫0
i

� ⌫0
i

,b
i

� b

n

i+D

n

X

i=1

(k⌫0
i

k � 1) · I (k⌫0
i

k > 1)

 

by the fact
n

X

i=1

⌫0
i

=

n

X

i=1

⌫0
i

= 0

!

�
n�1

X

i=1

h⌫0
i

� ⌫0
i

,b
i

� b

n

i+ (L� 1)D

��
n�1

X

i=1

k⌫0
i

� ⌫0
i

k · kb
i

� b

n

k+ (L� 1)D (by Cauchy-Schwarz)

��
✓

max

i,j

kb
i

� b

j

k
◆

n�1

X

i=1

k⌫0
i

� ⌫0
i

k+ (L� 1)D

=�
✓

max

i,j

kb
i

� b

j

k
◆

n�1

X

i=1

k⌫0
i

k(L� 1) + (L� 1)D (By definition ⌫0 := ⌫0/L)

��
✓

max

i,j

kb
i

� b

j

k
◆

n�1

X

i=1

k⌫0
i

k(L� 1) + 2(L� 1) · n ·max

i,j

kb
i

� b

j

k
✓

D � 2n ·max

i,j

kb
i

� b

j

k
◆

�
✓

max

i,j

kb
i

� b

j

k
◆

n

X

i=1

k⌫0
i

k(L� 1) (by the fact k⌫0
i

k  1)

�
✓

max

i,j

kb
i

� b

j

k
◆

n

X

i=1

k⌫0
i

� ⌫0
i

k �
✓

max

i,j

kb
i

� b

j

k
◆

k⌫0 � ⌫0k, (By definition ⌫0 := ⌫0/L)

and the lemma follows.

By the previous lemma, in order to characterize the set of solutions to (36-37), it is enough to look at
the following more restricted problem:

min

⌫2Rnd
� h⌫,bi , (39)

s.t.

n

X

i=1

⌫
i

= 0, (40)

k⌫
i

k2  1, i = 1, 2, · · · , n, (41)

where we used the fact that G(⌫) = �h⌫,bi when k⌫
i

k2  1, 8i. This is a quadratic constrained
problem. Now, we show the key lemma that G(⌫) satisfies the local error bound with parameter
� = 1/2 over the restricted set (40) and (41).

Lemma 6.7. The solution to (39-41) is unique. Furthermore, let ⌫⇤ 2 Rnd be the solution to (39-41).
There exists a constant C

0

> 0 such that for any ⌫ 2 Rnd satisfying (40-41),

k⌫ � ⌫⇤k  C
0

(G(⌫)�G(⌫⇤))
1/2

.

The proof of Lemma 6.7 is somewhat lengthy, but it follows a simple intuition that if the solution
point lies on the boundary of a ball, then, sliding a point away from the solution results in a locally
quadratic growth of the objective when it is linear. We split the proof into two cases below.

6.5.1 Proof of Lemma 6.7: Case 1

Case 1: The solution of the original geometric median (16-17) is achieved at one of the vectors
{b

1

, b
2

, · · · , b
n

}.
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Assume without loss of generality that it is achieved at x
1

= x

2

= · · · = x

n

= b

n

, then, one know
that the minimum of (16-17) is

P

n�1

i=1

kb
i

�b

n

k. Furthermore, since we assume {b
1

, b
2

, · · · , b
n

}
is not co-linear, the solution is unique, and thus, for all feasible x 6= [b

T

n

, b

T

n

, · · · , b

T

n

]

T ,
P

n

i=1

kx
i

� b

i

k >
P

n�1

i=1

kb
n

� b

i

k.

First, one can get rid of constraint (40) in (39-41) by substituting ⌫
n

= �P

n�1

i=1

⌫
i

and equivalently
form the following optimization problem:

min

⌫2Rnd
�

n�1

X

i=1

h⌫
i

,b
i

� b

n

i , (42)

s.t. k⌫
i

k2  1, i = 1, 2, · · · , n� 1, (43)
�

�

�

�

�

n�1

X

i=1

⌫
i

�

�

�

�

�

 1. (44)

Then, to show the uniqueness of the solution to (39-41), it is enough to show the solution to (42-44)
is unique. To see the the uniqueness, suppose we temporarily delete constraint (44), then we obtain a
relaxed problem:

min

⌫2Rnd
�

n�1

X

i=1

h⌫
i

,b
i

� b

n

i ,

s.t. k⌫
i

k2  1, i = 1, 2, · · · , n� 1,

which is separable and we know trivially that for each index i, the solution to

min

⌫i2Rd
�h⌫

i

,b
i

� b

n

i , s.t. k⌫
i

k2  1,

is attained uniquely at ⌫⇤
i

=

bi�bn
kbi�bnk . This gives the objective value �P

n�1

i=1

kb
n

� b

i

k to the
relaxed problem. On the other hand, by strong duality, the optimal objective of the original problem
(39-41) is also �P

n�1

i=1

kb
n

� b

i

k. The fact that the optimal objective does not change even when
adding an extra constraint

�

�

�

P

n�1

i=1

⌫
i

�

�

�

 1 implies that ⌫⇤
i

=

bi�bn
kbi�bnk , i = 1, 2, · · · , n � 1 is

feasible with respect to (39-41), and the solution to (39-41) cannot be attained at any feasible point
other than ⌫⇤

i

=

bi�bn
kbi�bnk , i = 1, 2, · · · , n � 1. As a consequence, the solution to (39-41) is also

unique, which is ⌫⇤
i

=

bi�bn
kbi�bnk , i = 1, 2, · · · , n� 1 and ⌫⇤

n

= �P

n�1

i=1

⌫
i

.

Next, we are going to show a local error bound condition for (42-44), and then
pass the result back to (39-41). To this point, we consider any perturbation �⌫ =

[�⌫T
1

, �⌫T
2

, · · · , �⌫T
n

]

T around the solution to (42-44) so that ⌫⇤ +�⌫ is within the feasible set
n

⌫ 2 Rnd

: k⌫
i

k2  1, i = 1, 2, · · · , n� 1,
�

�

�

P

n�1

i=1

⌫
i

�

�

�

 1.
o

. It follows
P

n

i=1

(⌫⇤
i

+�⌫
i

) = 0,

which implies �⌫
n

= �P

n�1

i=1

�⌫
i

. Furthermore, k⌫⇤
i

+ �⌫
i

k  1, 8i = 1, 2, · · · , n � 1 and
�

�

�

P

n�1

i=1

(⌫⇤
i

+�⌫
i

)

�

�

�

 1.

Denote q(⌫) := �P

n�1

i=1

h⌫
i

,b
i

� b

n

i. Then, we have

q(⌫⇤ +�⌫)� q(⌫⇤) = �
n�1

X

i=1

h�⌫
i

,b
i

� b

n

i . (45)

Recall that k⌫⇤
i

+�⌫
i

k  1 and ⌫⇤
i

=

bi�bn
kbi�bnk , it follows,

�

�

�

�

b

i

� b

n

kb
i

� b

n

k +�⌫
i

�

�

�

�

2

 1.

Expanding the squares gives

1 + 2

⌧

b

i

� b

n

kb
i

� b

n

k ,�⌫
i

�

+ k�⌫
i

k2  1.
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Figure 2: Geometric interpretation of the local perturbation by �⌫
i

around the solution ⌫⇤
i

. For any
perturbation �⌫

i

of fixed length, the maximum of hb
i

� b

n

,�⌫
i

i is achieved when k⌫⇤+�⌫
i

k = 1,
i.e. ⌫⇤ +�⌫

i

is on the boundary of the unit ball, in which case we have cos ✓
i

= �k�⌫
i

k/2 and
hb

i

� b

n

,�⌫
i

i = kb
i

� b

n

k · k�⌫
i

k cos ✓
i

= �kb
i

� b

n

k · k�⌫
i

k2/2.

Rearranging the terms gives

hb
i

� b

n

,�⌫
i

i  �kb
i

� b

n

k · k�⌫
i

k2/2.
A geometric interpretation of this bound is given in Fig. 2. Substituting this bound into (45) gives

q(⌫⇤ +�⌫)� q(⌫⇤) �
n�1

X

i=1

kb
i

� b

n

k · k�⌫
i

k2
2

�1

2

⇣

min

i

kb
i

� b

n

k
⌘

n�1

X

i=1

k�⌫
i

k2.

Note that since {b
1

, b
2

, · · · , b
n

} are distinct, min

i

kb
i

� b

n

k > 0 and this gives a local error
bound condition for (42-44) with parameter � =

1

2

. Finally, since �⌫
n

= �P

n�1

i=1

�⌫
i

, it follows,

q(⌫⇤ +�⌫)� q(⌫⇤) � 1

2

⇣

min

i

kb
i

� b

n

k
⌘

n�1

X

i=1

k�⌫
i

k2

� 1

2(n� 1)

⇣

min

i

kb
i

� b

n

k
⌘

�

�

�

�

�

n�1

X

i=1

�⌫
i

�

�

�

�

�

2

=

1

2(n� 1)

⇣

min

i

kb
i

� b

n

k
⌘

k�⌫
n

k2 ,

where the second inequality follows from Cauchy-Schwarz inequality that
v

u

u

t

n�1

X

i=1

k�⌫
i

k2pn� 1 �
n�1

X

i=1

k�⌫
i

k �
�

�

�

�

�

n�1

X

i=1

�⌫
i

�

�

�

�

�

.

Since G(⌫ +�⌫)�G(⌫⇤) = q(⌫⇤ +�⌫)� q(⌫⇤), it follows

G(⌫+�⌫)�G(⌫⇤) � 1

4(n� 1)

⇣

min

i

kb
i

� b

n

k
⌘

n

X

i=1

k�⌫
i

k2 =

1

4(n� 1)

⇣

min

i

kb
i

� b

n

k
⌘

k�⌫k2.

Finishing the proof for case 1.
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6.5.2 Proof of Lemma 6.7: Case 2

Case 2: The solution of the original geometric median (16-17) is NOT achieved at any of the vectors
{b

1

, b
2

, · · · , b
n

}.

We start by rewriting problem (39-41) as an equivalent feasibility problem:
8

<

:

�h⌫,bi �G(⌫⇤)  0,

k⌫
i

k2  1, i = 1, 2, · · · , n,
P

n

i=1

⌫
i

= 0.

(46)

The uniqueness in this case comes from the following lemma.
Lemma 6.8. The solution ⌫⇤ 2 Rnd to (46) is unique and satisfies k⌫⇤

i

k = 1, 8i = 1, 2, · · · , n.

To understand the feasibility problem (46) and prove Lemma 6.8, we start with the following
definition:
Definition 6.1 (Wang and Pang (1994)). Consider any inequality system f

i

(x)  0, i = 1, 2, · · · ,m.
An inequality f

i

(x)  0 in the system is said to be singular if f
i

(x) = 0 for any solution to the
system. If every inequality in the system is singular, we say the inequality system is singular.

The following basic lemma regarding general feasibility problems is also proved in (Wang and Pang
(1994)).
Lemma 6.9 (Lemma 2.1 of Wang and Pang (1994)). Consider any inequality system f

i

(x)  0, i =
1, 2, · · · ,m with non-empty solution set S. Suppose each of f

i

is convex. Denote

K := {k 2 {1, 2, · · · ,m} : f
k

(x)  0 is nonsingular} ,
J := {j 2 {1, 2, · · · ,m} : f

j

(x)  0 is singular} .
Then, the sub-system f

j

(x)  0, j 2 J alone is singular.

Proof of Lemma 6.8. Suppose ⌫⇤ is one of the solutions to (46). Suppose without loss of generality,
the ball constraint k⌫

n

k2  1 in (46) is nonsingular. Then, by Lemma 6.9, the subsystem
8

<

:

�h⌫,bi �G(⌫⇤)  0,

k⌫
i

k2  1, i = 1, 2, · · · , n� 1,
P

n

i=1

⌫
i

= 0.

(47)

is still singular. This implies the optimal objective value of the following problem

min

⌫2Rnd
� h⌫,bi ,

s.t.

n

X

i=1

⌫
i

= 0,

k⌫
i

k2  1, i = 1, 2, · · · , n� 1,

is still G(⌫⇤). Similar as before, one can get rid of the equality using ⌫
n

= �P

n�1

i=1

⌫
i

and form an
equivalent problem:

min

⌫2Rnd
�

n�1

X

i=1

h⌫
i

,b
i

� b

n

i ,

s.t. k⌫
i

k2  1, i = 1, 2, · · · , n� 1.

This is a separable problem and obviously the optimal objective of this problem is �P

n�1

i=1

kb
i

�b

n

k,
which implies G(⌫⇤) = �P

n�1

i=1

kb
i

� b

n

k. However, by strong duality and the uniqueness of the
geometric median problem (16-17), this further implies the solution to (16-17) is attained uniquely
at x

1

= x

2

= · · · = x

n

= b

n

, contradicting the assumption that the solution to (16-17) is NOT
achieved at any of the vectors {b

1

, b
2

, · · · , b
n

}. Thus, we have shown that it is not possible to
have one of the ball constraint being loose. This trivially implies it is not possible to have any two
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or more ball constraints being loose and hence we know that any solution ⌫⇤ to (46) must satisfy
k⌫⇤

i

k = 1, 8i = 1, 2, · · · , n.

Now suppose on the contrary such a solution is not unique. Let ⌫⇤, e⌫⇤ 2 Rnd be two distinct
solutions. Then, they must be different at some index j, i.e. 9j such that ⌫⇤

j

6= e⌫⇤
j

and they satisfy
k⌫⇤

j

k = ke⌫⇤
j

k = 1 by the previous argument. However, since the solution set to (46) must be convex
(which follows trivially from the fact that all constraints are convex), any convex combination of
⌫⇤, e⌫⇤ must be the solution. Specifically, the solution ⌫

⇤
+e⌫⇤

2

has its j-th index
�

�

�

⌫

⇤
j +e⌫⇤

j

2

�

�

�

< 1,
contradicting the fact that any solution ⌫⇤ must satisfy k⌫⇤

i

k = 1, 8i = 1, 2, · · · , n.

Now, we proceed to prove Lemma 6.7 for this case. The proof is inspired by a crucial “linearization”
technique transforming general quadratic systems to linear systems which we are able to understand
(e.g. Wang and Pang (1994), Luo and Luo (1994)). Consider any feasible ⌫ 2 Rnd regarding
(39)-(41). Then, for any index i, we have

k⌫
i

� ⌫⇤
i

k2 = k⌫
i

k2 � 2 h⌫
i

, ⌫⇤
i

i+ k⌫⇤
i

k2 = k⌫
i

k2 � 2 h⌫
i

� ⌫⇤
i

, ⌫⇤
i

i � k⌫⇤
i

k2
= k⌫

i

k2 � 1 + 2 h⌫⇤
i

� ⌫
i

, ⌫⇤
i

i  2 h⌫⇤
i

� ⌫
i

, ⌫⇤
i

i , (48)

where in the third equality we use Lemma 6.8 that k⌫⇤
i

k = 1. We aim to bound the second term
h⌫⇤

i

� ⌫
i

, ⌫⇤
i

i.
By Lemma 6.8, we have the following system has NO solution:

8

<

:

�h⌫,bi �G(⌫⇤)  0,

k⌫
i

k2 � 1 < 0, i = 1, 2, · · · , n,
P

n

i=1

⌫
i

= 0.

(49)

This is equivalent to claiming the following linear system has no solution:
8

<

:

�hb,yi  0,

h⌫⇤
i

,y
i

i < 0, i = 1, 2, · · · , n,
P

n

i=1

y

i

= 0.

(50)

To see why this is true, suppose on the contrary, (50) indeed has a solution. Let y⇤ be its solution,
then we have ↵y⇤ is also a solution for any ↵ > 0. This in turn implies

�hb, ⌫⇤ + ↵y⇤i �G(⌫⇤)  �hb, ⌫⇤i �G(⌫⇤)  0,

and
n

X

i=1

(⌫
i

+ ↵y⇤
i

) = ↵

n

X

i=1

y

i

= 0.

Furthermore, for sufficiently small ↵, e.g. we can choose any ↵  min

i

h⌫⇤
i ,y

⇤
i i

ky⇤
i k2

, the following holds,

h⌫⇤
i

,↵y⇤
i

i+ ↵2ky⇤
i

k2  0.

This implies

k⌫⇤
i

+ ↵y⇤
i

k = k⌫⇤
i

k2 + 2 h⌫⇤
i

,↵y⇤
i

i+ ky⇤
i

k � 1  h⌫
i

,↵y⇤
i

i < 0,

and thus ⌫⇤
i

+↵y⇤
i

is a solution to (49). On the other hand, suppose (49) has a solution, then, one can
show similarly (50) has a solution.

To analyze (50), we employ the classical Motzkin’s alternative theorem:
Lemma 6.10 (Motzkin (1952), Theorem D6). Suppose A 6= 0. Either

Ax > 0, Bx � 0, Cx = 0,

has a solution, or there exists u,v,w such that

A

T

u+B

T

v +C

T

w = 0, u � 0, v � 0,u 6= 0,

but not both, where the inequalities are taken to be entrywise.
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Now, applying Motzkin’s alternative to (50), we have there exists a u 2 R2n+1 such that

�u
0

b

T

+

n

X

i=1

u
i

[⌫⇤
i

] +

n

X

i=1

u
n+i

[e

i

] = 0, [u
1

, u
2

, · · · , u
n

] 6= 0, u � 0, (51)

where we define the block notation “[·]” as follows

[⌫⇤
i

] = [0, · · · , 0, (⌫⇤
i

)

T , 0, · · · , 0] 2 Rnd,

which takes ⌫⇤
i

at the i-th block of dimension d and 0 on other blocks. Also,

[e

i

] = [e

T

i

, eT
i

, · · · , eT
i

] 2 Rnd,

which takes unit basis vector e
i

2 Rd on all blocks.

Claim 1: u
i

> 0, 8i = 1, 2, · · · , n.

To see why this is true, suppose on the contrary one of the u
i

’s is 0. Without loss of generality, we can
assume u

n

= 0. Then, by Motzkin’s alternative again on (51), the following system has no solution:
8

<

:

�hb,yi  0,

h⌫⇤
i

,y
i

i < 0, i = 1, 2, · · · , n� 1,
P

n

i=1

y

i

= 0.

(52)

By a similar equivalence relation as that of (49) and (50), this implies the following system has no
solution,

8

<

:

�h⌫,bi �G(⌫⇤)  0,

k⌫
i

k2 � 1 < 0, i = 1, 2, · · · , n� 1,
P

n

i=1

⌫
i

= 0,

which, by substituting ⌫
n

= �P

n�1

i=1

⌫
i

, implies the following system has no solution:
⇢�P

n�1

i=1

h⌫
i

,b
i

� b

n

i �G(⌫⇤)  0,

k⌫
i

k2 � 1 < 0, i = 1, 2, · · · , n� 1.
(53)

However, we know that the solution to the following minimization problem:

min

⌫2Rnd
�

n�1

X

i=1

h⌫
i

,b
i

� b

n

i , s.t. k⌫
i

k2  1, i = 1, 2, · · · , n� 1,

is attained uniquely at ⌫
i

=

bi�bn
kbi�bnk and the optimal objective value is �P

n�1

i=1

kb
i

� b

n

k which
must be strictly less than G(⌫⇤) by strong duality and the fact that the solution to (16-17) is not
attained at x

1

= x

2

= · · · = x

n

= b

n

. As a consequence, if we set

e⌫
i

=

b

i

� b

n

kb
i

� b

n

k
�G(⌫⇤)

P

n�1

i=1

kb
i

� b

n

k , i = 1, 2, · · · , n� 1,

then, ke⌫
i

k < 1, 8i = 1, 2, · · · , n� 1 and �P

n�1

i=1

he⌫
i

,b
i

� b

n

i �G(⌫⇤) = 0, which implies (53)
has a solution and we reach a contradiction.

Now, rewriting (51), we have

[u
1

(⌫⇤
1

)

T , u
2

(⌫⇤
2

)

T , · · · , u
n

(⌫⇤
n

)

T

] = u
0

b�
n

X

i=1

u
n+i

[e

i

],

multiplying both sides by [⌫⇤
1

� ⌫
1

, ⌫⇤
2

� ⌫
2

, · · · , ⌫⇤
n

� ⌫
n

], which implies

n

X

j=1

u
j

⌦

⌫⇤
j

� ⌫
j

, ⌫⇤
j

↵

= u
0

n

X

j=1

⌦

b

j

, ⌫⇤
j

� ⌫
j

↵�
n

X

i=1

n

X

j=1

u
n+i

⌦

e

i

, ⌫⇤
j

� ⌫
j

↵

= u
0

n

X

j=1

⌦

b

j

, ⌫⇤
j

� ⌫
j

↵

= u
0

(G(⌫)�G(⌫⇤)),

27



where the second from the last equality follows from
P

n

i=1

⌫
i

=

P

n

i=1

⌫⇤
i

= 0. Thus, for any index
j 2 {1, 2, · · · , n},

⌦

⌫⇤
j

� ⌫
j

, ⌫⇤
j

↵

=

X

i 6=j

u
i

u
j

h⌫
i

� ⌫⇤
i

, ⌫⇤
i

i+ u
0

u
j

(G(⌫)�G(⌫⇤)) (by the fact u
j

> 0)


X

i 6=j

u
i

u
j

(k⌫
i

k2 � k⌫⇤
i

k2) + u
0

u
j

(G(⌫)�G(⌫⇤)) (by convexity and u
i

> 0)

u
0

u
j

(G(⌫)�G(⌫⇤)) (by feasibility thatk⌫
i

k2  1 = k⌫⇤
i

k2).

Substituting this bound into (48) gives

k⌫⇤
j

� ⌫
j

k2  2u
0

u
j

(G(⌫)�G(⌫⇤)), 8j 2 {1, 2, · · · , n},

and thus,

k⌫⇤ � ⌫k2 =

n

X

j=1

k⌫⇤
j

� ⌫
j

k2 
X

j

2u
0

u
j

(G(⌫)�G(⌫⇤)),

finishing the proof.

6.5.3 Putting everything together

Combining Lemma 6.6 and Lemma 6.7 we can easily show the following:
Lemma 6.11. The solution ⌫⇤ to (36-37) is unique and furthermore, for any � > 0 and any point
⌫ = [⌫T

1

, ⌫T
2

, · · · , ⌫T
n

]

T 2 Rnd such that
P

n

i=1

⌫
i

= 0 and G(⌫) � G(⌫⇤)  �, we have there
exists a constant C

�

depending on � such that

G(⌫)�G(⌫⇤) � C
�

k⌫ � ⌫⇤k2.

Proof of Lemma 6.11. Since the solution to (36-37) is attained in the constraint set (40-41) by Lemma
6.6, the uniqueness follows directly from Lemma 6.7.

Now, for any ⌫ 2 Rnd, such that
P

n

i=1

⌫
i

= 0, and k⌫
i

k > 1 for some index i,

G(⌫)�G(⌫⇤) = G(⌫)�G(⌫) +G(⌫)�G(⌫⇤) �
✓

max

i,j

kb
i

� b

j

k
◆

k⌫ � ⌫k+ C2

0

k⌫ � ⌫⇤k2.

where the vector ⌫ is defined in Lemma 6.6, the second inequality follows from Lemma 6.6 that
G(⌫)�G(⌫) � (max

i,j

kb
i

� b

j

k) k⌫ � ⌫k and Lemma 6.7 that G(⌫)�G(⌫⇤) � C2

0

k⌫ � ⌫⇤k2.

Thus, for any ⌫ such that G(⌫)�G(⌫⇤)  �, we have
�

max

i,j

kb
i

� b

j

k � k⌫ � ⌫k,

which implies

k⌫ � ⌫k �
(

maxi,j kbi�bjk
�

k⌫ � ⌫k2, if �

maxi,j kbi�bjk > 1,

k⌫ � ⌫k2, otherwise.

Thus,

G(⌫)�G(⌫⇤) �C2

0

k⌫ � ⌫⇤k2 + max

i,j

kb
i

� b

j

k
max

n

�

maxi,j kbi�bjk , 1
ok⌫ � ⌫k2

�C
�

(k⌫ � ⌫⇤k+ k⌫ � ⌫k)2 � C
�

k⌫ � ⌫⇤k2,
for some C

�

> 0, where the second inequality follows from kw+ zk2  2kwk2 +2kzk2, 8w, z and
the last inequality follows from triangle inequality.

On the other hand, for any ⌫ 2 Rnd, such that
P

n

i=1

⌫
i

= 0, and k⌫
i

k  1 for all indices i, by
Lemma 6.7

G(⌫)�G(⌫⇤) � C2

0

k⌫ � ⌫⇤k2.
Overall, we finish the proof.
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6.5.4 Finishing the proof of Theorem 4.1

We recall the following well-known Hoffman’s error bound:
Lemma 6.12 (Theorem 9 of Pang (1997)). Given a convex polyhedron expressed as the solution set
of a system of linear inequalities and equations defined by a pair of matrices (A,B):

S :=

�

x 2 Rd

: Ax  a, Bx = b

 

.

There exists a scalar c > 0 such that for all (a,b) for which S is non-empty,

dist(x, S)  c (k(Ax� a)

+

k+ kBx� bk) , 8x 2 Rd,

where for any vector y 2 Rn, k(y)
+

k :=

p

P

n

i=1

max{y
i

, 0}2.

The idea is to translate the local error bound on function G(⌫) (i.e. Lemma 6.11) back to the local
error bound on the original dual function F (�) using the equivalence relation between minimizing
the dual function (34) and problem (36-37). Recall the definition of F (�) in (34) and G(⌫) in (38),
we have F (�) = G(⌫) for any � 2 Rnd such that AT� = ⌫. Thus, by Lemma 6.11, with ⌫ replaced
by A

T� and G(⌫) replaced by F (�),

kAT�� ⌫⇤k  C
0

(F (�)� F ⇤
)

1/2,

where F ⇤ is the optimal dual function value, and we use the fact that F ⇤ equals G(⌫⇤), the optimal
objective of (36-37). Since the solution ⌫⇤ to (36-37) is unique, the set of optimal Lagrange
multipliers (i.e. the set of minimizers of (34)) ⇤⇤

=

�

� 2 Rnd

: A

T� = ⌫⇤
 

. By Hoffman’s bound
with S = ⇤

⇤, we have
dist(�,⇤⇤

)  ckAT�� ⌫⇤k
for some positive constant c. Thus,

dist(�,⇤⇤
)  C

0

c
(F (�)� F ⇤

)

1/2.

Furthermore, since for any �⇤ 2 ⇤

⇤ there exists a unique ⌫⇤ such that AT�⇤
= ⌫⇤, it follows

P
A

�⇤
= A(A

T

A)

†
A

T�⇤
= A(A

T

A)

†⌫⇤.

6.6 Simulation setups and additional simulation results

In this section, we give more details about our simulation along with more simulation results. First of
all, in all three cases of Section 5, the randomly generated graph are connected. The way we ensure
its connectivity is to first connect all nodes together by assigning (n� 1) edges, and then, randomly
pick the remaining edges from the edge set of n(n+ 1)/2 edges according to the connectivity ratio.
An example graph containing 20 nodes with connectivity ratio of 0.13 is shown in Fig. 3.

The parameters of algorithms are set as follows: (1) For the DSM algorithm, the learning rate ↵ = 10.
(2) For the EXTRA algorithm, the learning rate ↵ = 5 when n = 20 and ↵ = 20 when n = 50, 100.
(3) For the Jacobian ADMM, the proximal weight ⇢ = 2�

max

(A), where �
max

(A) is the maximum
eigenvalue of A. (4) For the smoothing algorithm, we fix the smoothing parameter µ = 10

�5

throughout the experiments. (5) For our proposed algorithm, we set D = 10

p
d, where d is the

dimension of the data and the desired accuracy " = 10

�3. During the k-th stage, the time horizon
T (k)

=

D

"

0.8 · k

K

, where K = dlog
2

(1/")e + 1 is the total number of rounds. The reason why we
consider increasing the time horizon gradually is that we observe in practice the algorithm converges
very fast during the first few stages and it is not necessary to run a long time. The aforementioned
parameters of all algorithms are chosen in an ad-hoc way to ensure good performances.

Here, we perform additional simulations to show that our algorithm also works well under other
scenarios where we change the dimension of the data. In the experiment below, the number of agents
is set to be n = 100 and all the parameters are as described above. We vary the dimension of the data
from 20 to 200, where each entry of the data points is still uniformly distributed over [0, 10]. The
results are shown in Fig. 4.

Finally we demonstrate the performance of our algorithm under different network connectivity ratios.
In the experiment below, the number of agents is set to be n = 150, dimension d = 100, and all the
parameters are as described above. The results are shown in Fig. 5.
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Figure 3: Illustration of a randomly generated connected graph with n = 20 and connectivity
ratio=0.13.
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(a) d = 20, ratio=0.15.
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(b) d = 50, ratio=0.1.
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(c) d = 150, ratio=0.1.
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(d) d = 200, ratio=0.1.
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(e) d = 300, ratio=0.1.

Figure 4: Performance of different algorithms under various dimensions of the vectors.

0 1 2 3 4 5 6 7 8 9 10

Number of iterations ×104

-6

-5

-4

-3

-2

-1

0

R
e

la
tiv

e
 e

rr
o

r

DSM
EXTRA
Jacobian-ADMM
Smoothing
Proposed algorithm

(a) Ratio = 0.05
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(b) Ratio = 0.15

0 1 2 3 4 5 6 7 8 9 10

Number of iterations ×104

-6

-5

-4

-3

-2

-1

0

R
e

la
tiv

e
 e

rr
o

r

DSM
EXTRA
Jacobian-ADMM
Smoothing
Proposed algorithm

(c) Ratio = 0.3

Figure 5: Comparison of different algorithms on networks of different connectivity ratios.
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