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1 Background on compound completely random measures

We give the necessary background on compound completely random measures (CCRM). An extensive
account of this class of models is given in (Griffin and Leisen, 2017)). In this article, we consider a
CCRM (W7, ..., W,) on Ry characterized, for any ({1,...,%,) € RY and measurable set A C R,
by

Ele™ k=1 Wk = exp(—Ho(A)¢(t1, - - -, tp))

where Hj is the Lebesgue measure and v is the multivariate Laplace exponent defined by

Uit sty = [ (1= S )y, duy). M)
RL
The multivariate Lévy measure p takes the form
o _ b d’LUk
pldur,...du) = [ g [ 72 (w) poldwo) @
k=1

where F}, is the distribution of a Gamma random variable with parameters a; and by and py is the
Lévy measure on (0, o) of a generalized gamma process

1 1

po(dwg) = mwa 7 exp(—woT)dwy

where o € (—o0,1) and 7 > 0.

Denote w; = (wy, ..., wip)T, B; = (Bir, ..., Bip)" and p(dw) = p(duws, ..., dw,). wo always
refers to the scalar weight corresponding to the measure pg.

2 Expected number of interactions, edges and nodes

Recall that I, 7, I, 7 and V,, 7 are respectively the overall number of interactions between nodes
with label 6; < « until time 7T, the total number of pairs of nodes with label 6; < « who had at
least one interaction before time 7, and the number of nodes with label 6; < « who had at least one
interaction before time 7T respectively, and are defined as

Iow = Nij(T)lp,<aly,<a
i#j

Eyr= Z 1IN (T)+N;(T)>010,<alo;<a
1<J

Vo = D15 Ny, <a>010:<a
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Theorem 1 The expected number of interactions 1, T, edges E, T and nodes V,, r are given as
Sfollows:

1) n s
2T T(6—m)
E[lo 1] = o o, by, ((5 77T =0 (1 e ))
2

«
E[E. 1] = 5 L Y(2Tws, ..., 2Twy)p(dws, . .., dwy)
+

EVa,r] = a/ (1 — e‘”‘w(QTwl""’QTwP)) pldwy, ..., dwpy)
R?

where 1, = fRi wp(dwn, . .., dwp).

The proof of Theorem [T]is given below and follows the lines of Theorem 3 in (Todeschini et al,
2016).

Mean number of nodes E[V,, 7]

We have

EVor]=E Z(l — 1N, (T)=0,vj#i6,<a) | Lo:<a
=> {1 =P(Ny(T) =0,Vj #il0; < o)} 1, <a
i
Using the Palm/Slivnyak-Mecke formula and Campbell’s theorem, see e.g. (Mgller and
'Waagepetersen, [2003, Theorem 3.2) and (Kingman, |1993)), we obtain

E[Va,r] = E[E [Vo,r|Wi,..., W]

) Z e 2wl Z#i“’jle"ga) 1075&1
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/IE e T L, “’-7’19;9) p(dw)
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Mean number of edges E[F,, 1]

Using the extended Slivnyak-Mecke formula, see e.g. (Mgller and Waagepetersen, 2003, Theorem
3.3)

E[Esr) =E[E [Eyr|Wi,..., W]

=E Zle <any Zlﬁ <oz 1_6_2Tw 'w7)
J#l
o2
=<5 Y(2Tws, ..., 2Twy)p(dws, . .., dw,y)
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Mean number of interactions E[I,, 1]

‘We have
E[Ia,T] =K [E [Ia,T|W17 ceey Wp]]
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where the third line follows from (Dassios and Zhao, 2013)), the last line follows from another
application of the extended Slivnyak-Mecke formula for Poisson point processes and p,, =

fRi wp(dwy, . .., dwy).

3 Details of the approximate inference algorithm

Here we provide additional details on the two-stage procedure for approximate posterior inference.
The code is publicly available at https://github. com/0xCSML-BayesNP/HawkesNet0OC.

Given a set of observed interactions D = (y, ix, jr)k>1 between V individuals over a period of
time T, the objective is to approximate the posterior distribution 7(¢, {|D) where ¢ = (1, ) are
the kernel parameters and & = ((w;)i=1,... Vik=1.....p, (Qk, bk ) k=1,... p, @, 0, T), the parameters and
hyperparameters of the compound CRM. Given data D, let Z = (z;;(T"))1<i,j<v be the adjacency
matrix defined by z;;(T") = 1 if there is at least one interaction between ¢ and j in the interval [0, T'],
and 0 otherwise.

For posterior inference, we employ an approximate procedure, which is formulated in two steps
and is motivated by modular Bayesian inference (Jacob et al., 2017). It also gives another way to
see the two natures of this type of temporal network data. Firstly we focus on the static graph i.e.
the adjacency matrix of the pairs of interactions. Secondly, given the node pairs that have at least
one interaction, we learn the rate for the appearance of those interactions assuming they appear in a
reciprocal manner by mutual excitation.

We have
m(¢,¢|D) = 7(¢,¢|D, Z) = 7(§|D, Z)7(4|€, D).

The idea of the two-step procedure is to

1. Approximate 7 (£|D, Z) by w(£|Z) and obtain a Bayesian point estimate 3
2. Approximate 7(¢|¢, D) by w(¢|§, D).

3.1 Stagel

As mentioned in Section in the main article, the joint model 7 (Z, &) on the binary undirected graph
is equivalent to the model introduced by (Todeschini et al.,|2016)), and we will use their Markov chain
Monte Carlo (MCMC) algorithm and the publicly available code SNetOCﬂ in order to approximate
the posterior m(£|Z) and obtain a Bayesian point estimate £. Let w,, = Wy([0,a]) — >, wir
corresponding to the overall level of affiliation to community k of all the nodes with no interaction
(recall that in our model, the number of nodes with no interaction may be infinite). For each
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undirected pair 4, j such that z;;(7") = 1, consider latent count variables 7;;;, distributed from a
truncated multivariate Poisson distribution, see (Todeschini et al., 2016, Equation (31)). The MCMC
sampler to produce samples asymptotically distributed according to 7(£|Z) then alternates between
the following steps:

1. Update (w;k)i=1,...,v,k=1,...p using an Hamiltonian Monte Carlo (HMC) update,

2. Update (Wsk, ak, b )k=1,... p, @, 0, T using a Metropolis-Hastings step

3. Update the latent count variables using a truncated multivariate Poisson distribution
We use the same parameter settings as in (Todeschini et al.,[2016). We use ¢ = 102 as truncation
level to simulate the w., and set the number of leapfrog steps L = 10 in the HMC step. The stepsizes

of both the HMC and the random walk MH are adapted during the first 50 000 iterations so as to
target acceptance ratios of 0.65 and 0.23 respectively.

The minimum Bayes point estimates (W )i=1,....v,k=1,...p are then computed using a permutation-
invariant cost function, as described in (Todeschini et al.|[2016, Section 5.2). This allows to compute
point estimates of the base intensity measures of the Hawkes processes, for each i #£ j

P
Hij = E Wik Wik -
k=1

3.2 Stage?2

In stage 2, we use a MCMC algorithm to obtain samples approximately distributed according to

7([¢, D) = m(¢| (i), D)
where ¢ are the parameters of the Hawkes kernel. For each ordered pair (4, j) such that n;; =
Ni;(T) >0, let (tz(-;) < tgf-) <... < tf;“)) be the times of the observed directed interactions from ¢

to j. The intensity function is
~ n ¢
Aij(t) = g + Z gfé(t - t§i)))
) <t
where . o
¢ —5(t—t
Lfs(t = t3) = mx e,

We write the kernel in this way to point out that it is equal to a density function fs, (here exponential
density), scaled by the step size 1/0. We denote the distribution function of f5 by Fs. Then, by
Proposition 7.2.11I in (Daley and Vere-Jones, [2008]) we obtain the likelihood

L(D | ¢, (11i5)) = H lexp H A ( t(é)
)

(4,4)|Ni; (T)>0

where

t
~ n ¢
2550 = [ st du =ty S TR0,
0 o) <t
We derive a Gibbs sampler with Metropolis Hastings steps to estimate the parameters 7, § conditionally
on the estimates ﬁ” As mentioned in Section of the main article we follow (Rasmussen, |2013))

for the choice of vague exponential priors p(7), p(d). For proposals we use truncated Normals with
variances (07, 03) = (1.5,2.5).

The posterior is given by

Nij
7(¢ | D, () ccexp [ — Y Ay(T) T IIrED | < )
(4,9) [N (T)>0 (4,5)|Ni; (T)>0 £=1



We use an efficient way to compute the intensity at each time point tl(-f)

Xij (189) = i + 0SS (6),

by writing it in the form

where

(‘3) (k)
S(f) 5t § 65 Ji

ij t“?) <t

and then derive a recursive relationship of .S; (¢ )( ) in terms of S (t= 1)(6). In this way, we can
precompute several terms by ordering the event tlmes and arrange them in bins defined by the event
times of the opposite process.

4 Posterior consistency

We simulate interaction data from the Hawkes-CCRM model described in Section 3 in the main
article, using parameters p = 4, = 50,0 = 0.3,7 = 1,a;, = 0.08,¢ = (0.85,3), T = 300. We
perform the two-step inference procedure with data of increasing sample size, and check empirically
that the approximate posterior m(¢|¢, D) concentrates around the true value as the sample size
increases. Figure[I|below shows the plots of the approximate marginal posterior distribution of ¢ and
1. Experiments suggest that the posterior still concentrates around the true parameter value under this
approximate inference scheme.
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Figure 1: (Left) Approximate marginal posterior distribution of § given n interaction data. (Right)

Approximate marginal posterior distribution of 7 given n interaction data. Posterior concentrates
around the true value, with increasing sample size n.

5 Experiments

We perform experiments in which we compare our Hawkes-CCRM model to five other competing
models. The key part in all cases is the conditional intensity of the point process. which we give

below. In all cases we use {tg;c) }i>1 to refer to the set of events from 4 to j, i.e. the interactions for
the directed pair (3, 7).

Hawkes-CCRM

For each directed pair of nodes (4, 7), i # j
k
Ni;(t) ~ Hawkes Process(A;;(t)) where A (t) = > ) wiswin + 32,00, ne’a(tft;‘r)).

Hawkes-IRM (Blundell et al., 2012)

For each directed pair of clusters (p, q), p # ¢
Nyy(t) ~ Hawkes Process(Apq (1)) where Apq (1) = npngYpg + 2,00 _, ne= 0=t

For the details of the model see (Blundell et al.,[2012).



Poisson-IRM (as explained in (Blundell et al., 2012))

For each directed pair of clusters (p, q), p # ¢
Npq(t) ~ Poisson(\pg(t)) where A,q(t) = npngypg-

For the details of the model see (Blundell et al.,[2012).

CCRM (Todeschini et al.,|[2016)

N;;(t) ~ Poisson Process(\;;(t)) where A (t) = >, wirwjk.
Hawkes

*)
N;;(t) ~ Hawkes Process (\;;(t)) where \;;(t) = p + Zty;)q ne“s(t_tjf ).

Poisson

N;;(t) ~ Poisson Process(\;;(t)) where A;;(t) = p.
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