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A LDP Algorithms for Learning K-way Marginals Queries and Smooth
Queries By using Polynomial Approximation

In this section, we will show further applications of our idea by giving ε-LDP algorithms for
answering sets of queries. All the queries we consider in this section are linear, that is, of the form
qf (D) = 1

|D|
∑
x∈D f(x) for some function f . It will be convenient to have a notion of accuracy for

the algorithm we will present with respect to a set of queries. This is defined as follow:

Definition 1. Let Q denote a set of queries. An algorithm A is said to have (α, β)-accuracy for
size n databases with respect to Q, if for every n-size dataset D, the following holds: Pr[∃q ∈
Q, |A(D, q)− q(D)| ≥ α] ≤ β.

A.1 K-way Marginals Queries

Now we consider a database D = ({0, 1}p)n, where each row corresponds to an individuals record.
A marginal query is specified by a set S ⊆ [p] and a pattern t ∈ {0, 1}|S|. Each such query asks:
‘What fraction of the individuals in D has each of the attributes set to tj?’. We will consider here
k-way marginals which are the subset of marginal queries specified by a set S ⊆ [p] with |S| ≤ k.
K-way marginals permit to represent several statistics over datasets, including contingency tables,
and the problem to release them under differential privacy has been studied extensively in the
literature [7, 6, 13, 5]. All these previous works have considered the central model of differential
privacy, and only the recent work [9] studies this problem in the local model, while their methods are
based Fourier Transform. We now use the LDP version of Chebyshev polynomial approximation to
give an efficient way of constructing a sanitizer for releasing k-way marginals.

Since learning the class of k-way marginals is equivalent to learning the class of monotone k-way
disjunctions [7], we will only focus on the latter. The reason why we can locally privately learning
them is that they form a Q-Function Family.

Definition 2 (Q-Function Family). LetQ = {qy}y∈YQ⊆{0,1}m be a set of counting queries on a data
universe D, where each query is indexed by an m-bit string. We define the index set of Q to be the
set YQ = {y ∈ {0, 1}m|qy ∈ Q}.
We define a Q-Function Family FQ = {fQ,x : {0, 1}m 7→ {0, 1}}x∈D as follows: for every data
record x ∈ D, the function fQ,x : {0, 1}m 7→ {0, 1} is defined as fQ,x(y) = qy(x). Given a
database D ∈ Dn, we define fQ,D(y) = 1

n

∑n
i=1 fQ,xi(y) = 1

n

∑n
i=1 qy(xi) = qy(D), where xi is

the i-th row of D.
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This definition guarantees that Q-function queries can be computed from their values on the individ-
ual’s data xi. We can now formally define the class of monotone k-way disjunctions.
Definition 3. Let D = {0, 1}p. The query set Qdisj,k = {qy}y∈Yk⊆{0,1}p of monotone k-way
disjunctions over {0, 1}p contains a query qy for every y ∈ Yk = {y ∈ {0, 1}p||y| ≤ k}. Each query
is defined as qy(x) = ∨pj=1yjxj . The Qdisj,k-function family FQdisj,k = {fx}x∈{0,1}p contains a
function fx(y1, y2, · · · , yp) = ∨pj=1yjxj for each x ∈ {0, 1}p.

Definition 2 guarantees that if we can uniformly approximated the function fQ,x by polynomials px,
then we can also have an approximation of fQ,D, i.e. we can approximate qy(D) for every y or all
the queries in the class Q. Thus, if we can locally privately estimate the sum of coefficients of the
monomials for the m-multivariate functions {px}x∈D, we can uniformly approximate fQ,D. Clearly,
this can be done by Lemma 2, if the coefficients of the approximated polynomial are bounded.

In order to uniformly approximate the class Qdisj,k, we use Chebyshev polynomials.
Definition 4 (Chebyshev Polynomials). For every k ∈ N and γ > 0, there exists a univariate real
polynomial pk(x) =

∑tk
j=0 cix

i of degree tk such that tk = O(
√
k log( 1

γ )); for every i ∈ [tk], |ci| ≤
2O(
√
k log( 1

γ )); and p(0) = 0, |pk(x)− 1| ≤ γ,∀x ∈ [k].

Algorithm 1 Local Chebyshev Mechanism for Qdisj,k

1: Input: Player i ∈ [n] holding data xi ∈ {0, 1}p, privacy parameter ε > 0, error bound α, and
k ∈ N.

2: for Each Player i ∈ [n] do
3: Consider the p-multivariate polynomial qxi(y1, . . . , yp) = pk(

∑p
j=1 yj [xi]j), where pk is

defined as in Definition 4 with γ = α
2 .

4: Denote the coefficients of qxi as a vector q̃i ∈ R(p+tktk
)(since there are

(
p+tk
tk

)
coefficients

in a p-variate polynomial with degree tk), note that each q̃i can bee seen as a p-multivariate
polynomial qxi(y).

5: end for
6: for The Server do
7: Run LDP-AVG from Lemma 1 on {q̃i}ni=1 ∈ R(p+tktk

) with parameter ε, b = pO(
√
k log( 1

γ )),

denote the output as p̃D ∈ R(p+tktk
), note that p̃D also corresponds to a p-multivariate polynomial.

8: For each query y in Qdisj,k (seen as a d dimension vector), compute the p-multivariate
polynomial p̃D(y1, . . . , yp).

9: end for

Lemma 1. [13] For every k, p ∈ N, such that k ≤ p, and every γ > 0, there is a fam-
ily of p-multivariate polynomials of degree t = O(

√
k log( 1

γ ))with coefficients bounded by

T = pO(
√
k log( 1

γ )), which uniformly approximate the family FQdisj,k over the set Yk (Definition
3) with error bound γ. That is, there is a family of polynomials P such that for every fx ∈ FQdisj,k ,
there is px ∈ P which satisfies supy∈Yk |px(y)− fx(y)| ≤ γ.

By combining the ideas discussed above and Lemma 1, we have Algorithm 1 and the following
theorem.
Theorem 1. For ε > 0 Algorithm 1 is ε-LDP. Also, for 0 < β < 1, there are constants C,C1 such

that for every k, p, n ∈ N with k ≤ p, if n ≥ Ω(max{p
C
√
k log 1

α log 1
β

ε2α2 ,
log 1

β

ε2 , pC1

√
k log 1

α log 1
β }), this

algorithm is (α, β)-accuracy with respect toQdisj,k. The running time for player is Poly(pO(
√
k log 1

α )),
and the running time for server is at most O(n) and the time for answering a query is O(pC2

√
k log 1

α )
for some constant C2. Moreover, as in Section 5, the communication complexity can be improved to
1-bit per player.

Proof. It is sufficient to prove that

sup
y∈Yk

|p̃D(y)− qy(D)| ≤ γ +
T
(
p+tk
tk

)2√
log

(p+tktk
)

β
√
nε

,
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where T = pO(
√
k log( 1

γ )). Now we denote pD ∈ R(p+tktk
) as the average of q̃i. That is, it is the

unperturbed version of p̃D. By Lemma 4, we have supy∈Yk |pD(y)−qy(D)| ≤ γ. Thus it is sufficient
to prove that

sup
y∈Yk

|p̃D(y)− pD(y)| ≤
T
(
p+tk
tk

)2√
log

(p+tktk
)

β
√
nε

.

Since p̃D, pD can be viewed as a vector, we have

sup
y∈Yk

|p̃D(y)− pD(y)| ≤ ‖p̃D − pD‖1.

Also, since each coordinate of pD(y) is bounded by T by Lemma 1, we can see that if n =
Ω(max{ 1

ε2 log 1
β ,
(
p+tk
tk

)
log
(
p+tk
tk

)
log 1/β}), then with probability at least 1− β, the following is

true ‖p̃D − pD‖1 ≤
T(p+tktk

)
2

√
log

(p+tktk
)

β√
nε

, thus take γ = α
2 and

(
p+tk
tk

)
= pO(tk). This gives us the

theorem.

A.2 Smooth Queries

We now consider the case where each player i ∈ [n] holds a data xi ∈ Rp and we want to estimate
the kernel density for a given point x0 ∈ Rp. A natural question is: If we want to estimate Gaussian
kernel density of a given point x0 with many different bandwidths, can we do it simultaneously under
ε local differential privacy?

We can see this kind of queries as a subclass of the smooth queries. So, like in the case of k-
way marginals queries, we will give an ε-LDP sanitizer for smooth queries. Now we consider
the data universe D = [−1, 1]p, and dataset D ∈ Dn. For a positive integer h and constant
T > 0, we denote the set of all p-dimensional (h, T )-smooth function (Definition ??) as ChT ,
and QChT = {qf (D) = 1

n

∑
x∈D f(D), f ∈ ChT } the corresponding set of queries. The idea of

the algorithm is similar to the one used for the k-way marginals; but instead of using Chebyshev
polynomials, we will use trigonometric polynomials. We now assume that the dimensionality p, h
and T are constants so all the result in big O notation will be omitted. The idea of Algorithm ?? is
actually based on the following Lemma.
Lemma 2. [16] Assume γ > 0. For every f ∈ ChT , defined on [−1, 1]p, let gf (θ1, . . . , θp) =
f(cos(θ1), . . . , cos(θp)), for θi ∈ [−π, π]. Then there is an even trigonometric polynomial p whose
degree for each variable is t(γ) = ( 1

γ )
1
h :

p(θ1, . . . , θp) =
∑

0≤r1,...,rp<t(γ)

cr1,...,rp

p∏
i=1

cos(riθi), (1)

such that 1) p γ-uniformly approximates gf , i.e. supx∈[−π,π]p |p(x)−gf (x)| ≤ γ. 2) The coefficients
are uniformly bounded by a constant M which only depends on h, T and p. 3) Moreover, the whole
set of the coefficients can be computed in time O

(
( 1
γ )

p+2
h + 2p

h2 poly log 1
γ )
)
.

By (1), we can see that all the p(x) which corresponds to gf (x), representing functions f ∈ ChT , have
the same basis

∏p
i=1 cos(riθi). So, we can use Lemma 1 or 2 to estimate the average of the basis.

Then, for each query f the server can only compute the corresponding coefficients {cr1,r2,··· ,rp}.
This idea is implemented in Algorithm 2 for which we have the following result.
Theorem 2. For ε > 0, Algorithm 2 is ε-LDP. Also for α > 0, 0 < β < 1, if n ≥
Ω(max{log

5p+2h
2h ( 1

β )ε−2α−
5p+2h
h , 1

ε2 log( 1
β )}) and t = O((

√
nε)

2
5p+2h ), then Algorithm 2 is (α, β)-

accurate with respect toQChT . The time for answering each query is Õ((
√
nε)

4p+4
5p+2h+ 4p

5ph+2h2 ), where
O omits h, T, p and some log terms. For each player, the computation and communication cost could
be improved to O(1) and 1 bit, respectively, as in Section 5.

Proof of Theorem 9. Let t = ( 1
γ )

1
h . It is sufficient to prove that supqf∈QCh

T

|p̃D · cf − qf (D)| ≤ α.

Let pD denote the average of {pi}ni=1, i.e. the unperturbed version of p̃D. Then by Lemma 5, we have
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Algorithm 2 Local Trigonometry Mechanism for QChT
1: Input: Player i ∈ [n] holding data xi ∈ [−1, 1]p, privacy parameter ε > 0, error bound α, and
t ∈ N. T pt = {0, 1, · · · , t − 1}p. For a vector x = (x1, . . . , xp) ∈ [−1, 1]p, denote operators
θi(x) = arccos(xi), i ∈ [p].

2: for Each Player i ∈ [n] do
3: for Each v = (v1, v2, · · · , vp) ∈ T pt do
4: Compute pi;v = cos(v1θ1(xi)) · · · cos(vpθp(xi))
5: end for
6: Let pi = (pi;v)v∈T pt .
7: end for
8: for The Server do
9: Run LDP-AVG from Lemma 1 on {pi}ni=1 ∈ Rtp with parameter ε, b = 1, denote the output

as p̃D.
10: For each query qf ∈ QChT . Let gf (θ) = f(cos(θ1), cos(θ2), · · · , cos(θp)).
11: Compute the trigonometric polynomial approximation pt(θ) of gf (θ), where pt(θ) =∑

r=(r1,r2···rp),‖r‖∞≤t−1 cr cos(r1θ1) · · · cos(rpθp) as in (1). Denote the vector of the coef-
ficients c ∈ Rtp .

12: Compute p̃D · c.
13: end for

supqf∈QCh
T

|pD ·cf−qf (D)| ≤ γ. Also since ‖cf‖∞ ≤M , we have supqf∈QCh
T

|p̃D ·cf−pD ·cf | ≤

O(‖p̃D − pD‖1). By Lemma 2, we know that if n = Ω(max{ 1
ε2 log 1

β , t
2p log 1

β }), then ‖p̃D −

pD‖1 ≤ O(
t
5p
2

√
log( 1

β )
√
nε

) with probability at least 1−β. Thus, we have supqf∈QCh
T

|p̃D·cf−qf (D)| ≤

O(γ +
( 1
γ )

5p
2h

√
log( 1

β )
√
nε

). Taking γ = O((1/
√
nε)

2h
5p+2h ), we get supqf∈QCh

T

|p̃D · cf − qf (D)| ≤

O(
√

log( 1
β )( 1√

nε
)

2h
5p+2h ) ≤ α. The computational cost for answering a query follows from Lemma

2 and b · c = O(tp).

B Details in Section 3

Lemma 3. [10] Suppose that x1, · · · , xn are i.i.d sampled from Lap( 1
ε ). Then for every 0 ≤ t < 2n

ε ,
we have

Pr(|
n∑
i=1

xi| ≥ t) ≤ 2 exp(−ε
2t2

4n
).

Proof of Lemma 1. Consider Algorithm 1. We have |a − 1
n

∑n
i=1 vi| = |

∑n
i=1 xi
n |, where xi ∼

Lap( bε ). Taking t =
2
√
n
√

log 2
β

ε and applying the above lemma, we prove the lemma.

C Details in Section 4

C.1 Proof of Theorem 3

Proof of Theorem 3. The proof of the ε-LDP comes from Lemma 1 and composition theorem. W.l.o.g,
we assume T=1. To prove the theorem, it is sufficient to estimate supθ∈C |L̃(θ;D)− L̂(θ;D)| ≤ α
for some α, since if it is true, denote θ∗ = arg minθ∈C L̂(θ;D), we have L̂(θpriv;D)− L̂(θ∗;D) ≤
L̂(θpriv;D)−L̃(θpriv;D)+L̃(θpriv;D)−L̃(θ∗;D)+L̃(θ∗;D)−L̂(θ∗;D) ≤ L̂(θpriv;D)−L̃(θpriv;D)+

L̃(θ∗;D)− L̂(θ∗;D) ≤ 2α.

Since we have supθ∈C |L̃(θ;D)−L̂(θ;D)| ≤ supθ∈C |L̃(θ;D)−B(h)
k (L̂, θ)|+supθ∈C |B

(h)
k (L̂, θ)−

L̂(θ;D)|. The second term is bounded by O(Dhp
1
kh

) by Theorem 2.
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For the First term, by (2) and the algorithm, we have

sup
θ∈C
|L̃(θ;D)−B(h)

k (L̂, θ)| ≤ max
v∈T
|L̃(v;D)− L̂(v;D)| sup

θ∈C

p∑
j=1

k∑
vj=0

|
p∏
i=1

b
(h)
vi,k

(θi)|. (2)

By Proposition 4 in [1], we have
∑p
j=1

∑k
vj=0 |

∏p
i=1 b

(h)
vi,k

(θi)| ≤ (2h − 1)p. Next lemma bounds

the term maxv∈T |L̃(v;D)− L̂(v;D)|, which is obtained by Lemma 1.

Lemma 4. If 0 < β < 1, k and n satisfy that n ≥ p log(2/β) log(k + 1), then with probability at
least 1− β, for each v ∈ T ,

|L̃(v;D)− L̂(v;D)| ≤ O(

√
log 1

β

√
p
√

log(k)(k + 1)p

√
nε

). (3)

Proof. By Lemma 1, for a fixed v ∈ T , if n ≥ log 2
β , we have with probability 1− β, |L̃(v;D)−

L̂(v;D)| ≤
2
√

log 2
β√

nε
. Taking the union of all v ∈ T and then taking β = β

(k+1)p (since there are
(k + 1)p elements in T ) and ε = ε

(k+1)p , we get the proof.

By (k + 1) < 2k, we have

sup
θ∈C
|L̃(θ;D)− L̂(θ;D)| ≤ O(

Dhp

kh
+

2(h+1)p
√

log 1
β

√
p log kkp

√
nε

). (4)

Now we take k = O(
Dh
√
pnε

2(h+1)p
√

log 1
β

)
1

h+p . Since n = Ω( 4p(h+1)

ε2pD2
h

), we have log k > 1. Pluggning it

into (4), we get

sup
θ∈C
|L̃(θ;D)−L̂(θ;D)| ≤ Õ(

log
h

2(h+p) ( 1
β )D

p
p+h

h p
1
2 + p

2(h+p) 2(h+1)p h
h+p

√
h+ pn

h
2(h+p) ε

h
h+p

) = Õ(
log

h
2(h+p) ( 1

β )D
p
p+h

h p
p

2(h+p) 2(h+1)p

n
h

2(h+p) ε
h
h+p

).

(5)
Also we can see that n ≥ p log(2/β) log(k + 1) is true for n = Ω( 4p(h+1)

ε2pD2
h

). Thus, the theorem
follows.

Proof of Corollary 1 and 2. Since the loss function is (∞, T )-smooth, it is (2p, T )-smooth for all p.
Thus, taking h = p in Theorem 3, we get the proof.

C.2 Population Risk of Algorithm 2

Here we will only show the case of (∞, T ), it is the same for the general case.

Theorem 3. Under the conditions in Corollary 2, if we further assume the loss function `(·, x)
to be convex and 1-Lipschitz for all x ∈ D and the convex set C satisfying ‖C‖2 ≤ 1, then

with probability at least 1 − 2β, we have: ErrP(θpriv) ≤ Õ
(

(
√

log 1/β)
1
4D

1
4
p p

1
8 cp

2

1

βn
1
12 ε

1
4

)
. That is, if we

have sample complexity n = Ω̃
(

max{ log 1
β c
p2

ε2D2
p
, (
√

log 1/β)3D3
pp

3
2 cp

2

2 ε
−3α−12β−12

)
, then we have

ErrP(θpriv) ≤ α. Here c, c1, c2 are some constants.

Lemma 5. [11] If the loss function ` is L-Lipschitz and µ-strongly convex, then with probability at
least 1− β over the randomness of sampling the data set D, the following is true,

ErrP(θ) ≤

√
2L2

µ

√
ErrD(θ) +

4L2

βµn
. (6)
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Proof of Theorem 3. For the general convex loss function `, we let ˆ̀(θ;x) = `(θ;x) + µ
2 ‖θ‖

2 for
some µ > 0. Note that in this case the new empirical risk becomes L̄(θ;D) = L̂(θ;D) + µ

2 ‖θ‖
2.

Since µ
2 ‖θ‖

2 does not depend on the dataset, we can still use the Bernstein polynomial approximation
for the original empirical risk L̂(θ;D) as in Algorithm 2, and the error bound for L̄(θ;D) is the same.
Thus, we can get the population excess risk of the loss function ˆ̀, ErrP,ˆ̀(θpriv) by Corollary 1 and
we have the following relation,

ErrP,`(θpriv) ≤ ErrP,ˆ̀(θpriv) +
µ

2
.

By the above lemma for ErrP,ˆ̀(θpriv), where ˆ̀(θ;x) is 1 + ‖C‖2 = O(1)-Lipschitz, thus we have the
following,

ErrP,`(θpriv) ≤ Õ(

√
2

µ

log
1
8 1
βD

1
4
p p

1
8 c(p+1)p

n
1
8 ε

1
4

+
4

βµn
+
µ

2
).

Taking µ = O( 1
12
√
n

), we get

ErrP,`(θpriv) ≤ Õ(
log

1
8 1
βD

1
4
p p

1
8 cp

2

βn
1
12 ε

1
4

).

Thus, we have the theorem.

D Details in Section 5

Algorithm 3 Player-Efficient Local Bernstein Mechanism with O(log n)-bits communication per
player

1: Input: Each user i ∈ [n] has data xi ∈ D, privacy parameter ε, public loss function ` :
[0, 1]p ×D 7→ [0, 1], and parameter k( we will specify it later).

2: Preprocessing:
3: Construct the grid T = { v1k ,

v2
k , · · · ,

vp
k }v1,v2,··· ,vp , where {v1, v2, · · · , vp} = {0, 1, · · · , k}p.

4: Discretize the interval [0, 1] with grid steps O( 1
nε

√
d
n log( dβ )). Denote the set of grids by G.

5: Randomly partition [n] in to d = (k+ 1)p subsets I1, I2, · · · , Id, with each subset Ij correspond-
ing to a grid in T denoted as T (j).

6: for Each Player i ∈ [n] do
7: Find the subset I` such that i ∈ I`. Calculate vi = `(T (l);xi).
8: Denote zi = vi + Lap( 1

ε ), round zi into the grid set G, and let the resulting one be z̃i.
9: Send (z̃i, `).

10: end for
11: for The Server do
12: for Each ` ∈ [d] do
13: Compute v` = n

|I`|
∑
i∈I` z̃i.

14: Denote the corresponding grid point ( v1k ,
v2
k , · · · ,

vp
k ) ∈ T as `; then let

L̂((v1k ,
v2
k , · · · ,

vp
k );D) = v`.

15: end for
16: Construct perturbed Bernstein polynomial of the empirical loss L̃ as in Algorithm 2, where

each L̂((v1k ,
v2
k , · · · ,

vp
k );D) is replaced by L̃((v1k ,

v2
k , · · · ,

vp
k );D). Denote the function as

L̃(·, D).
17: Compute θpriv = arg minθ∈C L̃(θ;D).
18: end for

Proof of Theorem 4. By [2] it is ε-LDP. The time complexity and communication complexity is
obvious. As in [2], it is sufficient to show that the LDP-AVG is sampling resilient. Here the STAT is
the average, and φ(x, y) is maxj∈[p] |[x]j − [y]j |. By Lemma 2, we can see that with probability at

least 1−β, φ(Avg(v1, v2, · · · , vn); a) = O( bp√
nε

√
log p

β ). Now let S be the set obtained by sampling
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each point vi, i ∈ [n] independently with probability 1
2 . Note that by Lemma 2, we have on the

subset S . If |S| ≥ Ω(max{p log( pβ ), 1
ε2 log 1

β })with probability 1−β, φ(Avg(S); LDP-AVG(S)) =

O(
b
√
p√
|S|ε

√
log p

β ). Now by Hoeffdings Inequality, we can get |n/2− |S|| ≤
√
n log 4

β with proba-

bility 1− β. Also since n = Ω(log 1
β ), we know that |S| ≥ O(n) ≥ Ω(p log( pβ )) is true. Thus, with

probability at least 1− 2β, φ(Avg(S); LDP-AVG(S)) = O( bp√
nε

√
log p

β ).

Actually, we can also get φ(Avg(S); Avg(v1, v2, · · · , vn)) ≤ O( bd√
nε

√
log d

β ). We now first assume

that vi ∈ R. Note that Avg(S) = v1x1+···+vnxn
x1+···+xn , where each xi ∼ Bernoulli( 1

2 ). Denote M = x1 +

x2+· · ·+xn, by Hoeffdings Inequality, we have with probability at least 1− β
2 , |M− n

2 | ≤
√
n log 4

β .
Denote N = v1x1 + · · ·+ vnxn. Also, by Hoeffdings inequality, with probability at least 1− β, we
get |N − v1+···+vn

2 | ≤ b
√
n log 2

β . Thus, with probability at least 1− β, we have:

|N
M
−v1 + · · ·+ vn

n
| ≤
|N −

∑n
i=1 vi/2|
M

+|
n∑
i=1

vi/2||
1

M
− 2

n
| ≤
|N −

∑n
i=1 vi/2|
M

+
nb

2
| 1

M
− 2

n
|.

(7)
The second term | 1

M −
2
n | =

|n/2−M |
M n

2
. We know from the above |n/2−M | ≤

√
n log 4

β . Also since

n = Ω(log 1
β ), we get M ≥ O(n). Thus, | 1

M −
2
n | ≤ O(

√
log 1

β√
nn

). The upper bound of the second

term is O(
b
√

log 1
β√

n
). The same for the first term. For p dimensions, we just choose β = β

p and take

the union. Thus, we have φ(Avg(S); Avg(v1, v2, · · · , vn)) ≤ O( b√
nε

√
log p

β ) ≤ O( bp√
nε

√
log p

β ).

In summary, we have shown that φ(AVG-LDP(S); Avg(v1, v2, · · · , vn)) ≤ O( bp√
nε

√
log p

β ) with

probability at least 1− 4β.

Recently, [3] proposed a generic transformation, GenProt, which could transform any (ε, δ) (so as
for ε) non-interactive LDP protocol to an O(ε)-LDP protocol with the communication complexity
for each player being O(log log n), which removes the condition of ’sample resilient’ in [2]. The
detail is in Algorithm 2. The transformation uses O(n log n

β ) independent public string. The reader
is referred to [3] for details. Actually, by Algorithm 2, we can easily get an O(ε)-LDP algorithm with
the same error bound.
Theorem 4. With ε ≤ 1

4 , under the condition of Corollary 1, Algorithm 4 is 10ε-LDP. If T =
O(log n

β ), then with probability at least 1− 2β, Corollary 1 holds. Moreover, the communication
complexity of each layer is O(log log n) bits, and the computational complexity for each player is
O(log n

β ).

Proof of Theorem 5. Let θ∗ = arg minθ∈C L̂(θ;D), θpriv = arg minθ∈C L̃(θ;D). Under the assump-
tions of α, n, k, ε, β, we know from the proof of Theorem 3 and Corollary 1 that supθ∈C |L̃(θ;D)−
L̂(θ;D)| ≤ α. Also by setting ε = 16348pα and α ≤ 1

16348
µ
p
√
p , we can see that the condition in

Lemma 3 holds for ∆ = α. So there is an algorithm returns
L̃(θ̃priv;D) ≤ min

θ∈C
L̃(θ;D) +O(pα).

Thus, we have
L̂(θ̃priv;D)− L̂(θ∗;D) ≤ L̂(θ̃priv;D)− L̃(θpriv;D) + L̃(θpriv;D)− L̂(θ∗;D),

where
L̂(θ̃priv;D)− L̃(θpriv;D) ≤ L̂(θ̃priv;D)− L̃(θ̃priv;D) + L̃(θ̃priv;D)− L̃(θpriv;D) ≤ α+O(pα) = O(pα).

Also L̃(θpriv;D)− L̂(θ∗;D) ≤ L̃(θ∗;D)− L̂(θ∗;D) ≤ α. The theorem follows. The running time
is determined by n. This is because when we use the algorithm in Lemma 3, we have to use the first
order optimization. That is, we have to evaluate some points at L̃(θ;D), which will cost at most
O(poly(n)) time (note that L̃ is a polynomial with (k + 1)p ≤ n coefficients).
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Algorithm 4 Player-Efficient Local Bernstein Mechanism with O(log log n) bits communication
complexity.

1: Input: Each user i ∈ [n] has data xi ∈ D, privacy parameter ε, public loss function ` :
[0, 1]p ×D 7→ [0, 1], and parameter k, T .

2: Preprocessing:
3: For every (i, T ) ∈ [n]× [T ], generate independent public string yi,t = Lap(⊥).
4: Construct the grid T = { v1k ,

v2
k , · · · ,

vp
k }v1,v2,··· ,vp , where {v1, v2, · · · , vp} = {0, 1, · · · , k}p.

5: Randomly partition [n] in to d = (k+ 1)p subsets I1, I2, · · · , Id, with each subset Ij correspond-
ing to an grid in T denoted as T (j).

6: for Each Player i ∈ [n] do
7: Find the subset I` such that i ∈ I`. Calculate vi = `(T (l);xi).
8: For each t ∈ [T ], compute pi,t = 1

2

Pr[vi+Lap( 1
ε )=yi,t]

Pr[Lap(⊥)=yi,t]

9: For every t ∈ [T ], if pi,t 6∈ [ e
−2ε

2 , e
2ε

2 ], then set pi,t = 1
2 .

10: For every t ∈ [T ], sample a bit bi,t from Bernoulli(pi,t).
11: Denote Hi = {t ∈ [T ] : bi,t = 1}
12: If Hi = ∅, set Hi = [T ]
13: Sample gi ∈ Hi uniformly, and send gi to the server.
14: end for
15: for The Server do
16: for Each l ∈ [d] do
17: Compute v` = n

|I`|
∑
i∈I` gi.

18: Denote the corresponding grid point ( v1k ,
v2
k , · · · ,

vp
k ) ∈ T as `; then let

L̂((v1k ,
v2
k , · · · ,

vp
k );D) = v`.

19: end for
20: Construct perturbed Bernstein polynomial of the empirical loss L̃ as in Algorithm 2. Denote

the function as L̃(·, D).
21: Compute θpriv = arg minθ∈C L̃(θ;D).
22: end for

E Details of Section 6

E.1 Modified ε-LDP Algorithm

Note that we cannot use the ε-LDP algorithm (see Figure 5 in [12]) in [12] since it needs n ≥ k,

where k = O
( 2

p−1
2
√
p

αp−1

)
, and α = O

(
(
√
p

ε2n log3(ε2n))
1
p+1
)
. This means that n ≥ O(cp), which is

contradictory to our assumption. Instead, we will provide a similar algorithm that does not need
this assumption. The idea comes from [3], which shows that in non-interactive local model, every
(ε, δ)-LDP protocol can be transformed to an ε-LDP algorithm. Thus, our idea is the follows. In
Figure 5 of [12], instead of partitioning the dataset into k parts and running the subroutine of Figure
1 in [12], we will run k directions for the whole dataset, by the advanced composition theorem
(corollary 3.21 in [4]). If for each direction, we run (ε0 = O( ε√

k log(1/δ)
, 0)-LDP, then the whole

LDP algorithm is (ε, δ)-LDP. After that, we use the protocol in [3] to convert the (ε, δ)-LDP algorithm
into O(ε)-DP. See Algorithm 5. We have the following theorem for Algorithm 5. The proof is the
same as in [12]:

Theorem 5. Under the same assumption as in Theorem 10 of [12], Algorithm 5 is (ε, δ)-LDP for
any 1 > ε > 0 and 0 < δ < 1. Also, for every k, with probability at least 1− γ, the output satisfies

‖f̂ j − LP‖∞ ≤ O
( log(ε2n/k log(1/δ))

ε

√
k log(1/δ) log(ε2n/ log(1/δ))γ

n

)
. (8)

Furthermore, if taking k = O
( 2(p−1)/2 log(1/γ)

αp−1

√
πp
2

)
, where α = O

(
(
√
p

ε2n log3(ε2n) log2(1/γ))
1
p+1
)

and the big-O notation omits the log(1/δ) factors, then ‖f̂ − LP‖∞ ≤ Õ(α) holds with probability
at least 1− 2γ.
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Algorithm 5 (ε, δ) protocol LDP Algorithm
1: Input: Each user i ∈ [n] has data xi ∈ D, privacy parameters ε, δ, public loss function
` : [0, 1]p×D 7→ [0, 1] satisfies the assumption in [12], and parameter k( we will specify it later).

2: Preprocessing:
3: Choose k random directions, u1, u2, · · · , uk and send to each user.
4: for Each user i ∈ [n] do
5: For each j ∈ [k], invoke 1D-General (Figure 3 in [12]) with (xi, uj) with ε = ε

2
√

2k log(1/δ)

and γ = γ/k, output Ti,j . Then send Ti = (Ti,1, · · · , Ti,k) to the server.
6: end for
7: for The server do
8: After receiving {Ti}ni=1, do the following steps
9: For j ∈ [k], invokes 1-D General (Figure 4 in [12]) with {Ti,j}ni=1 to get f̂ j .

10: Compute θj = arg minθ||uj f̂
j and then compute θpriv = arg minj f̂

j(θj), output θpriv.
11: end for

Now, we have almost the same upper bound as in Theorem 10 of [12]. After using GenProt in [3], we
can have an 10ε-LDP which has the same error bound as in Theorem 5:
Theorem 6. Let ε ≤ 1

4 . If set δ = O( εγ
n ln(2n/γ) ) in Algorithm 5 as the protocol and run the Genprot

algorithm in [3], then it is a 10ε-LDP algorithm whose output wpriv satisfies the following inequality
with probability at least 1− 3γ

ErrP(θpriv) ≤ Õ
(
(

√
p log2(1/β)

ε2n
)

1
p+1
)
.

E.2 Proof of Theorem 7

Before presenting the proof, we first review some definitions. We refer the reader to [14, 15] for more
details.
Definition 5. (Sub-Gaussian random vector) A random variable a ∈ R is called sub-Gaussian if
there exits a constant C > 0 such that Pr[|a| > t] ≤ 2 exp(−t

2

C2 ) for any t > 0. Also we say a random
vector a ∈ Rp is sub-Gaussian if the one dimensional marginals 〈a, b〉 are sub-Gaussian random
variable for all b ∈ Rp.

For any sub-Gaussian random variable (vector), we can define the sub-Gaussian norm.
Definition 6. The ψ2 norm of a sub-Gaussian random variable a ∈ R, denoted by ‖a‖ψ2

, is:

‖a‖ψ2
= inf{t > 0 : E[exp(

|a|2

t2
)] ≤ 2}.

The ψ2 norm of a sub-Gaussian vector a ∈ Rp is:
‖a‖ψ2

= sup
b∈Sp−1

‖〈a, b〉‖ψ2
.

Note that when a is normal random Gaussian vector, then ‖a‖ψ2 is bounded by a constant [14].

Definition 7 (Gaussian Width). Given a closed set S ⊂ Rd, its Gaussian width is defined as:
GC = Eg∼N (0,1)d [sup

a∈S
〈a, g〉].

The Minkowski norm (denoted by || · ||C) with respect to a centrally symmetric convex set C ⊆ Rp is
defined as follows. For any vector v ∈ Rp,

|| · ||C = min{r ∈ R+ : v ∈ rC}.
The main theorem of dimension reduction is as the following:

Theorem 7. Let Φ̃ ∈ Rm×p be an random matrix, whose rows are i.i.d mean-zero, isotropic, sub-
Gaussian random variable in Rd with ψ = ‖Φi‖ψ2 . Let Φ = 1√

m
Φ̃. let S be a set of points in Rd.

Then there is a constant C > 0 such that for any 0 < γ, β < 1.
Pr[sup

a∈S
|‖Φa‖2 − ‖a‖2 ≤ γ‖a‖2] ≤ β,

9



provided that m ≥ Cψ4

γ2 max{GS , log(1/β)}2.

The proof follows from [8]. Below we rephrase it for self-completeness.

Lemma 6. Let Φ be a random matrix as defined in Theorem 7 with m = Θ((ψ
4

γ2 log(n/β)) for
β > 0. Then with probability at least 1 − β, f(〈Φyi, ·〉, zi) is 2-Lipschitz over the domain ΦC for
each i ∈ [n].

Now since C is convex, ΦC is also convex. Furthermore, by Theorem 7 we know that if m =

Θ(ψ
4

γ max{G2
C , log 1

β }) for γ < 1, then ‖ΦC‖2 ≤ O(1). Thus after compression, the loss function
and the constrained set still satisfy the assumption in [12]. By Theorem 13, we have:
Theorem 8. With probability at least 1− β,

1

n

n∑
i=1

f(〈Φyi, w̄〉, zi)−min
w∈C

1

n

n∑
i=1

f(〈Φyi,Φw〉, zi) ≤ Õ((
log2(1/β)

√
m

nε2
)

1
m+1 ). (9)

We now have the following by using Lipschitz and Theorem 7:

Lemma 7. Let Φ be the random matrix in Theorem 7 with m = Θ((ψ
4

γ2 log(n/β)) for β > 0. Then
for any ŵ ∈ C, with probability at least 1− β, we have

min
w∈C

1

n

n∑
i=1

f(〈Φyi,Φw〉, zi) ≤
1

n

n∑
i=1

f(〈yi, ŵ〉, zi) +O(γ‖C‖2.) (10)

Let θ ∈ C be the point satisfying the condition Φθ = w̄. We have the following lemma by Theorem 7.

Lemma 8. Let Φ be a random matrix as in Theorem 7 with m = Θ((ψ
4

γ2 (GC +
√

log n)2 log(n/β))

for β > 0, then with probability at least 1− β:

| 1
n

n∑
i=1

f(〈Φyi,Φθ〉, zi)−
1

n

n∑
i=1

f(〈yi, θ〉, zi)| ≤ γ‖C‖2. (11)

We will establish the connection of θ and wpriv by the following lemma:
Theorem 9. [14] Let Φ be a random matrix in Theorem 7. Let C be a convex set. Given v = Φu, and
let û be the solution to the following convex program: minu′∈Rp ‖u′‖C , subject to Φu′ = v. Then
for any β > 0, with probability at least 1− β,

sup
u:v=Φu

‖u− û‖2 ≤ O(
ψ4GC√
m

+
ψ4‖C‖2

√
log(1/β)√
m

). (12)

Combing (9)(10)(11)(12) together, we have the following bound:

Theorem 10. Under the assumption above and setting m = Θ(ψ
4(GC+

√
logn)2 log(n/β)
γ2 ) for γ < 1,

then with probability at least 1− β,

ErrD(wpriv) = Õ
(( log2(1/β)

√
m

nε2
) 1

1+m + γ), (13)

where ψ is the sub-Gaussian norm of the distribution of Φ, and GC is the Gaussian width of C.

Then taking γ as in the Theorem, we have the proof.

For the corollary we will use the property that GC = O(
√

log p).

F Conclusion and Discussion

In this paper, we studied ERM under non-interactive LDP and proposed an algorithm which is based
on Bernstein polynomial approximation. We showed that if the loss function is smooth enough,
then the sample complexity to achieve α error is α−c for some positive constant c, which improves

10



significantly on the previous result of α−(p+1). Moreover, we proposed efficient algorithms for both
player and server views. Our techniques can also be extended to high dimensional space and some
other related problems to to answering k-way-marginals and smooth queries in the local model.

In our algorithms the sample complexity still depends on the dimension p, in the term of cp for
constant c. We will focus on removing this dependency in future work. Additionally, we will study
the difference between strongly convex and convex loss functions in the non-interactive LDP setting.
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