
Supplementary material for On Markov Chain Gradient Descent

6.1 Technical lemmas

We present technical lemmas used in this paper.

Lemma 2 Consider two nonnegative sequences (αk)k≥0 and (hk)k≥0 that satisfy

1. limk hk = 0 and
∑
k hk = +∞, and

2.
∑
k αkhk < +∞, and

3. |αk+1 − αk| ≤ chk for some c > 0 and k = 0, 1, . . ..

Then, we have limαk = 0.

We call the sequence (αk)k≥0 satisfying parts 1 and 2 a weakly summable sequence since it is not
necessarily summable but becomes so after multiplying a non-summable yet diminishing sequence
hk. Without part 3, it is generally impossible to claim that αk converges to 0. This lemma generalizes
[15, Lemma 12].

Proof of Lemma 2

From parts 1 and 2, we have lim infk αk = 0. Therefore, it suffices to show lim supk αk = 0.

Assume lim supk αk > 0. Let v := 1
3 lim supk αk > 0. Then, we have infinite many segments

αk, αk+1, . . . , αk′ such that k < k′ and

αk < v ≤ αk+1, . . . , αk′−1 ≤ 2v < αk′ . (27)

It is possible that k′ = k + 1, then, the terms αk+1, . . . , αk′ in (27) will vanish. But it does
not affact the following proofs. By the assumption |αk+1 − αk| ≤ chk → 0, we further have
v
2 < αk < v ≤ αk+1 for infinitely many sufficiently large k. This leads to the following contradiction

k′−1∑

j=k

hj = hk +

k′−1∑

j=k+1

hj ≤
2αk
v
hk +

k′−1∑

j=k+1

αj
v
hj ≤

2

v

k′−1∑

j=k

αkhk → 0, (28)

k′−1∑

j=k

hj ≥
1

c

k′−1∑

j=k

|αj+1 − αj | ≥
1

c

k′−1∑

j=k

(αj+1 − αj) =
1

c
(αk′ − αk) >

v

c
. (29)

The following lemma is used to derive the boundedness of some specific sequence. It is used in the
inexact MCGD.

Lemma 3 Consider four nonnegative sequences (αk)k≥0, (ηk)k≥0 ∈ `1 and (εk)k≥0 ∈ `1 that
satisfy

αk+1 + hk ≤ (1 + ηk)αk + εk. (30)

Then, we have (hk)k≥0 ∈ `1 and
∑
k hk = O(max{∑k εk, (e

∑
k ηk ·∑k ηk), (e

∑
k ηk ·∑k ηk ·∑

k εk)}).

Proof of Lemma 3

The convergence Lemma 3 has been given in [12, Theorem 1]. Here, we prove the order for
∑
k hk.

Noting that hk ≥ 0, we then have

αk+1 ≤ (1 + ηk)αk + εk.
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As we have nonnegative number sequences 1 + ηk ≤ eηk , so

αk+1 ≤ (1 + ηk)αk + εk
≤ eηkαk + εk

≤ eηk+ηk−1αk−1 + eηkεk−1 + εk

...

≤ e
∑k
i=1 ηiα1 + e

∑k
i=1 ηi ·

k∑

i=1

εi. (31)

Thus, we get αk = O(max{e
∑k
i=1 ηi , e

∑k
i=1 ηi ·∑k

i=1 εi}). With direct calculations, we get
∑

k

hk ≤
∑

k

(αk − αk+1) + sup
k
{αk}

∑

k

ηk +
∑

k

εk

Using the got estimation of αk, we then derive the result.

Lemma 4 Let a > b > 0, and c > 0, and n ≥ 0 be real numbers. Then,

cxnbx ≤ ax (32)

if x ≥ max{0, (2n+2)(ln c+n ln( 2n+2
ln a/b

)−n)

(n+2) ln(a/b) }.

Proof of Lemma 4

Let ` := a
b , then, we just need to consider the function

D(x) := x · ln `− n · lnx− ln c. (33)

Letting x0 = 2n+2
ln ` and the convexity of − ln(x) when x > 0,

−n · lnx ≥ − n

x0
(x− x0)− n · lnx0 = − n ln `

2n+ 2
x+ n− n · lnx0. (34)

Thus, we have

D(x) ≥ (n+ 2) ln `

2n+ 2
x+ n− n · lnx0 − ln c ≥ 0. (35)

Lemma 5 Let a > 0, and x > 0 be a enough large real number. If

y − a ln y + c = x. (36)

Then, it holds
y − x ≤ 2a lnx. (37)

Proof of Lemma 5

It is easy to see as x is large, y is very large. And then, (36) indicates the y is actually an implicit
function respect with x. Using the implicit function theorem,

y′(x) =
1

1− a
y

. (38)

With L’Hospital’s rule,

lim
x→+∞

y − x
lnx

= lim
x→+∞

y′(x)− 1
1
x

= lim
x→+∞

ax

y − a = lim
y→+∞

ay − a2 ln y + ac

y − a = a. (39)

Then, as x is large enough,
y − x
lnx

≤ 2a. (40)
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Proof of Lemma 1

With direct calculation, for any A,B ∈ CM×M , we have

‖AB‖F ≤ ‖A‖F ‖B‖F .

Since P is a convergent matrix3, it is known from [9] that the Jordan normal form of P is

P = U




1
J2

. . .
Jd


U

−1, (41)

where d is the number of the blocks, ni ≥ 1 is the dimension of the ith block submatrix Ji,
i = 2, 3, . . . , d, which satisfy

∑d
i=1 ni = M , and matrix Ji := λi(P ) · Ini + D(−1, ni) with

D(−1, ni) :=




0 1
. . . . . .

. . . 1
0




ni×ni

and Ini being the identity matrix of size ni. By Assumption

1, we have λ1(P ) = 1 and |λi(P )| < 1, i = 2, 3, . . . ,M . Through direct calculations, we have

P k = U




1
Jk2

. . .
Jkd


U

−1.

Let Clk :=

(
k
l

)
for 0 ≤ l ≤ k, and Clk := 0 for 0 ≤ k < l. For i = 2, 3, . . . , d, we directly

calculate:

Jki = (λi(P ) · In1
+ D(−1, ni))

k
=

k∑

l=0

Clk(λi(P ))k−l(D(−1, ni))
l

=




(λi(P ))k (λi(P ))k−1C1
k (λi(P ))k−2C2

k . . . (λi(P ))k−ni+1Cni−1
k

(λi(P ))k (λi(P ))k−1C1
k

. . .
...

. . . . . .
...

(λi(P ))k (λi(P ))k−1C1
k

(λi(P ))k



ni×ni

.

For j = 0, 1, . . . , ni − 1, we have
∣∣(λi(P ))k−jCjk

∣∣ ≤
∣∣(λi(P ))

∣∣k−ni+1
Cjk ≤ |λ2(P )|k−ni+1kni−1.

With the technical Lemma 4 in Appendix, if k ≥ max
{⌈ 2ni(ni−1)(ln(

2ni
lnλ(P )/λ2(P )

)−1)

(ni+1) ln(λ(P )/λ2(P ))

⌉
, 0
}

, we
further have

|λ2(P )|k−ni+1kni−1 ≤ λk(P ). (42)

Hence, for i = 2, 3, . . . , d, we have limk J
k
i = 0 and, thus,

Π∗ = lim
k
P k = U




1
0

. . .
0


U

−1.

3A matrix is convergent if its infinite power is convergent.
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For the sake of convenience, let Gk :=




0
Jk2

. . .
Jkd


. Observing δk = Π∗−P k = UGkU−1,

‖δk‖∞ ≤ ‖δk‖F = ‖UGkU−1‖F ≤ ‖U‖F ‖U−1‖F · ‖Gk‖F . (43)

Based on the structure of Gk and (42),

‖Gk‖F ≤
( d∑

i=2

n2
i

) 1
2 · λk(P ). (44)

Substituting (44) into (43), we the get

CP :=
( d∑

i=2

n2
i

) 1
2 · ‖U‖F ‖U−1‖F (45)

and

KP := max
{

max
1≤i≤d

{⌈2ni(ni − 1)(ln( 2ni
lnλ(P )/|λ2(P )| )− 1)

(ni + 1) ln(λ(P )/|λ2(P )|)
⌉}
, 0
}
. (46)

6.2 Notation

The following notation is used through the proofs

∆k := xk+1 − xk. (47)

For function f and set X , f∗ denotes the minimum value of f over X . In this paper, we assume that
the stationary state of Markov chain is uniform, i.e., π∗ = ( 1

M , · · · , 1
M ).

Proposition 1 Let (xk)k≥0 be generated by convex MCGD (5). For any x∗ being the minimizer of f
constrained on X , and i ∈ [M ], and ∀k ∈ N, there exist some H > 0 such that

1. ‖v‖ ≤ D, ∀v ∈ ∂fi(xk), and

2. |fi(xk)− fi(x∗)| ≤ H , and

3. | fi(x)− fi(y) |≤ D · ‖x− y‖, ∀x, y ∈ X , and

4. ‖∆k‖ ≤ D · γk.

Proof of Proposition 1

The boundedness of X gives a bound on (xk)k≥0 based on the scheme of convex MCGD (5). With
the convexity of fi, i = 1, 2, . . . ,M , [Theorem 10.4, [13]] tells us

D := sup
v∈∂fi(x),x∈X,i∈[M ]

{‖v‖} < +∞.

Items 1, 2 and 4 are directly derived from the boundedness of the sequence and the set X . Item 3 is
due to the convexity of fi, which gives us

〈v1, x− y〉 ≤ fi(x)− fi(y) ≤ 〈v2, x− y〉,
where v1 ∈ ∂f(x) and v2 ∈ ∂f(y). With the Cauchy inequality, we are then led to

| fi(x)− fi(y) |≤ max{‖v1‖, ‖v2‖} · ‖x− y‖ ≤ D · ‖x− y‖. (48)

Though this following proofs, we use the following sigma algebra

χk := σ(x1, x2, . . . , xk, j0, j1, . . . , jk−1).
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6.3 Proof of Theorem 1, the part for exact MCGD

We first prove (14) in Part 1 and then (13) in Part 2.

Part 1. Proof of (14). For any x∗ minimizing f over X , we can get

‖xk+1 − x∗‖2 a)
= ‖ProjX(xk − γk∇̂fjk(xk))− ProjX(x∗)‖2
b)

≤ ‖xk − γk∇̂fjk(xk)− x∗‖2
c)
= ‖xk − x∗‖2 − 2γk〈xk − x∗, ∇̂fjk(xk)〉+ γ2

k‖∇̂fjk(xk)‖2
d)

≤ ‖xk − x∗‖2 − 2γk(fjk(xk)− fjk(x∗)) + γ2
kD

2, (49)

where a) uses the fact x∗ ∈ X , b) holds since X is convex, c) is direct expansion, and d) follows
from the convexity of fjk . Rearranging (49) and summing it over k yield

∑

k

γk(fjk(xk)− fjk(x∗)) ≤ 1

2

∑

k

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+
D2

2

∑

k

γ2
k (50)

≤ 1

2
‖x0 − x∗‖2 +

D2

2

∑

k

γ2
k, (51)

where the right side is non-negative and finite. For simplicity, let
∑

k

γk(fjk(xk)− fjk(x∗)) =: C1 < +∞. (52)

For integer k ≥ 1, denote the integer Jk as

Jk := min{max
{⌈

ln
( k

2CPH

)
/ ln(1/λ(P ))

⌉
,KP

}
, k}. (53)

Jk is important to the analysis and frequently used. Obviously, Jk ≤ k; this is because we need use
xk−Jk in the following. With Lemma 1 and direct calculations, we have

| [PJk ]i,j −
1

M
|≤ CP (λ(p))Jk ≤ 1/k

2H
, for any i, j ∈ {1, 2, . . . ,M}. (54)

The remaining of Part 1 consists of two steps:

1. in Step 1, we will prove
∑
k γkE(f(xk−Jk)− f∗) ≤ C4 + C5

ln(1/λ(P )) , C4, C5 > 0 and

2. in Step 2, we will show
∑
k γkE(f(xk)− f(xk−Jk)) ≤ C6 + C7

ln(1/λ(P )) , C6, C7 > 0.

Then, summing them gives us
∑

k

γkE(f(xk)− f∗) = O(max{1, 1

ln(1/λ(P ))
}). (55)

and, by convexity of f and Jensen’s inequality,

(

k∑

i=1

γi) · E(f(xk)− f∗) ≤
k∑

i=1

γiE(f(xi)− f∗) = O(max{1, 1

ln(1/λ(P ))
}) < +∞. (56)

Rearrangement of (56) then gives us (14).

Step 1: We can get

γkE[(fjk(xk−Jk)− fjk(xk))]
a)

≤ CγkE‖xk−Jk − xk‖
b)

≤ Cγk
k−1∑

d=k−Jk
E‖∆d‖

c)

≤ CD
k−1∑

d=k−Jk
γdγk

d)

≤ CD

2

k−1∑

d=k−Jk
(γ2
d + γ2

k) =
CD

2
Jkγ2

k +
CD

2

k−1∑

d=k−Jk
γ2
d , (57)
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where a) follows from (48), b) uses the triangle inequality, c) uses Proposition 1, Part 4, and d)
applies the Schwartz inequality. From Lemma 1, we can see

Jk = O(
ln k

ln(1/λ(P ))
). (58)

From the assumption on γk, it follows that (Jkγ2
k)k≥0 is summable.

Next, we establish the summability of
∑k−1
d=k−Jk γ

2
d over k. We consider an integer K large enough

that activates Lemma 5, and can let Jk = ln(2CPH·k)
ln(1/λ(P )) when k ≥ K. Noting that finite items do

not affect the summability of sequence, we then turn to studying (
∑k−1
d=k−Jk γ

2
d)k≥K . For any

k′ ≥ K, γ2
k′ appears at most ]{t ∈ Z+ | t − Jt ≤ k′ ≤ t,K ≤ t} times in the summation∑+∞

k=K

∑k−1
d=k−Jk γ

2
d . Let t(k) be the solution of t− Jt = k. The direct computation tells us

]{t ∈ Z+ | t− Jt ≤ k ≤ t,K ≤ t} ≤ t(k)− k ≤ 2
ln k

ln(1/λ(P ))
,

where the last inequality is due to Lemma 5. Therefore,

+∞∑

k=K

( k−1∑

d=k−Jk
γ2
d

)
≤ 2

ln(1/λ(P ))

+∞∑

k=K

ln k · γ2
k < +∞. (59)

Since both terms in the right-hand side of (57) are finite, we conclude
∑+∞
k=0 γkE[fjk(xk−Jk) −

fjk(xk)] < +∞. Combining (52), it then follows
∑

k

γkE(fjk(xk−Jk)− fjk(x∗)) ≤ C2 +
C3

ln(1/λ(P ))
(60)

for some C2, C3 > 0. Due to that finite items have no effect on the summability. In the following,
similarly, we assume k ≥ KP .

Recall χk := σ(x1, x2, . . . , xk, j0, j1, . . . , jk−1). We derive an important lower bound

Ejk
(
fjk(xk−Jk)− fjk(x∗)) | χk−Jk

) a)
=

M∑

i=1

(
fi(x

k−Jk)− fi(x∗)
)
· P(jk = i | χk−Jk)

b)
=

M∑

i=1

(
fi(x

k−Jk)− fi(x∗)
)
· P(jk = i | jk−Jk)

c)
=

M∑

i=1

(fi(x
k−Jk)− fi(x∗)) · [PJk ]jk−Jk ,i

d)

≥ (f(xk−Jk)− f∗)− 1

2k
, (61)

where a) is the definition of the conditional expectation, and b) uses the Markov property, and c)
follows from P(jk = i | jk−Jk) = [PJk ]jk−Jk ,i, and d) is due to (54). Taking total expectations of
(61) and multiplying by γk, switching the sides then yields

γkE(f(xk−Jk)− f∗) ≤ γkE(fjk(xk−Jk)− fjk(x∗)) +
γk
2k
. (62)

Combining (60) and (62) and using
∑

k≥1

γk
k
≤ 1

2

∑

k≥1

γ2
k +

1

2

∑

k≥1

1

k2
< +∞,

we arrive at ∑

k

γkE(f(xk−Jk)− f∗) ≤ C4 +
C5

ln(1/λ(P ))
(63)
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for some C4, C5 > 0.

Step 2: With direct calculation (the same procedure as (57)), we get

γk · E(f(xk)− f(xk−Jk)) ≤ MD2

2
Jkγ2

k +
MD2

2

k−1∑

d=k−Jk
γ2
d , (64)

where M is number of the finite functions. The summability of (Jkγ2
k)k≥1 and (

∑k−1
d=k−Jk γ

2
d)k≥1

has been proved, thus,
∑

k

γk · E(f(xk)− f(xk−Jk)) ≤ C6 +
C7

ln(1/λ(P ))

for some C6, C7 > 0.

Now, we prove the Part 2.

Part 2. Proof of (13). Using the Lipschitz continuity of f and Proposition 1, we have

|f(xk+1)− f(xk)| ≤ D‖∆k‖ ≤ D2 · γk (65)

and, thus,

|E(f(xk+1)− f∗)− E(f(xk)− f∗)|
= |E(f(xk+1)− f(xk))| ≤ E|f(xk+1)− f(xk)| ≤ D2 · γk. (66)

From (55), (66), and Lemma 2 (letting αk = E(f(xk)− f∗) and hk = γk in Lemma 2), we then get

lim
k

E(f(xk)− f∗) = 0. (67)

6.4 Proof of Theorem 1, the part for inexact MCGD (15)

For any x∗ that minimizes f over X , we have

‖xk+1 − x∗‖2 a)
= ‖ProjX(xk − γk∇̂fjk(xk)− γkek)− ProjX(x∗)‖2
b)

≤ ‖xk − γk∇̂fjk(xk)− γkek − x∗‖2
c)
= ‖xk − x∗‖2 − 2γk〈xk − x∗, ∇̂fjk(xk)〉
+ 2γk〈x∗ − xk, ek〉+ γ2

k‖∇̂fjk(xk) + ek‖2
d)

≤ (1 + ln k · γ2
k)‖xk − x∗‖2 − 2γk

(
fjk(xk)− fjk(x∗)

)

+ 2γ2
kD

2 + 2γ2
k‖ek‖2 +

‖ek‖2
ln k

, (68)

where a) uses the fact x∗ ∈ X , b) uses the convexity of X , c) applies direct expansion, and d) uses
the Schwartz inequality 2γk〈x∗ − xk, ek〉 ≤ ln k · γ2

k · ‖x∗ − xk‖2 + ‖ek‖2
ln k . Taking expectations on

both sides, we then get

E‖xk+1 − x∗‖2 + 2E
(
γk(fjk(xk)− fjk(x∗))

)

≤ (1 + ln k · γ2
k)E‖xk − x∗‖2 + 2γ2

kD
2 + 2γ2

k‖ek‖2 +
‖ek‖2
ln k

. (69)

Following the same deductions in the proof in §6.3, we can get

γkE(f(xk)− f∗) ≤ E
(
γk(fjk(xk)− fjk(x∗))

)
+ wk, (70)

where (wk)k≥0 ∈ `1 is a nonnegative, summable sequence that is defined as certain weighted sums
out of (γk)k≥0 and it is easy to how

∑
k w

k = O(max{1, 1
ln(1/λ(P ))}). Then, we can obtain

E‖xk+1 − x∗‖2 + 2γkE(f(xk)− f∗)

≤ (1 + ln k · γ2
k)E‖xk − x∗‖2 + 2γ2

kD
2 + 2γ2

k‖ek‖2 +
‖ek‖2
ln k

+ wk. (71)
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After applying Lemma 3 to (71), we get
∑

k

γkE(f(xk)− f∗) = O(max{1, 1

ln(1/λ(P ))
}) < +∞. (72)

The remaining of this proof is very similar to the proof in §6.3.

6.5 Proof of Theorem 2, the part for exact nonconvex MCGD (17)

With Assumption 3, we can get the following fact.

Proposition 2 Let (xk)k≥0 be generated by nonconvex MCGD (17). It then holds that

‖∆k‖ ≤ D · γk. (73)

We first prove (21) in Part 1 and then (20) in Part 2.

Part 1. Proof of (21). For integer k ≥ 1, denote the integer Tk as

Tk := min{max
{⌈

ln
( k

2CPD2

)
/ ln(

1

λ(P )
)
⌉
,KP

}
, k}. (74)

By using Lemma 1, we then get
∣∣∣[P Tk ]i,j −

1

M

∣∣∣ ≤ 1/k

2D2
, for any i, j ∈ {1, 2, . . . ,M}. (75)

The remaining of Part 1 consists of two major steps:

1. in first step, we will prove
∑
k γkE‖∇f(xk−Tk)‖2 = O(max{1, 1

ln(1/λ(P ))}), and

2. in second step, we will show
∑
k

(
γkE‖∇f(xk)‖2 − γkE‖∇f(xk−Tk)‖2

)
≤ C3 +

C4

ln(1/λ(P )) , C3, C4 > 0.

Summing them together, we are led to
∑

k

γkE‖∇f(xk)‖2 = O(max{1, 1

ln(1/λ(P ))
}). (76)

With direct calculations, we then get

(

k∑

i=1

γi)·E( min
1≤i≤k

{‖∇f(xi)‖2}) ≤
k∑

i=1

γiE‖∇f(xi)‖2 = O(max{1, 1

ln(1/λ(P ))
}) < +∞. (77)

Rearrangement of (77) then gives us (21).

Step 1. The direct computations give the following lower bound:

Ejk(〈∇f(xk−Tk),∇fjk(xk−Tk)〉 | χk−Tk)

a)
=

M∑

i=1

〈∇f(xk−Tk),∇fjk(xk−Tk)〉 · P(jk = i | χk−Tk)

b)
=

M∑

i=1

〈∇f(xk−Tk),∇fjk(xk−Tk)〉 · P(jk = i | jk−Tk)

c)
=

M∑

i=1

〈∇f(xk−Tk),∇fi(xk−Tk)〉 · [P Tk ]jk−Tk ,i

d)

≥ ‖∇f(xk−Tk)‖2 − 1

2k
, (78)
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where a) is from the conditional expectation, and b) depends on the property of Markov chain, and c)
is the matrix form of the probability, and d) is due to (75). Rearrangement of (78) gives us

γkE‖∇f(xk−Tk)‖2 ≤ γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉) +
γk
2k
. (79)

We present the bound of f(xk+1)− f(xk) as

f(xk+1)− f(xk)
a)

≤ 〈∇f(xk),∆k〉+
L‖∆k‖2

2

b)
= 〈∇f(xk−Tk),∆k〉+ 〈∇f(xk)−∇f(xk−Tk),∆k〉+

L‖∆k‖2
2

c)

≤ 〈∇f(xk−Tk),∆k〉+
(L+ 1)‖∆k‖2

2
+
L2‖xk − xk−Tk‖2

2
, (80)

where a) uses continuity of ∇f , and b) is a basic algebra computation, c) applies the Schwarz
inequality to 〈∇f(xk)−∇f(xk−Tk),∆k〉. Moving 〈∇f(xk−Tk),∆k〉 to left side, we then get

〈∇f(xk−Tk),−∆k〉 ≤ f(xk)− f(xk+1) +
L2‖xk+1 − xk−Tk‖2

2
+

(L+ 1)‖∆k‖2
2

. (81)

We turn to offering the following bound:

E(〈∇f(xk−Tk),−∆k〉 | χk−Tk)

= γkE(〈∇f(xk−Tk),∇fjk(xk)〉 | χk−Tk)

= γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉 | χk−Tk)

+ γkE(〈∇f(xk−Tk),∇fjk(xk)−∇fjk(xk−Tk)〉 | χk−Tk)

≥ γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉 | χk−Tk)

−D · L · E(γk‖xk − xk−Tk‖ | χk−Tk), (82)

where we used the Lipschitz continuity and boundedness of∇f . Taking conditional expectations on
both sides of (81) on χk−Tk and rearrangement of (82) tell us

γkEjk(〈∇f(xk−Tk),∇fjk(xk−Tk)〉 | χk−Tk)

≤ E
(
f(xk)− f(xk+1) | χk−Tk

)
+

(L+ 1) · E(‖∆k‖2 | χk−Tk)

2

+D · L · E(γk‖xk − xk−Tk‖ | χk−Tk) +
L2 · E(‖xk+1 − xk−Tk‖2 | χk−Tk)

2
. (83)

Taking expectations on both sides of (83), we then get

γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉) ≤ E
(
f(xk)− f(xk+1)

)
︸ ︷︷ ︸

(I)

+
(L+ 1) · E‖∆k‖2

2︸ ︷︷ ︸
(II)

+D · L · E(γk‖xk − xk−Tk‖)︸ ︷︷ ︸
(III)

+
L2 · E(‖xk+1 − xk−Tk‖2)

2︸ ︷︷ ︸
(IV)

. (84)

We now prove that (I), (II), (III) and (IV) are all summable. The summability (I) is obvious. For (II),
(III) and (IV), with Proposition 2, we can derive (we omit the constant parameters in following)

(II) : E(‖∆k‖2) ≤ γ2
kD

2,

and

(III) :E(γk‖xk − xk−Tk‖) ≤ γk
k−1∑

d=k−Tk
E‖∆d‖ ≤ D

k−1∑

d=k−Tk
γdγk

≤ D

2

k−1∑

d=k−Tk
(γ2
d + γ2

k) =
TkD

2
γ2
k +

D

2

k−1∑

d=k−Tk
γ2
d ,
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and

(IV) : E(‖xk+1 − xk−Tk‖2) ≤ (Tk + 1)

k∑

d=k−Tk
E‖∆d‖2 ≤ D2(Tk + 1)

k∑

d=k−Tk
γ2
d .

It is easy to see if (Tk
∑k
d=k−Tk γ

2
d)k≥0 is summable, (II), (III) and (IV) are all summable. We

consider a large enough integer K which makes Lemma 5 active, and Tk = ln(2CPD
2·k)

ln(1/λ(P )) when
k ≥ K. Noting that finite items do not affect the summability of sequence, we then turn to studying
(Tk

∑k−1
d=k−Jk γ

2
d)k≥K . For any fixed integer t ≥ K, γ2

t only appears at index k ≥ K satisfying

St := {k ∈ Z+ | k − Tk ≤ t ≤ k − 1, k ≥ K}
in the inner summation. If K is large enough, Tk ≤ k

2 , and then

k ≤ 2t, ∀k ∈ St.
Noting that Tk increases respect to k, we then get

Tk ≤ T2t, ∀k ∈ St.
That means in

∑+∞
k=K(Tk

∑k−1
d=k−Tk γ

2
d), γ2

t appears at most

T2t · ](St) ≤
2 ln2 t

ln(1/λ2(P ))
+

2 ln t

ln(1/λ2(P ))
+

2 ln(2CPD
2)

ln(1/λ2(P ))
.

The direct computation then yields

+∞∑

k=K

(
Tk

k−1∑

d=k−Tk
γ2
d

)
≤ 2

ln(1/λ2(P ))

∑

t=K

ln2 t · γ2
t

+
2

ln(1/λ2(P ))

∑

t=K

ln t · γ2
t +

2 ln(2CPD
2)

ln(1/λ2(P ))

∑

t=K

γ2
t = O(

1

ln(1/λ(P ))
). (85)

Turning back to (84), we then get
∑

k

γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉) ≤ C1 +
C2

ln(1/λ(P ))
,

for some C1, C2 > 0. By using (79),
∑

k

γkE‖∇f(xk−Tk)‖2 = O(max{1, 1

ln(1/λ(P ))
}). (86)

Step 2: With Lipschitz of∇f , we can do the following basic algebra

γk‖∇f(xk)‖2 − γk‖∇f(xk−Tk)‖2

≤ γk〈∇f(xk)−∇f(xk−Tk),∇f(xk) +∇f(xk−Tk)〉
≤ γk‖∇f(xk)−∇f(xk−Tk)‖ · ‖∇f(xk) +∇f(xk−Tk)‖
≤ 2DLγk‖xk − xk−Tk‖ ≤ DLγ2

k +DL‖xk − xk−Tk‖2. (87)

We have proved (E‖xk+1 − xk−Tk‖2)k≥0 is summable (O(max{1, 1
ln(1/λ(P ))})); it is same way to

prove that (E‖xk − xk−Tk‖2)k≥0 is summable (O(max{1, 1
ln(1/λ(P ))})). Thus,

∑

k

(
γkE‖∇f(xk)‖2 − γkE‖∇f(xk−Tk)‖2

)
≤ C3 +

C4

ln(1/λ(P ))

for some C3, C4 > 0.

Part 2. Proof of (20). With the Lipschitz continuity of∇f , we have

| ‖∇f(xk+1)‖2 − ‖∇f(xk)‖2 |≤ 2DL‖∆k‖ ≤ 2DL · γk. (88)
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That is also ∣∣∣E‖∇f(xk+1)‖2 − E‖∇f(xk)‖2
∣∣∣ ≤ 2DL · γk (89)

With (76), (89), and Lemma 2 (letting E‖∇f(xk+1)‖2 = αk and γk = hk in Lemma 2), it follows

lim
k

E‖∇f(xk)‖2 = 0. (90)

With Schwarz inequality
(E‖∇f(xk)‖)2 ≤ E‖∇f(xk)‖2,

the result is then proved.

6.6 Proof of Theorem 2, the part for inexact nonconvex MCGD (22)

The proof is very similar to §6.5 except several places. We first modify (82) as

E(〈∇f(xk−Tk),−∆k〉 | χk−Tk)

= γkE(〈∇f(xk−Tk),∇fjk(xk)〉 | χk−Tk) + γkE(〈∇f(xk−Tk), ek〉 | χk−Tk)

= γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉 | χk−Tk)

+ γkE(〈∇f(xk−Tk),∇fjk(xk)−∇jk(xk−Tk)〉 | χk−Tk)

+ γkE(〈∇f(xk−Tk), ek〉 | χk−Tk)

≥ γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉 | χk−Tk)

−D · L · E(γk‖xk − xk−Tk‖ | χk−Tk)−D · γk · ‖ek‖, (91)

where we used the Lipschitz continuity and boundedness of ∇f . And then taking expectations, we
are then led to

γkE(〈∇f(xk−Tk),∇fjk(xk−Tk)〉) ≤ (I) + (II) + (III) + (IV) +D · γk · ‖ek‖, (92)

where (I), (II), (III) and (IV) are given by (84). The following is the same as §6.5.

Proof of Corollaries 1 and 2

The proofs of Corollaries 1 and 2 are similar to previous. To give the credit to the reader, we just
prove Corollary 1 in the exact case, i.e. ek ≡ 0.

Let F ∗ := minx∈X EξF (x; ξ). Like previous methods, the proof consists of two parts: in the first
one, we prove

∑
k γk · E(EξF (xk; ξ)− F ∗) < +∞; while in the second one, we focus on proving

|E(Eξ(xk+1; ξ)− F ∗)− Eξ(F (xk; ξ)− F ∗)| = O(γk).

Part 1. For any x∗ minimizing f over X , we can get

‖xk+1 − x∗‖2 a)
= ‖ProjX(xk − γk∇̂F (xk; ξk))− ProjX(x∗)‖2
b)

≤ ‖xk − γk∇̂fjk(xk)− x∗‖2
c)
= ‖xk − x∗‖2 − 2γk〈xk − x∗, ∇̂F (xk; ξk)〉+ γ2

k‖∇̂F (xk; ξk)‖2
d)

≤ ‖xk − x∗‖2 − 2γk(F (xk; ξk)− F (x∗; ξk)) + γ2
kD

2, (93)

where a) uses the fact x∗ ∈ X , and b) depends the concentration of operator ProjX(·) when X is
convex, and c) is direct expansion, and d) comes from the convexity of F (x; ξk). Rearrangement of
(93) tells us
∑

k

γk(F (xk; ξk)− F (x∗; ξk)) ≤ 1

2

∑

k

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+
D2

2

∑

k

γ2
k. (94)

Noting the right side of (94) is non-negative and finite, we then get
∑

k

γk(F (xk; ξk)− F (x∗; ξk)) = C1, (95)
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for some 0 < C1 < +∞. For integer k ≥ 1, denote the integerHk as

Hk := min{
⌈

ln
( k

2CH

)
/ ln(1/λ)

⌉
, k}. (96)

Here C and λ are constants which are dependent on the Markov chain. These notation are to give
the difference to CP and λ(P ) in Lemma 1. Obviously,Hk ≤ k. With [8, Theorem 4.9] and direct
calculations, we have

∫

Ξ

|ps+Hks (ξ)− π(ξ)|dµ(ξ) ≤ 1

2 ·H · k ,∀s ∈ Z+ (97)

where ps+Hks (ξ) denotes the transition p.d.f. from s to s+Hk with respect to ξ. Noting the Markov
chain is time-homogeneous, ps+Hks (ξ) = pHk0 (ξ).

The remaining of Part 1 consists of two major steps:

1. in first step, we will prove
∑
k γkE(EξF (xk−Hk ; ξ) − F ∗) ≤ C4 + C5

ln(1/λ) , C4, C5 > 0

and
2. in second step, we will show

∑
k γkE(EξF (xk; ξ) − EξF (xk−Hk ; ξ)) ≤ C6 +

C7

ln(1/λ) , C6, C7 > 0.

Summing them together, we are then led to
∑

k

γkE(EξF (xk; ξ)− F ∗) = O(max{1, 1

ln(1/λ)
}). (98)

With direct calculations, we are then led to

(

k∑

i=1

γi)·E(EξF (xk; ξ)−F ∗) ≤
k∑

i=1

γiE(EξF (xi; ξ)−F ∗) = O(max{1, 1

ln(1/λ)
}) < +∞. (99)

Rearrangement of (56) then gives us (14).

In the following, we prove these two steps.

Step 1: We can get

γkE[F (xk−Hk ; ξk)− F (xk; ξk)]
a)

≤ LγkE‖xk−Hk − xk‖
b)

≤ Lγk
k−1∑

d=k−Hk
E‖∆d‖

c)

≤ DL
k−1∑

d=k−Hk
γdγk

d)

≤ DL

2

k−1∑

d=k−Hk
(γ2
d + γ2

k) =
DL

2
Hkγ2

k +
DL

2

k−1∑

d=k−Hk
γ2
d , (100)

where a) comes from (48), b) is the triangle inequality, c) depends on Assumption 5, and d) is from
the Schiwarz inequality. As k is large, we can see

Hk = O(
ln k

ln(1/λ)
). (101)

Recall the following proved inequality,

+∞∑

k=K

( k−1∑

d=k−Hk
γ2
d

)
≤ 2

ln(1/λ)

+∞∑

k=K

ln k · γ2
k. (102)

Turning back to (100), we can see
∑+∞
k=0 γkE[F (xk−Hk ; ξk)− F (xk; ξk)] < +∞. Combining (95),

it then follows ∑

k

γkE(F (xk−Hk ; ξk)− F (x∗; ξk)) ≤ C2 +
C3

ln(1/λ)
(103)
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for some C2, C3 > 0.

We consider the lower bound

Eξk(F (xk−Hk ; ξk)− F (x∗; ξk)) | χk−Hk)

a)
=

∫

Ξ

(F (xk−Hk ; ξ)− F (x∗; ξ))pkk−Hk(ξ)dµ(ξ)

b)
=

∫

Ξ

(F (xk−Hk ; ξ)− F (x∗; ξ))pHk0 (ξ)dµ(ξ)

c)

≥ (EξF (xk−Hk ; ξ)− F ∗)− 1

2k
(104)

where a) is from the conditional expectation, and b) depends on the property of Markov chain, and c)
is due to (97). Taking expectations of (61) and multiplying by γk, switching the sides then yields

γkE(EξF (xk−Hk ; ξ)− F ∗) ≤ γkE(EξF (xk−Hk ; ξk)− EξF (x∗; ξk)) +
γk
2k
. (105)

Substituting (103) into(105) and noting
∑

k≥1

γk
k
≤ 1

2

∑

k≥1

γ2
k +

1

2

∑

k≥1

1

k2
< +∞,

we are then led to ∑

k

γkE(EξF (xk−Hk ; ξ)− F ∗) ≤ C4 +
C5

ln(1/λ)
(106)

for some C4, C5 > 0.

Step 2: With direct calculation (the same procedure as (100)), we get

γk · E(EξF (xk; ξ)− EξF (xk−Hk ; ξ)) ≤ D2

2
Hkγ2

k +
D2

2

k−1∑

d=k−Hk
γ2
d . (107)

The summability of (Hkγ2
k)k≥1 and (

∑k−1
d=k−Hk γ

2
d)k≥1 has been proved, thus,

∑

k

γk · E(EξF (xk; ξ)− EξF (xk−Hk ; ξ)) ≤ C6 +
C7

ln(1/λ(P ))

for some C6, C7 > 0.

Now, we prove the Part 2.

Part 2. With the Lipschitz continuity of F (x, ξ), it follows

|EξF (xk+1; ξ)− EξF (xk; ξ)| ≤ L‖∆k‖ ≤ DL · γk. (108)

That is also

|E(EξF (xk+1; ξ)− F ∗)− E(EξF (xk; ξ)− F ∗)|
= |E(EξF (xk+1; ξ)− EξF (xk; ξ))|
≤ E|EξF (xk+1; ξ)− EξF (xk; ξ)| ≤ DL · γk. (109)

With (98), (109), and Lemma 2 (letting αk = E(EξF (xk+1; ξ)−F ∗) and hk = γk in Lemma 2), we
then get

lim
k

E(EξF (xk; ξ)− F ∗)) = 0. (110)
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