Supplementary material for On Markov Chain Gradient Descent

6.1 Technical lemmas

We present technical lemmas used in this paper.

Lemma 2 Consider two nonnegative sequences (o) >0 and (hi) k>0 that satisfy
1. limy hy =0and ), hi, = 400, and
2. > ahy < 400, and
3. |aks1 — ag| < chy for some ¢ > 0and k =0,1,.. ..

Then, we have lim oy, = 0.
We call the sequence (o) x>0 satisfying parts 1 and 2 a weakly summable sequence since it is not
necessarily summable but becomes so after multiplying a non-summable yet diminishing sequence

hi. Without part 3, it is generally impossible to claim that g, converges to 0. This lemma generalizes
[15) Lemma 12].

Proof of Lemma[2]

From parts 1 and 2, we have lim infy, o, = 0. Therefore, it suffices to show lim sup,, o, = 0.

Assume limsup, o, > 0. Let v := %lim supy o, > 0. Then, we have infinite many segments
O, Qpi1,- -, such that k < k' and

Ozk<1}§04k+1,...,04k/_1§2U<Ozkl. 27
It is possible that k' = k + 1, then, the terms a1, ..., g in (27) will vanish. But it does

not affact the following proofs. By the assumption |agy1 — ag| < chp — 0, we further have
5 < ap < v < oy forinfinitely many sufficiently large k. This leads to the following contradiction

k-1 k-1 2% k-1 o 9 k-1

hi: = hy C< 22k Tp< 2 .
Z ; hk+_z h; < vh,ﬁ_z Uh]_UZakhk%O, (28)
j=k j=k+1 j=k+1 j=k
k'—1 1 k'—1 1 k-1 1 v
Zk hj = - Zk a1 — eyl =~ Zk(aj+1 —ag) = —(aw —ax) > —. (29)
J= J= J=

The following lemma is used to derive the boundedness of some specific sequence. It is used in the
inexact MCGD.

Lemma 3 Consider four nonnegative sequences (ay)r>0, (Mk)k>0 € €1 and (ex)k>0 € £* that
satisfy

a1+ he < (T4 )y + €. (30)

Then, we have (hy)r>o € ¢* and Y op hie = O(max{)", e, (ezk My M) (ezk My M
Dok €k)})-

Proof of Lemma

The convergence Lemmahas been given in [12, Theorem 1]. Here, we prove the order for ), hy.
Noting that hy, > 0, we then have

ap+1 < (14 ng)ag + k.
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As we have nonnegative number sequences 1 + 1, < €%, so

a1 < (1 +ne)ag + e
< e™ay + €

< enk+nk—1ak71 + enkekfl + €k

k
SR> RN > B P 31)

i=1

Thus, we get oy, = O(max{erzl M @i i . Zle €;}). With direct calculations, we get
> i < (g —argr) Fsup{an} > me+ Y e
k k k k k
Using the got estimation of ay, we then derive the result.

Lemmad4 Leta > b > 0, and c > 0, and n > 0 be real numbers. Then,
cx"b” < a” (32)

' (2n+2)(In c+n In( 2252 ) —n)
lfl‘ > maX{07 (n+2) ln(al/b)/b }

Proof of Lemma [

Let £ := 7, then, we just need to consider the function

D(z):=x-Inl—n-Inz—Inc. (33)
Letting 2o = 2“t2 and the convexity of — In(z) when z > 0,
In¢
—n-lnx > —%(m—xo) —n-lnzy = —27:112x+n—n-lnx0. (34)
Thus, we have
2)In¢
D(m)z%m—i—n—n-lnxo—lnczo. (35)

Lemma 5 Leta > 0, and x > 0 be a enough large real number. If
y—alny+c=uz. (36)
Then, it holds
y—z <2alnz. 37
Proof of Lemma 3]

It is easy to see as « is large, y is very large. And then, (36) indicates the y is actually an implicit
function respect with z. Using the implicit function theorem,

1
y'(z) = T (38)
y
With L’Hospital’s rule,
— "(z) —1 —a?l
lim y—2T _ lim %: lim ar__ lim w:a 39)
z—+oo Inx T——+00 = z—+oo Y — a y——+oo y—a
Then, as x is large enough,
Y=T <9, (40)
Inx



Proof of Lemmall]

With direct calculation, for any A, B € CM*M e have

IAB|r < | Allpll Bl #-

Since P is a convergent matri)ﬂ it is known from [9]] that the Jordan normal form of P is

1
Jo
P=U ) U1t 41)

Jq

where d is the number of the blocks, n; > 1 is the dimension of the ith block submatrix J;,
i = 2,3,...,d, which satisfy Z?:l n; = M, and matrix J; := \;(P) - L, + D(—1,n;) with
0 1

D(-1,n;) := R and I,, being the identity matrix of size n;. By Assumption
' 1

Mg XNj

we have A\ (P) = land |\;(P)| < 1,7 =2,3,..., M. Through direct calculations, we have

1
T3
Pt =U , Ut
T
Let C,i = (?) for 0 <[ < k, and C’,lC =0for0 < k <. Fort = 2,3,...,d, we directly
calculate:
k
JE = (P) Ty +D(=1,m:)" =Y CLO(P) T (D(—1,n))!
1=0
N(P)E - ((P)FICL (N(P)F2CR (Ai(P))k—mttopt
N(P)E (P :
(NP (P
(Xi(P)) .
Forj =0,1,...,n; — 1, we have
|(/\1(P))szjcf]]c| < |()\Z(P))|k*”z+1clj€ < |>\2(P)|kfni+1kni71'
With the technical L in Appendix, if k > 2ns(ns— ) U rspyarry) =1 g
ith the technical Lemma |4 in Appendix, if k& > max {[ TP A P)) 1,0}, we
further have
|Ao(P)[F—mitlpni=t < Ak(P). (42)
Hence, for i = 2,3, ..., d, we have lim;, JF = 0 and, thus,
1
0
I = 1i]£nPk =U ) UL

3 A matrix is convergent if its infinite power is convergent.
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k
For the sake of convenience, let GF := /2 . Observing §F =1I* — P = UGFU 1,
i
185l < [16%1F = [UG*U |p < NUNRIU £ - [G*|| - 43)
Based on the structure of G* and @])

d
1
IGH [ < (D n)? - A¥(P). (44)
i=2
Substituting into (@3)), we the get
d
1
Cp o= (D n)* - IWUIFIU P (45)
i=2
and
2n;(ni — D) (In(pxprsoer) — 1)
nA(P)/[A2(P)]
Kp = OF. 46
pi=ma e o) ey 1% 40
6.2 Notation
The following notation is used through the proofs
AF = gh L gk 47)

For function f and set X, f* denotes the minimum value of f over X. In this paper, we assume that
the stationary state of Markov chain is uniform, i.e., 7 = (3, , 7).

Proposition 1 Let (%)~ be generated by convex MCGD (). For any x* being the minimizer of f
constrained on X, and i € (M), and Vk € N, there exist some H > 0 such that

~

. |lvll € D, Yv € 3f;(z*), and
2. |fi(a®) = fi(z*)| < H, and
30 file) = filw) <Dz —y
4. |AF| < D - .

, Ve, y € X, and

Proof of Proposition 1]

The boundedness of X gives a bound on (z*);>0 based on the scheme of convex MCGD (). With
the convexity of f;, ¢ =1,2,..., M, [Theorem 10.4, [13]] tells us

D := sup {v]|} < +o0.
vedfi(x),xeX i€[M]

Items 1, 2 and 4 are directly derived from the boundedness of the sequence and the set X. Item 3 is
due to the convexity of f;, which gives us

(vi,2 —y) < fi(x) — fi(y) < (v2, 2 — y),
where v; € 0f(x) and ve € Of(y). With the Cauchy inequality, we are then led to
| fi(w) = fiy) |< max{{[[or], [Jva][} - lz =yl < D [l - yl|. (48)

Though this following proofs, we use the following sigma algebra

k._ 1,2 E . .
X" i=o(x, 2% 2 Jo, 1y Jh—1)-
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6.3 Proof of Theorem i}, the part for exact MCGD
We first prove (T4) in Part 1 and then (T3) in Part 2.

Part 1. Proof of (14). For any z* minimizing f over X, we can get
o+t — 7|2 2 |[Proj (2" — V£, (@) — Projy (a1
< o — ¥ (@) - 2|
Dk — a2 = 2y (e — 2, V5, () + RNV i ()2

d)

<o = 2" = 29 (£ () = f5:.(27)) + 42 D, (49)
where a) uses the fact z* € X, b) holds since X is convex, c) is direct expansion, and d) follows
from the convexity of f;,. Rearranging (49) and summing it over k yield

1 i D?
S i@ = £ @) < 530 (It =" P = 8 =22 + S 0E (50)
k k k

<lllxo—x*||2+D—22~y2 (51)
=9 2 - k>
where the right side is non-negative and finite. For simplicity, let
D (fi @) = fi, (@) = C1 < +oc. (52)
k
For integer £ > 1, denote the integer J, as
k
Ty = min{max{[ln (m)/ln(l/A(P))],Kp},k}. (53)
J 1s important to the analysis and frequently used. Obviously, J; < k; this is because we need use
25=J% in the following. With Lemma and direct calculations, we have
1 1/k ..
| [P7*);, — i |< Cp(A(p)T* < S foranyi,j € {1,2,...,M}. (54)

The remaining of Part 1 consists of two steps:
1. in Step 1, we will prove >, v E(f(z*~7%) — f*) < Cy + MW’ C4,Cs > 0 and
2. in Step 2, we will show Y, v E(f(2%) — f(z*=7%)) < Cg + ln(l/cﬁ, Cs,Cr7 > 0.

Then, summing them gives us

SORE(f(2*) - £7) = O(max{1, —
k

m})- (55)

and, by convexity of f and Jensen’s inequality,
k k
vk * 7 *\ 1
(; ¥i) E(f(xk) - f) < ;%E(f(l' ) — f) = O(max{1, W}) < +00. (56)

Rearrangement of (36) then gives us (T4).
Step 1: We can get

a)
WE[(fj, (2" 7%%) = f,(a"))] < CpElla*~ T —2¥)

b) k—1 o) k—1

<Cw Y, EJAY<CD Y qum
d=k—J d=k—J

QCcpD = , , CD_ , CD =

S5 Z (’Yd‘i‘Wk):TJk’)’k‘FT Z Ya» (57)
d:k?_jk d:k—jk
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where a) follows from (48], b) uses the triangle inequality, c) uses Proposition[I] Part 4, and d)
applies the Schwartz inequality. From Lemmal(I] we can see
Ink

T =Gy

(58)

From the assumption on ~y, it follows that (Jk’nf )k>0 is summable.

Next, we establish the summability of ZS;;_ T 2 over k. We consider an integer K large enough

that activates Lemma and can let J, = % when & > K. Noting that finite items do

not affect the summability of sequence, we then turn to studying (Zs;i_ T v3)k>k. For any
kK > K, 7,3, appears at most §{t € Z* | t — J; < k¥ < t,K < t} times in the summation
S s 7. V4~ Let t(k) be the solution of ¢ — J; = k. The direct computation tells us

ﬁ{teZ+\t—ﬂﬁkgt,KSt}gt(/{)_k§2%,
where the last inequality is due to Lemma 5 Therefore,
+oo k—1 ) ) oo 2
kg;( (d=kz—:jk Wd) = In(1/A(P)) kg}:(lnk: Ve < too. (59)

Since both terms in the right-hand side of (57) are finite, we conclude Zﬁ;’% YE[fj, (xF=Tr) —
fi. (@®)] < +00. Combining , it then follows

Cs

n(1/\(P)) (60)

> wE(f, (@) = fi,(2%) < Co +
k

for some C5, C's > 0. Due to that finite items have no effect on the summability. In the following,
similarly, we assume k£ > Kp.

Recall x* := o (2%, 22,...,2%, j0,71,...,7k_1). We derive an important lower bound

a

Ej (f5 (") = fi @) | XF7T) 2 ) (fila® %) — fi(e™)) -P(jx = i | X*7%)

=

N
Il
-

(fi@* %) = fi(2®)) - P(ik =i | jo-a)

e
<M§

s
Il
_

1
c

e

Me

(fi(@* ) = ful@®)) - (PP,

-
Il

i=1
d) 1
> kfjk _ * .
> (F@9) = 1) = 5
where a) is the definition of the conditional expectation, and b) uses the Markov property, and c)
follows from P(ji =i | ji—z,) = [P7*];,_,, > and d) is due to (54). Taking total expectations of
(61) and multiplying by -y, switching the sides then yields

BE(F@* ) = 1) S WB(f (@) = £, @) + o1 (62)

(61)

Combining (60) and (62) and using
Y 1 5 1 1
Dop S5ty s <t
k>1 k>1 k>1

we arrive at

Cs

n(1/\(P)) (63)

ST UE(f(F ) — ) < Cu +
k
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for some Cy, C5 > 0.
Step 2: With direct calculation (the same procedure as (37)), we get

, , MD? MD? 2
- B(f (@) = f(@*779) < =T + > (64)
d=k—T

where M is number of the finite functions. The summability of (J;77)x>1 and (Zs;;f 7.V k=1
has been proved, thus,

S B () — fA ) < g b T
k

In(1/A(P))
for some Cg, C7 > 0.
Now, we prove the Part 2.

Part 2. Proof of (T3). Using the Lipschitz continuity of f and Proposition[I] we have

[f(@Fh) = f(2*)] < DAY < D? -y (65)
and, thus,
E(f (@) = £4) = E(f(=") = )
= [E(f(a"*!) = f(=")| S Elf (") - f(a®)] < D? -3y, (66)
From , , and Lemma(letting ar = E(f(2*) — f*) and hy, =y in Lemma, we then get

limE(f(z") - f*) = 0. (67)

6.4 Proof of Theorem [T} the part for inexact MCGD (T3)

For any x* that minimizes f over X, we have

w2 @ . : o s s
251 — 2% = |[Projx (z* — %V fj, (") — ie®) — Projy ()

I?
b) -

< lla® = eV £ (2*) = e — 2"

c) * * v

= |la® = 2| = 2y (a® — 2", V 5, (25))

+ 2y (z* — ¥, ") + RV £ (2F) + €12

d)

< (L4 Ink-aR)lla® — o |* = 29 (£, (") = fi (7))
le*]1?

Ink ’

where a) uses the fact z* € X, b) uses the convexity of X, ¢) applies direct expansion, and d) uses

+292D% + 297 || |12 +

(68)

*

the Schwartz inequality 2, (z* — 2%, e*) <Ink -2 - ||z
both sides, we then get

El|lz"* — 2| + 2B (3. (£, (&%) — 5. (27)))
s

< (L4 Ink-AR)E[l" — 27 + 298D% + 298|e[* + T—-. (69)

- ’“||2—|—MTkin Xpectations on
T — . Taking expectations o

Following the same deductions in the proof in §6.3] we can get
WE(f (@) = ) < E(lfi (&) = f (@) + 0, (70)

where (w”*)>o € ¢! is a nonnegative, summable sequence that is defined as certain weighted sums
out of (yx)k>0 and it is easy to how Y, w* = O(max{1, m}) Then, we can obtain

El|lz"* — 27 |* + 23E(f («*) — £*)
lle*]1?

< (1+ Ik 9P)E[a* — " |2 + 292D% + 292l eF |2 +

+ wh. (71)
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After applying Lemma[3]to (71)), we get

> wE(f(@*) = ) = O(max{1, }) < +oc. (72)
k

1
In(1/A(P))
The remaining of this proof is very similar to the proof in §6.3]

6.5 Proof of Theorem 2} the part for exact nonconvex MCGD (17)
With Assumption[3] we can get the following fact.
Proposition 2 Let (v);>0 be generated by nonconvex MCGD (T7). It then holds that
1A < D - . (73)

We first prove (Z1) in Part 1 and then (20) in Part 2.
Part 1. Proof of (ZI). For integer k£ > 1, denote the integer 7}, as

T := min{max{[ln (2C];D2>/ln()\(1p))—‘,Kp},k:}. (74)

By using Lemmal[T] we then get

‘[Pﬁ]i,j foranyi,j € {1,2,...,M}. (75)

M ‘ - 2D2 ’
The remaining of Part 1 consists of two major steps:

1. in first step, we will prove >, 7E||V f(2*~7%)||2 = O(max{1, m}), and

2. in second step, we will show >, (vE[|Vf(2%)|]> — wE|Vf (2" T¥)]?) < C5 +

Cy
W/ AP))’ 03704 > 0.

Summing them together, we are led to

1

S WIS ()1 = Omax{l, ) 76)
With direct calculations, we then get
k
1
gw (qmin {IV£(=)]*}) <;WZEIIVf (@)]I* = Omax{l, s ) < oo (77)

Rearrangement of (77) then gives us (Z1).

Step 1. The direct computations give the following lower bound:
Ej ((Vf (2" 770), ¥ £, (@) | x*T)

<vf(xk_7-k)7vf]k(xk_7—k)> : IP( =1 I Xk Tk)

e
-Mi

s
Il
_

(VT V5, @) Pl =i | je—72)

I
.Mi

N
Il
-

(Vf(z k- Tk)ﬂvfl(xk_n» ’ [PTk]jk—Tk»i

't”{:

@
Il
-

1

2 IS~ o

(78)
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where a) is from the conditional expectation, and b) depends on the property of Markov chain, and ¢)
is the matrix form of the probability, and d) is due to (73). Rearrangement of (78) gives us

WEINVF (@792 < BV F ("), V f, (2577))) + ;7'; (79)

We present the bound of f(z¥*1) — f(z*) as
L| A"

2
L||AF||?

(9 a4 4 (V1) - V), ok HIEE
L4 DIAY? | PPt = b T2

2 2 ’
where a) uses continuity of V f, and b) is a basic algebra computation, c¢) applies the Schwarz
inequality to (V f(z%) — V f(2*~7k), A*). Moving (V f(2*~7%), A¥) to left side, we then get
L2||laM+t — 2P T2 (L + D AR
2 + 2 '

P — F() L (VF(k), AF) +

2 (VT Ak + ¢ (50)

(Vf(abTe), =A%) < f(ab) = f(a™*) +

@1)

We turn to offering the following bound:
E((Vf(@*T), =A%) | x*77%)
= NE(VS (@ T), V[, (@) | x*7F)
= NE(VF(@*T), Vi, (@) | x7F)
+ BV (@T0), V1 (2") = V[, @) | xT)
> BV F (@), Vi, () | x*7F)
=D L-E(yla® — 2| [ 78, (82)

where we used the Lipschitz continuity and boundedness of V f. Taking conditional expectations on
both sides of (BT)) on x*~7* and rearrangement of (82) tell us

W, (VS5 T), 9 f, (7)) | 1 T5)
< ]E(f(xk) . f(xk+1) | chka) + (L —+ ]_) . E(HAkHQ | kaTk)

2
+ D LBt — T [ 5T + L? - E(||a* ! - ;"“‘T’“II2 X g3
Taking expectations on both sides of (§3), we then get
WE((V (@), V£, (2P T0))) < E(f(2) — f*) + (L+1) ~2E\IAW2
Y] an
DL E(’kamk _ kT I+ 12 .E(ka+1 — pk=Tk ||2) | s
() (1%/)

We now prove that (I), (I), (IIT) and (IV) are all summable. The summability (I) is obvious. For (II),
(III) and (IV), with Proposition |Z|, we can derive (we omit the constant parameters in following)

an : E(|A%*) <7 D?,

and
k—1 k—1
() By fla® —a* 7o) < Y EBIAY <D Y v
d=k—Th, d=k—Th,
k—1 k—1
D TiD D
<< i+ ="t 5 D

d=k—T, d=k—T,
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and

k k
V) : B([a" =2 TP < (Te+1) Y E[AYP<D*(Th+1) >, i
d=k—Th, d=k—Th,

It is easy to see if (7% Z];:,%Tk ¥2)k>0 is summable, (II), (III) and (IV) are all summable. We

consider a large enough integer K which makes Lemmaactive, and T, = % when

k>K.N oting that finite items do not affect the summability of sequence, we then turn to studying
(T Z de k 7 v2)k> K- For any fixed integer ¢ > K, 77 only appears at index k > K satisfying

Sp={keZt |k—-Th<t<k—-1k>K}
in the inner summation. If K is large enough, 75 < ’2“ and then
k <2t, VkeS,.
Noting that 7 increases respect to k, we then get
T < Tat, VEk € St
That means in > %5 (7% Zs;;—n v2), v# appears at most

2In*t L 2t +21n(2CpD2)
In(1/X2(P)) ~ In(1/A2(P)) ~ In(1/X*(P))

The direct computation then yields

“+o0 k—1
Z(ﬁdZTﬁ)anv Zlnt o

Tae - 8(Se) <

k=K —k—Th
21n QCPD2 1

1//\2 Zlnt %t T e(p) ;7 “Ganmy) @

Turning back to (84), we then get
BTy U f. (g T Ca
ST BV, 5, < Ot ey
for some C, C, > 0. By using (79),
k=Tiy|12 — 1
S BN T = Omext, ) 56)

Step 2: With Lipschitz of V f, we can do the following basic algebra
WV @)P =V f 7)1
< (VI (a¥) = VF(@77%), VF(h) + V(")
< wlIVF(") = VT IV F @) + V)|
< 2DLy|jz" — 2"~ T%|| < DL~} + DL|jz* — 2"~ T%|2. (87)
We have proved (E|[z*T1 — 2#=7%||2); is summable (O(max{1, T/A(Py) 1) it is same way to
prove that (E||z* — 2%=7%||2);>¢ is summable (O (max{1, tmci7acey ). Thus,
T Cy
Zk: (MEIVF (@) = nE[Vf(@*T)]?) < Cs + (/AP
for some C3,Cy > 0.
Part 2. Proof of (20). With the Lipschitz continuity of V f, we have
IV F@HD2 = [V f(@®))1? |< 2DL||A%|| < 2DL - . (88)

20



That is also

[V £ )2 ~ BV (@*))2| < 2DL - (89)
With (76), (89), and Lemma 2] (letting E[|V f(2"+1)[|> = ax and 7, = hy in Lemma[2), it follows
liinEHVf(mk)Hz =0. (90)

With Schwarz inequality
(E[IVF(="))? < EIIVF(h)]?,
the result is then proved.

6.6 Proof of Theorem 2} the part for inexact nonconvex MCGD (22)

The proof is very similar to §6.3]except several places. We first modify (82) as
E((Vf (" T), =A%) | x"T)

= WE((VF(@"T6), 9 f, (2%) | X¥77) + BV f(5T5), k) | X7
= BV f(@"T), V £, (270 | X

+ MBS (@7, V i, (2%) = V3 (@577)) | X7)

+WE((V A7), ) | T

> PE(VF(a*T), V£, (@ 7T6)) | xT)
—D-L- IE(%Hac]’c — b= T I xk_T’“) —D - ||€kHa oD

where we used the Lipschitz continuity and boundedness of V f. And then taking expectations, we
are then led to

WEV f @ T0), V £, (277 74))) < D)+ (D) + A + (AV) + D - - le¥],  (92)
where (I), (I), (II) and (IV) are given by (84). The following is the same as §6.5]

Proof of Corollaries[Iland

The proofs of Corollaries [T|and 2] are similar to previous. To give the credit to the reader, we just
prove Corollary |1 m the exact case, i.e. ¥ = 0.

Let F* := min,c x E¢F(z;&). Like previous methods, the proof consists of two parts: in the first
one, we prove >, Vi - E(E¢F(2%;£) — F*) < +o0; while in the second one, we focus on proving
E(Ee (215 €) — F*) — Be(F(2":) — F*)| = O()-

Part 1. For any z* minimizing f over X, we can get
et — 22 2 |[Projy (% — v VF(2*;€¥)) - Projy («*)]”
2 ek — ¥ fu (") — 22
L |Jek — 27| - 2yela® — o, VF(*;€5)) + viIWF(ﬂck;«E’c)H2

d)
< ||2* — 2*|? — 29k (F (2% &%) — F(2*;:€F)) + 4D (93)

where a) uses the fact * € X, and b) depends the concentration of operator Proj x(+) when X is
convex, and c) is direct expansion, and d) comes from the convexity of F(z; £). Rearrangement of

(©3) tells us
S Pt - F€9) < LS (e - ol - et - ) + 25T o9
’ ’ =2 2 < k

k
Noting the right side of (94) is non-negative and finite, we then get

ka ¥ F) = P(a; €M) = ¢, 95)
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for some 0 < C7 < 4o0. For integer k > 1, denote the integer Hj, as

H;, = min{ [m (QCH)/ln(l/)\ﬂ k). (96)

Here C and ) are constants which are dependent on the Markov chain. These notation are to give
the difference to C'p and A(P) in Lemmal|l} Obviously, H; < k. With [8, Theorem 4.9] and direct
calculations, we have

NseZt o7

/Wﬂ )~ m(©)ldu(©) < 5

where p3t7x (¢) denotes the transition p.d.f. from s to s + H;, with respect to £. Noting the Markov
chain is time-homogeneous, p5T 7k (£) = pt*(¢).

The remaining of Part 1 consists of two major steps:
L. in first step, we will prove -, W E(E¢F(a* =€) — F*) < Oy + g 1/)\ ,Cy,C5 >0
and
2. in second step, we will show >, E(E¢F(2%;€) — EcF(aF~Mri¢)) < Cg +
iy Css Cr > 0.

Summing them together, we are then led to

1
k. _RF) —
EkjvkmgF(x 18) = F7) = Omax{1l, {775 ). (98)
With direct calculations, we are then led to
Z’y E(Ee F(zF; €)— zk: E(EcF(z'; €)—F*) = O(max{1 #}) < 400. (99)
‘ e v ¢ "In(1/X)

Rearrangement of (36) then gives us (T4).
In the following, we prove these two steps.

Step 1: We can get

a)
WE[F (2570 €F) — F(a®:€)] < L[l — 2|

b) k—1 k—1

<Ly Y, IEIIAdII<DL > yaw
d=k—Hy d=k—Hy

4 pr, k=t pr ol

<5 D ()= Hmk+ 5 D i (100)
d=k—Hy, d=k—Hy,

where a) comes from ([@8), b) is the triangle inequality, ¢) depends on Assumption[5] and d) is from
the Schiwarz inequality. As k is large, we can see

Ink

(101)

Recall the following proved inequality,

2 Ix

400 k—
Z( Z %) <5 Wi 2 Zlnkz-’yi. (102)
k=K =k—

Turning back to (T00), we can see S, fykIE[F(xk*Hk ;€F) — P (2% €%)] < 4+00. Combining ,
it then follows c

k—Hi. ¢k _ *. ¢k 3
zk:vkE(F(x ;&F) — F(a*;€F)) <Ctpam (103)
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for some C5, C3 > 0.

‘We consider the lower bound

Ee (F(a" 75 €%) — Fa*;65) | ' =74)

) /_ (F(ah=5;.€) = F(2*5 €)pf e, (€)dn(€)

) /_ (F(a*~Me:€) = F (@ €)pg™ (€)dp(€)

1
2k

where a) is from the conditional expectation, and b) depends on the property of Markov chain, and ¢)
is due to (97). Taking expectations of (61) and multiplying by 7, switching the sides then yields

WE(BeF (2" 7705€) — F*) < B(Be F (2"~ €%) — Ee F (2% €°)) +

S (BeP(ahHese) — F*) - (104)

2k (105)

Substituting (T03)) into(T03) and noting
Yk 1 2 1 1
Do S35 gm <t
k>1 k>1 k>1

we are then led to

k—Hy . o C(5
ijvkE(EgF@ 1) = F) < Gt s (106)

for some Cy, C5 > 0.
Step 2: With direct calculation (the same procedure as (T00)), we get
p2 kol
i - B(BeF(2%; ) — B F (a4 €)) < —Hwk += > T (107)

2
d=k—"Hp,

The summability of (HxvZ)xk>1 and (ZZ;i_Hk 72)k>1 has been proved, thus,

C
E(BeF(2F;€) — Be F(aF Mk ) < Cg+ ——0——
zk:% (EcF (27 €) — EcF (277 €)) < 5+ M/AP))
for some Cg, C7 > 0.
Now, we prove the Part 2.
Part 2. With the Lipschitz continuity of F'(z, £), it follows
EeF(e5+15€) — BeP(a*3€)] < LIA| < DL - . (108)
That is also
[E(E¢F (a1 €) — F*) — E(EeF(2*;€) — F*)|
= [E(EcF (2" €) — B F(a*;€)))|
< E[E¢F(a"5€) — EeF(a";€)] < DL - . (109)

With (98), (109), and Lemma[2(letting ey, = E(E¢ F(2"+1;€) — F*) and hy, = -y in Lemmal[2), we
then get
1iI£nE(E5F(xk;£) — F*)) =0. (110)
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