
7 Supplementary Material

7.1 Proof of Proposition 1

The claim in (2) follows from Proposition 2.1.2 in [4]. The proof for the claim in (3) is similar to the
proof of Proposition 2.1.2 in [4], and we mention it for completeness.

We prove the claim in (3) by contradiction. Suppose that (x� x⇤
)

>r2f(x⇤
)(x� x⇤

) < 0 for some
x 2 C satisfying rf(x⇤

)

>
(x� x⇤

) = 0. By the mean value theorem, for any ✏ > 0 there exists an
↵ 2 [0, 1] such that

f(x⇤
+ ✏(x� x⇤

))

= f(x⇤
) + ✏rf(x⇤

)

>
(x� x⇤

) + ✏2(x� x⇤
)r2f(x⇤

+ ↵✏(x� x⇤
))

>
(x� x⇤

), (35)

Use the relation rf(x⇤
)

>
(x� x⇤

) = 0 to simplify the right hand side to

f(x⇤
+ ✏(x� x⇤

)) = f(x⇤
) + ✏2(x� x⇤

)r2f(x⇤
+ ↵✏(x� x⇤

))

>
(x� x⇤

). (36)

Note that since (x � x⇤
)

>r2f(x⇤
)(x � x⇤

) < 0 and the Hessian is continuous, we have for all
sufficiently small ✏ > 0, (x � x⇤

)r2f(x⇤
+ ↵✏(x � x⇤

))

>
(x � x⇤

) < 0. This observation and
the expression in (36) follows that for sufficiently small ✏ we have f(x⇤

+ ✏(x � x⇤
)) < f(x⇤

).
Note that the point x⇤

+ ✏(x� x⇤
) for all ✏ 2 [0, 1] belongs to the set C and satisfies the inequality

rf(x⇤
)

>
((x⇤

+✏(x�x⇤
))�x⇤

) = 0. Therefore, we obtained a contradiction of the local optimality
of x⇤.

7.2 Proof of Proposition 2

First consider the definition G(xt) = max

x2C{�rf(xt)
>
(x� xt)} which is also known as Frank-

Wolfe gap [31]. This constant measures how close the point xt is to be a first-order stationary point.
If G(xt)  ✏, then xt is an ✏-first-order stationary point. Let’s assume that G(xt) > ✏. Then, based
on the Lipschitz continuity of gradients and the definition of G(xt) we can write

f(xt+1)  f(xt) +rf(xt)
>
(xt+1 � xt) +

L

2

kxt+1 � xtk2

= f(xt) + ⌘rf(xt)
>
(vt � xt) +

L⌘2

2

kvt � xtk2

 f(xt)� ⌘G(xt) +
⌘2D2L

2

, (37)

where the last inequality follows from kvt � xtk  D. Replacing the stepsize ⌘ by its value ✏/D2L
and G(xt) by its lower bound ✏ lead to

f(xt+1)  f(xt)� ✏2

2D2L
. (38)

This result implies that if the current point xt is not an ✏-first order stationary point, by following
the update of Frank-Wolfe algorithm the objective function value decreases by ✏2/2D2L. Therefore,
after at most 2D2L(f(x0)� f(x⇤

))/✏2 iterations we either reach the global minimum or one of the
iterates xt satisfies G(xt)  ✏ which implies that

rf(xt)
>
(x� xt) � �✏, for all x 2 C, (39)

and the claim in Proposition 2 follows.

7.3 Proof of Proposition 3

First note, that based on the projection property we know that

(xt � ⌘rf(xt)� xt+1)
>
(x� xt+1)  0, for all x 2 C. (40)

Therefore, by setting x = xt we obtain that

⌘rf(xt)
>
(xt+1 � xt)  �kxt � xt+1k2. (41)
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Hence, we can replace the inner product rf(xt)
>
(xt+1 �xt) by its upper bound �kxt �xt+1k2/⌘

f(xt+1)  f(xt) +rf(xt)
>
(xt+1 � xt) +

L

2

kxt+1 � xtk2

 f(xt)� kxt � xt+1k2
⌘

+

L

2

kxt+1 � xtk2

= f(xt)� L

2

kxt+1 � xtk2, (42)

where the equality follows by setting ⌘ = 1/L. Indeed, if xt+1 = xt then we are at a first-order
stationary point, however, we need a finite time analysis. To do so, note that for any x 2 C we have

(xt � ⌘rf(xt)� xt+1)
>
(x� xt+1)  0. (43)

Therefore, for any x 2 C it holds
rf(xt)

>
(x� xt+1) � L(xt � xt+1)

>
(x� xt+1), (44)

which implies that
rf(xt)

>
(x� xt) � rf(xt)

>
(xt+1 � xt) + L(xt � xt+1)

>
(x� xt+1)

� �Kkxt+1 � xtk � LDkxt � xt+1k
� �(K + LD)kxt � xt+1k, (45)

where K is an upper bound on the norm of gradient over the convex set C. Therefore, we can write
min

x2C
rf(xt)

>
(x� xt) � �(K + LD)kxt � xt+1k, (46)

Combining these results, we obtain that we should check the norm kxt � xt+1k at each iteration and
check whether if it is larger than ✏/(K + LD) or not. If the norm is larger than the threshold then

f(xt+1)  f(xt)� ✏2L

2(K + LD)

2
. (47)

If the norm is smaller than the threshold then we stop and the iterate xt satisfies the inequality
rf(xt)

>
(x� xt) � �✏, for all x 2 C. (48)

Note that this process can not take more than O(

f(x0)�f(x⇤)
✏2 ) iterations.

7.4 Proof of Proposition 4

The Taylor’s expansion of the function f around the point xt and M -Lipschitz continuity of the
Hessians imply that

f(xt+1)  f(xt)+rf(xt)
>
(xt+1�xt)+

1

2

(xt+1�xt)
>r2f(x)(xt+1�xt)+

M

6

kxt+1�xtk3.
(49)

Replace xt+1 � xt by the expression �(ut � xt) to obtain

f(xt+1)  f(xt)+�rf(xt)
>
(ut�xt)+

�2

2

(ut�xt)
>r2f(x)(ut�xt)+

M�3

6

kut�xtk3. (50)

Since, ut is a ⇢-approximate solution for the subproblem in (13) with the objective function value
q(ut)  �⇢�, we can substitute the quadratic term (ut � xt)

>r2f(x)(ut � xt) by its upper bound
�⇢�. Additionally, the vector ut is chosen such that rf(xt)

>
(ut � xt) = 0 and therefore the linear

term in (50) can be eliminated. Further, the cubic term kut � xtk3 is upper bounded by D3 since
both ut and xt belong to the convex set C. Applying these substitutions into (50) yields

f(xt+1)  f(xt)� �2⇢�

2

+

�3MD3

6

. (51)

By setting � = ⇢�/MD3 in (51) it follows that

f(xt+1)  f(xt)� ⇢3�3

2M2D6
+

⇢3�3

6M2D6

= f(xt)� ⇢3�3

3M2D6
. (52)

Therefore, in this case, the objective function value decreases at least by a fixed value of O(⇢3�3
).
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7.5 Proof of Theorem 1

Then at each iteration, either the first oder optimality condition is not satisfied and the function
value decreases by a constant of O(✏2), or this condition is satisfied and we use a second-order
update which leads to a objective function value decrement of O(⇢3�3

). This shows that if have
not reached an (✏, �)-second order stationary point the objective function value decreases at least by
O(min{✏2, ⇢3�3}). Therefore, we either reach the global minimum or converge to an (✏, �)-second
order stationary point of Problem (1) after at most O

⇣

f(x0)�f(x⇤)
min{✏2,⇢3�3}

⌘

iterations which also can be
written as O((f(x0)� f(x⇤

))(✏�2
+ ⇢�3��3

)).

7.6 Proof of Theorem 2

In this proof, for notation convenience, we define ✏0 = ✏/2 and �0
= �/2.

First, note that the condition in Assumption 4 and the fact that rF (x,✓) and r2F (x,✓) are the
unbiased estimators of the gradient rf(x) and Hessian r2f(x) imply that the variance of the batch
gradient dt and the batch Hessian Ht approximations are upper bounded by

E
⇥kdt �rf(xt)k2

⇤  ⌫2

bg
, E

⇥kHt �r2f(xt)k2
⇤  ⇠2

bH
. (53)

Here we assume that bg and bH satisfy the following conditions,

bg = max

⇢

324⌫2M2D8

⇢4�04 ,
16D2⌫2

✏02

�

, bH =

81D4⇠2

⇢2�02 . (54)

We further set the parameter r as

r =

⇢2�02

18MD3
. (55)

Now we proceed to analyze the complexity of Algorithm 2. First, consider the case that the current
iterate xt satisfies the inequality d>

t (vt � xt) < �✏0 and therefore we perform the first-order update
in step 4. In this case, we can show that

f(xt+1)  f(xt) +rf(xt)
>
(xt+1 � xt) +

L

2

kxt+1 � xtk2

= f(xt) + ⌘rf(xt)
>
(vt � xt) +

⌘2L

2

kvt � xtk2

 f(xt) + ⌘d>
t (vt � xt) + ⌘(rf(xt)� dt)

>
(vt � xt) +

⌘2LD2

2

 f(xt)� ⌘✏0 + ⌘Dkrf(xt)� dtk+ ⌘2LD2

2

, (56)

where in the last inequality we used d>
t (vt � xt) < �✏0 and the fact that both vt and xt belong to

the set C and therefore kxt�vtk  D. Consider Ft as the sigma algebra that measures all sources of
randomness up to step t. Then, computing the expected value of both sides of (56) given Ft leads to

E [f(xt+1) | Ft]  f(xt)� ⌘✏0 +
⌘D⌫
p

bg
+

⌘2LD2

2

(57)

where we used the inequality E [X]  p

E [X2
] when X is a positive random variable. Replace the

stepsize ⌘ by its value ✏0/(D2L) and the batch size bg by its lower bound (16D2⌫2)/(✏02) to obtain

E [f(xt+1) | Ft]  f(xt)� ✏02

4D2L
. (58)

Hence, in this case, the objective function value decreases in expectation by a constant factor of
O(✏02).
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Now we proceed to study the case that the current iterate xt does not satisfy the inequality d>
t (vt �

xt) < �✏0 and we need to perform the second-order update in step 8. In this case, we can show that

f(xt+1)  f(xt) +rf(xt)
>
(xt+1 � xt) +

1

2

(xt+1 � xt)
>r2f(x)(xt+1 � xt) +

M

6

kxt+1 � xtk3

 f(xt) + �rf(xt)
>
(ut � xt) +

�2

2

(ut � xt)
>r2f(x)(ut � xt) +

�3MD3

6

 f(xt) + �d>
t (ut � xt) + �(rf(xt)� dt)

>
(ut � xt) +

�2

2

(ut � xt)
>Ht(ut � xt)

+

�2

2

(ut � xt)
>
(r2f(x)�Ht)(ut � xt) +

�3MD3

6

. (59)

Note that ut is a ⇢-approximate solution for the subproblem in step 6 of Algorithm 2, with the objective
function value less than �⇢�0. This observation implies that the quadratic term (ut�xt)

>Ht(ut�xt)

is bounded above by �⇢�0. Further, the linear term d>
t (ut � xt) is less than r according to the

constraint of the subproblem. Applying these substitutions and using the Cauchy-Schwartz inequality
multiple times lead to

f(xt+1)  f(xt) + �r + �Dkdt �rf(xt)k � �2⇢�0

2

+

�2D2

2

kHt �r2f(x)k+ �3MD3

6

.

(60)

Compute the conditional expected value of both sides of (60) and use the inequalities in (53) to obtain

E [f(xt+1) | Ft]  f(xt) + �r +
�D⌫
p

bg
� �2⇢�0

2

+

�2D2⇠

2

p
bH

+

�3MD3

6

. (61)

By setting the stepsize � = ⇢�0/MD3 in (61) it follows that

E [f(xt+1) | Ft]  f(xt)� ⇢3�03

3L2D6
+

r⇢�0

MD3
+

⇢�0⌫

MD2
p

bg
+

⇢2�02⇠

2M2D4
p
bH

. (62)

Moreover, setting r =

⇢2�02

18MD3 and bH =

81D4⇠2

⇢2�02 , and replacing bg by its lower bound 324⌫2M2D8

⇢4�04

lead to

E [f(xt+1) | Ft]  f(xt)� ⇢3�03

6M2D6
(63)

Hence, in this case, the expected objective function value decreases by a constant of O(⇢3�03
).

By combining the results in (58) and (63), we obtain that if the iterate xt is not the final iterate the
objective function value at step t+ 1 satisfies the following ineqaulity

E [f(xt+1) | Ft]  f(xt)�min

⇢

✏02

4LD2
,

⇢3�03

6M2D6

�

. (64)

Let us define T as the number of iterations we perform until Algorithm 2 stops. We use an argument
similar to Wald’s lemma to derive an upper bound on the expected number of iterations T that we
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need to run the algorithm. Note that

E [f(x0)� f(xT )] = E
"

T
X

t=1

(f(xt�1)� f(xt))

#

= E
"

E
"

T
X

t=1

(f(xt�1)� f(xt))

#

�

�

�

�

�

T

#

=

1
X

k=1

E
"

k
X

t=1

(f(xt�1)� f(xt))

#

P(T = k)

=

1
X

k=1

k
X

t=1

E [(f(xt�1)� f(xt))]P(T = k)

�
1
X

k=1

k
X

t=1

min

⇢

✏02

4LD2
,

⇢3�03

6M2D6

�

P(T = k)

= min

⇢

✏02

4LD2
,

⇢3�03

6M2D6

� 1
X

k=1

k P(T = k)

= min

⇢

✏02

4LD2
,

⇢3�03

6M2D6

�

E [T ] . (65)

The first equality holds by simplifying the sum, for the second equality we use the fact that E [X] =

E [E [X | Y ]], in the third equality we use the expression E [E [X | Y ]] =

P

y E [X | Y = y]P(Y =

y), in the fourth equality we exchange sum and expectation, and the inequality is true based on the
result in (64). Note that to derive this result we also have assumed that the sequence of function
differences f(xt�1)� f(xt) are independent of each other and also independent of the total number
of iterations T .

Based on the result in (65), we can write that E [T ]  E [f(x0)� f(xT )] /min

n

✏02

4LD2 ,
⇢3�03

6M2D6

o

.
We further know that f(xT ) � f(x⇤

) which implies that

E [T ]  (f(x0)� f(x⇤
))max

⇢

4LD2

✏02
,
6M2D6

⇢3�03

�

. (66)

Using Markov’s inequality we can show that

P (T  a) � 1�
(f(x0)� f(x⇤

))max

n

4LD2

✏02 , 6M2D6

⇢3�03

o

a
(67)

Set a =

(f(x0)�f(x⇤))
� max

n

4LD2

✏02 , 6M2D6

⇢3�03

o

to obtain that

P

0

@T 
(f(x0)� f(x⇤

))max

n

4LD2

✏02 , 6M2D6

⇢3�03

o

�

1

A � 1� �. (68)

Therefore, it follows that with high probability the total number of iterations T that Algorithm 2 runs
is at most O(max

�

✏0�2, ⇢�3�0�3
 

).

Now it remains to show that the outcome of Algorithm 2 is an (✏, �)-SOSP of Problem (33) with high
probability. Let’s assume that xt is the final output of Algorithm 2. Then, we know that xt satisfies
the conditions

d>
t (x� xt) � �✏0 for all x 2 C, (69)

and
(x� xt)

>Ht(x� xt) � ��0 for all x 2 C, d>
t (x� xt)  r. (70)

First, we use the condition in (69) to show that xt satisfies the first-order optimality condition with
high probability. Note that for any x 2 C it holds that

rf(xt)
>
(x� xt) = d>

t (x� xt) + (rf(xt)� dt)
>
(x� xt)

� d>
t (x� xt)�Dkrf(xt)� dtk. (71)
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Now compute the minimum of both sides of (71) for all x 2 C to obtain

min

x2C
{rf(xt)

>
(x� xt)} � min

x2C
{d>

t (x� xt)�Dkrf(xt)� dtk}
= min

x2C
{d>

t (x� xt)}�Dkrf(xt)� dtk
� �✏0 �Dkrf(xt)� dtk, (72)

where the equality holds since Dkrf(xt) � dtk does not depend on x, and the last inequality is
implied by (69). Since E

⇥krf(xt)� dtk2
⇤  ⌫2/bg we obtain from Markov’s inequality that

P (krf(xt)� dtk  ✏00) � 1� ⌫2

bg✏002
. (73)

Therefore, by combining the results in (72) and (73) we obtain that

P
✓

min

x2C
{rf(xt)

>
(x� xt)} � �(✏0 +D✏00)

◆

� 1� ⌫2

bg✏002
. (74)

Now by setting ✏00 = ✏0/D it follows from (74) that with probability at least 1� ⌫2D2/bg✏02 the final
iterate xt satisfies

rf(xt)
>
(x� xt) � �2✏0 for all x 2 C. (75)

Replacing ✏0 by ✏/2 leads to

rf(xt)
>
(x� xt) � �✏ for all x 2 C. (76)

It remains to show that with high probability the final iterate xt satisfies the second-order optimality
condition.

First, consider the sets At = {x | rf(xt)
>
(x � xt) = 0} and Bt = {x | d>

t (x � xt)  r}. We
proceed to show that with high probability At ⇢ Bt. If y satisfies the condition

rf(xt)
>
(y � xt) = 0, (77)

then it can be shown that

d>
t (y � xt)  rf(xt)

>
(y � xt) + (dt �rf(xt))

>
(y � xt)

 Dkdt �rf(xt)k. (78)

Since E
⇥krf(xt)� dtk2

⇤  ⌫2/bg we obtain from Markov’s inequality that

P
⇣

krf(xt)� dtk  r

D

⌘

� 1� ⌫2D2

bgr2
. (79)

Therefore, by combining the results in (78) and (79) we obtain that

P
�

d>
t (y � xt)  r

� � 1� ⌫2D2

bgr2
. (80)

This argument shows that if y 2 At, then it also belongs to the set Bt, i.e., y 2 Bt, with high
probability. This result shows if an inequality holds for all x that satisfy d>

t (x� xt)  r, then with
high probability that inequality also holds for all x that satisfy the condition rf(xt)

>
(x� xt) = 0.

Now, note that if xt is the output of Algorithm 2, then for any x 2 C satisfying d>
t (x� xt)  r it

holds that

(x� xt)
>r2f(xt)(x� xt) = (x� xt)

>Ht(x� xt)� (x� xt)
>
(Ht �r2f(xt))(x� xt)

� ��0 �D2kHt �r2f(xt)k. (81)

Further, define the random variable Xt = kHt �r2f(xt)k. As we know that E
⇥

X2
t

⇤  ⇠2/bH , it
follows by Markov’s inequality that P(Xt  a) � 1� ⇠2/(bHa2). Therefore, we can write that

P(kHt �r2f(xt)k  �00
) � 1� ⇠2

bH�002 . (82)
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Hence, by using the results in (81) and (82), we can show that with probability at least 1� ⇠2

bH�002 for
any x 2 C satisfying d>

t (x� xt)  r it holds

(x� xt)
>r2f(xt)(x� xt) � ��0 �D2�00. (83)

By setting �00
= �0/D2 it follows that xt satisfies the condition

(x� xt)
>r2f(xt)(x� xt) � �2�0 for all x 2 C,d>

t (x� xt)  r, (84)

with a probability larger than 1� ⇠2D4

bH�02 . Further, with probability at least 1� ⌫2D2

bgr2
we know that

At ⇢ Bt. These observations imply that if xt is the output of Algorithm 2 it satisfies

(x� xt)
>r2f(xt)(x� xt) � �2�0 for all x 2 C,rf(xt)

>
(x� xt) = 0, (85)

with probability at least 1� ⇠2D4

bH�02 � ⌫2D2

bgr2
, where we used the inequality

P (A \B) = P (A) + P (B)� P (A [B)

� P (A) + P (B)� 1. (86)

By setting �0
= �/2 we obtain that with probability at least 1� ⇠2D4

bH�02 � ⌫2D2

bgr2
the final iterate satisfies

the condition

(x� xt)
>r2f(xt)(x� xt) � �� for all x 2 C,rf(xt)

>
(x� xt) = 0. (87)

Therefore, with probability at least 1 � ⌫2D2

bg✏02
� ⇠2D4

bH�02 � ⌫2D2

bgr2
the output of Algorithm 2 is an

(✏, �)-SOSP of the stochastic optimization problem in (33). This observation and the conditions on
the batch sizes in (54) implies that the output of Algorithm 2 is an (✏, �)-SOSP of the stochastic
optimization problem in (33) with probability at least 1� 1

16 � 1
324 � ⇢2

81 � 0.92. (Note that ⇢  1).
Indeed, by increasing the size of batches bg and bH all the results hold with a higher probability.
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