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Proof of Theorems 1 and 2

Before proving the theorems, it will be useful to prove a few helper lemmas that we use at various
places.
Lemma 1. Let G and G− be two graphs with V (G−) = V (G), E(G−) ⊆ E(G). Let L and L− be
their respective Laplacians. Then vTL−v ≤ vTLv for all vectors v.

Proof. The proof follows from the definition of Laplacian:

vTLv =
∑

{i,j}∈E(G)

(vi − vj)2

=
∑

{i,j}∈E(G−)

(vi − vj)2 +
∑

{i,j}∈E(G)\E(G−)

(vi − vj)2

≥
∑

{i,j}∈E(G−)

(vi − vj)2

= vTL−v

Lemma 2. Let G and G− be two graphs with V (G−) = V (G), E(G−) ⊆ E(G). Let L and L− be
their respective Laplacians, with kth eigenvalue λk and λ−k respectively. Then λk ≥ λ−k .

Proof. From the min-max interpretation of eigenvectors, we have

λk = min
Sk

max
v∈Sk

vTLv

where Sk ranges over all k-dimensional subspaces. From lemma 1, we get

vTL−v ≤ vTLV
for all v ∈ Sk, and for all k-dimensional subspaces Sk. This gives us

max
v∈Sk

vTL−v ≤ max
v∈Sk

vTLV

for all k-dimensional subspaces Sk. Since this is true for all Sk, we get

min
Sk

max
v∈Sk

vTL−v ≤ min
Sk

max
v∈Sk

vTLV

From the min-max interpretation, we get λk ≥ λ−k
∗Equal contribution
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For all the proofs, unless otherwise stated, assume the first eigenvector (corresponding to the smallest
eigenvalue) to be the all ones vector.

Theorem 1. For all datasets X and X ′, such that dist(X,X ′) ≤ ε, the function F : Xn → Rn
obtained using the second eigenvector of the Laplacian as defined in the main paper satisfies

min(‖F (X)− F (X ′)‖, ‖F (X)− (−F (X ′))‖) ≤
(

2
√

2
)√λ+

2 (X)− λ−2 (X)

λ−3 (X)− λ−2 (X)
.

Proof. For cleanliness of notation, let G(X) = G, L(X) = L, λk(X) = λk, G
−(X) = G−, etc.

Observe that
λ+

2 ≥ λ2(X ′) = v2(X ′)TL(X ′)v2(X ′) ≥ v2(X ′)TL−v2(X ′)

The first part of the inequality follows from lemma 2, and second part follows from lemma 1. Now
write

v2(X ′) = αv−2 + βv⊥

where v⊥ is a unit vector perpendicular to v−2 and all-ones vector, and α and β are scalars. Then

λ+
2 ≥ v2(X ′)L−v2(X ′)

=
(
αv−2 + βv⊥

)T
L−
(
αv−2 + βv⊥

)
= α2v−T2 L−v−2 + β2vT⊥L

−vT⊥

≥ α2λ−2 + β2λ−3

using the property that the v−2 and v⊥ are orthogonal, and v−2 is an eigenvector of L−. By rearranging,
and observing α2 + β2 = 1 (as v2(X ′) is a unit vector), we get

β2(λ−3 − λ
−
2 ) ≤ λ+

2 − α2λ−2 − β2λ−2 = λ+
2 − λ

−
2

β2 ≤ λ+
2 − λ

−
2

λ−3 − λ
−
2

As |α| =
√

1− β2, we get

min(
∥∥v2(X ′)− v−2

∥∥2

2
,
∥∥−v2(X ′)− v−2

∥∥2

2
) = min(2(1− v2(X ′)T v−2 ), 2(1 + v2(X ′)T v−2 ))

= 2(1− |α|)

= 2
(

1−
√

1− β2
)

≤ 2β2.

This gives us

min(
∥∥v2(X ′)− v−2

∥∥
2
,
∥∥−v2(X ′)− v−2

∥∥
2
) ≤
√

2|β| ≤
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

Notice that the above argument holds for any X ′ such that dist(X,X ′) ≤ ε; in particular, it holds
for X ′ = X . This gives us

min(
∥∥v2(X)− v−2

∥∥
2
,
∥∥−v2(X)− v−2

∥∥
2
) ≤
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

.

Using triangle inequality, we get

min(‖v2(X)− v2(X ′)‖2, ‖v2(X)− (−v2(X ′))‖2) ≤ 2
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

.

This finishes the proof as F (X) = v2(X) and F (X ′) = v2(X ′).
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Theorem 2. For any pair of datasets X and X ′, such that dist(X,X ′) ≤ ε, there exists a k × k
invertible matrix M , such that the features FX and FX′ as defined in the main paper satisfy√∑

i∈[n]

‖MFX(xi)− FX′(x′i)‖
2 ≤

(
2
√

2k
)√λ+

k+1(X)− λ−2 (X)

λ−k+2(X)− λ−2 (X)

Proof. This proof generalizes the proof of theorem 1. For cleanliness of notation, let G(X) = G,
L(X) = L, λk(X) = λk, G

−(X) = G−, etc.

Let v(X ′) be any unit vector in Sk(X ′) = Span(v2(X ′), . . . , vk+1(X ′)). We will prove a bound on
distance of v(X ′) from its closest unit vector in S−k = Span(v−2 , . . . , v

−
k+1). Write

v(X ′) =

k+1∑
i=2

αiv
−
i + βv⊥

where v⊥ is a unit vector satisfying v⊥ ⊥ v−i (x) for all 1 ≤ i ≤ k + 1, and αi and β are scalars.

By lemma 2, we get

λ+
k+1 ≥ λk+1(X ′) = vk+1(X ′)TL(X ′)vk+1(X ′)

and by lemma 1 and by the definition of eigenvectors, we get

vk+1(X ′)TL(X ′)vk+1(X ′) ≥ v(X ′)TL(X ′)v(X ′) ≥ v(X ′)TL−v(X ′)

The first part of the inequality follows from lemma 2, and second part follows from lemma 1.

Combining the two inequalities, we get

λ+
k+1 ≥ v(X ′)TL−v(X ′)

=

(
k+1∑
i=2

αiv
−
i + βv⊥

)T
L−

(
k+1∑
i=2

αiv
−
i + βv⊥

)

=

k+1∑
i=2

α2
i v
−T
i L−v−i + β2vT⊥L

−vT⊥

≥
k+1∑
i=2

α2
iλ
−
i + β2λ−k+2

using the property that the v−i and v⊥ are all mutually orthogonal. Rearranging:

β2(λ−k+2 − λ
−
2 ) ≤ λ+

k+1 −
k+1∑
i=2

α2
iλ
−
i − β

2λ−2

≤ λ+
k+1 − λ

−
2

which implies

β2 ≤
λ+
k+1 − λ

−
2

λ−k+2 − λ
−
2

For simplicity of notation, let

α = (α2, . . . , αk+1) ∈ Rk, v− =

∑k+1
i=2 αiv

−
i

‖α‖
Then∥∥v(X ′)− v−

∥∥2

2
= 2
(
1− v(X ′)T v−

)
= 2(1− ‖α‖) = 2

(
1−

√
1− β2

)
≤ 2β2 ≤ 2

λ+
k+1 − λ

−
2

λ−k+2 − λ
−
2
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This shows that every unit vector in Sk(X ′) is within
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

of some unit vector in S−k , and,

by symmetry, vice-versa. Notice that the above argument holds for anyX ′ such that dist(X,X ′) ≤ ε;
in particular, it holds for X ′ = X . It thus follows from triangle inequality that every unit vector in

Sk(X ′) must be within 2
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

of some unit vector Sk(X).

Let F (X) = (F 1
X , F

2
X , . . . , F

k
X) be an n× k matrix. Define F (X ′) similarly. Observe that√∑

i∈[n]

‖MFX(xi)− FX′(x′i)‖
2

=
∥∥F (X)MT − F (X ′)

∥∥
Now, to prove the theorem we need to show the existence of an invertible matrix M such that

∥∥F (X)MT − F (X ′)
∥∥ ≤ 2

√
2k

√
λ+
k+1 − λ

−
2

λ−k+2 − λ
−
2

When 2
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

≥
√

2, the desired bound is trivially true. To see this, set M to be a diagonal

matrix with diagonal entries ±1 such that 〈MiiF
i
X , F

i
X′〉 ≥ 0 for all i. Since F iX and F iX′ are unit

vectors, we get ∥∥F (X)MT − F (X ′)
∥∥ =

√∑
i∈[k]

∥∥MiiF iX − F iX′
∥∥2

≤
√

2k

≤ 2
√

2k

√
λ+
k+1 − λ

−
2

λ−k+2 − λ
−
2

where ‖·‖ denotes the Frobenius norm for matrices, and `2 norm for vectors.

So now assume 2
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

<
√

2. Let P be a projection map onto subspace Sk(X). As

F 1
X′ , . . . , F

k
X′ form an orthonormal basis for Sk(X ′), projecting them onto Sk(X) must yield a basis

for Sk(X); if not, then we would have Pu = 0 for some unit vector u ∈ Sk(X ′), so that u would be
orthogonal (i.e. have distance

√
2) to every unit vector in Sk(X), which contradicts the assumption

that 2
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

<
√

2. Now let M ∈ Rk×k be an invertible matrix; such that MT corresponds

to the change of basis matrix satisfying PF (X ′) = F (X)MT (this must exist since PF (X ′) and
F (X) are both bases of Sk(X)).Then

∥∥F (X)MT − F (X ′)
∥∥ = ‖PF (X ′)− F (X ′)‖ ≤ 2

√
2k

√
λ+
k+1 − λ

−
2

λ−k+2 − λ
−
2

where last inequality follows since for each column vector of F (X ′), its projection onto Sk(X) has

`2 distance of at most 2
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

from it. This is because for each unit vector in Sk(X ′), there

is a vector in Sk(X) at a distance of at most 2
√

2

√
λ+
k+1−λ

−
2

λ−k+2−λ
−
2

from it. This concludes the proof.

Proof of Theorem 3

Theorem 3. For a sufficiently large training set size n, if EX∼D
[
(λ3(X)− λ2(X))

−1
]
≤ c for

some small enough constant c, then with probability 0.95 over the choice of X , the function fX :
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Rd → R as defined above satisfies Prx∼D[∃x′ s.t. dist(x, x′) ≤ ε and |fX(x)− fX(x′)| ≥ δx] ≤
0.05, for

δx =
(

6
√

2
)√λ+

2 (x)− λ−2 (x)

λ−3 (x)− λ−2 (x)
.

This also implies that with probability 0.95 over the choice of X , fX is (ε, 20Ex∼D[δx], 0.1) robust
as per Definition 1.

We give the proof of this theorem as a series of lemmas. First, similar to theorem 1, we show the
robustness of function f up to sign.
Lemma 3. Given two points x and x′, such that dist(x, x′) ≤ ε, the function f : Rd → R defined
in the main text of the paper satisfies

min(|f(x)− f(x′)|, |f(x)− (−f(x′))|) ≤
(

2
√

2
)√λ+

2 (x)− λ−2 (x)

λ−3 (x)− λ−2 (x)
.

Proof. The proof follows from the same argument as Theorems 1 and 2 above. For completeness, we
include it again here.

For cleanliness of notation, let G(x) = G, L(x) = L, λk(x) = λk, G
−(x) = G−, etc. Observe that

λ+
2 ≥ λ2(x′) = v2(x′)TL(x′)v2(x′) ≥ v2(x′)TL−v2(x′)

The first part of the inequality follows from lemma 2, and second part follows from lemma 1. Now
write

v2(x′) = αv−2 + βv⊥

where v⊥ is a unit vector perpendicular to v−2 and all-ones vector, and α and β are scalars. Then

λ+
2 ≥ v2(x′)L−v2(x′)

=
(
αv−2 + βv⊥

)T
L−
(
αv−2 + βv⊥

)
= α2v−T2 L−v−2 + β2vT⊥L

−vT⊥

≥ α2λ−2 + β2λ−3

using the property that the v−2 and v⊥ are orthogonal, and v−2 is an eigenvector of L−. By rearranging,
and observing α2 + β2 = 1 (as v2(x′) is a unit vector), we get

β2(λ−3 − λ
−
2 ) ≤ λ+

2 − α2λ−2 − β2λ−2 = λ+
2 − λ

−
2

β2 ≤ λ+
2 − λ

−
2

λ−3 − λ
−
2

As |α| =
√

1− β2, we get

min(
∥∥v2(x′)− v−2

∥∥2

2
,
∥∥−v2(x′)− v−2

∥∥2

2
) = min(2(1− v2(x′)T v−2 ), 2(1 + v2(x′)T v−2 ))

= 2(1− |α|)

= 2
(

1−
√

1− β2
)

≤ 2β2.

This gives us

min(
∥∥v2(x′)− v−2

∥∥
2
,
∥∥−v2(x′)− v−2

∥∥
2
) ≤
√

2|β| ≤
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

Notice that the above argument holds for any x′ such that dist(x, x′) ≤ ε; in particular, it holds for
x′ = x. This gives us

min(
∥∥v2(x)− v−2

∥∥
2
,
∥∥−v2(x)− v−2

∥∥
2
) ≤
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

.
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Using triangle inequality, we get

min(‖v2(x)− v2(x′)‖2, ‖v2(x)− (−v2(x′))‖2) ≤ 2
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

.

Thus, we conclude

min (|f(x)− f(x′)|, |f(x)− (−f(x′))|)
≤ min (‖v2(x)− v2(x′)‖, ‖v2(x)− (−v2(x′))‖)

≤ 2
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

as desired.

While flipping signs for the whole dataset is fine, we don’t want the features of some of the points to
flip signs arbitrarily. As described in the main text, to resolve this, we select the eigenvector v2(x) to
be the eigenvector (with eigenvalue λ2(x)) whose last |X| entries have the maximum inner product
with v2(X). We show a bound on this inner product next. Let v∗2(x) be a |X| dimensional vector
obtained by chopping off the first entry of v2(x).
Lemma 4. For v∗2(x) defined as above, we have

〈v∗2(x), v2(X)〉 ≥

√
1−

λ2(x)− λ2(X)
(
1− v2(x)2

0
n+1
n

)
λ3(X)− λ2(X)

− v2(x)2
0

n+ 1

n

Proof. For cleanliness of notation, let G(x) = G,L(x) = L, λk(x) = λk, v
∗
2(x) = v∗2 , etc. Write

v∗2 = αv2(X) + βw + γ1/
√
n for scalars α, β, γ and vector w orthogonal to v2(X) and 1. Taking

inner product of both sides with 1, we get

〈v∗2 ,1〉 = α〈v2(X),1〉+ β〈w,1〉+ γ〈1/
√
n,1〉

As 〈v2(X),1〉 = 0, 〈w,1〉 = 0, and 〈v∗2 ,1〉 = −v2(x)0, this gives us γ = −v2(x)0/
√
n.

Now, as w is orthogonal to the bottom two eigenvectors of L(X), we get wTL(X)w ≥ λ3(X). Then

λ2 = vT2 Lv2 ≥ v∗T2 L(X)v∗2

≥ α2λ2(X) + β2λ3(X)

=
(
1− γ2 − v2(x)2

0

)
λ2(X) + β2(λ3(X)− λ2(X))

Putting γ = −v2(x)0/
√
n. and rearranging, we get

β2 ≤
λ2 − λ2(X)

(
1− v2(x)2

0
n+1
n

)
λ3(X)− λ2(X)

(1)

Notice now that α2 + β2 + γ2 = ‖v∗2‖
2

= 1− v2(x)2
0. Since we know γ2 + v2(x)2

0 = v2(x)2
0
n+1
n ,

and we know α ≥ 0 by definition, we conclude

〈v∗2(x), v2(X)〉 = α =

√
1− β2 − v2(x)2

0

n+ 1

n

whereupon substituting the bound on β2 from Eqn. (1) gives the desired result.

Next, we give robustness bound on f when 〈v∗2(x), v2(X)〉 > 1√
2

Lemma 5. Given two points x and x′, such that dist(x, x′) ≤ ε, if 〈v∗2(x), v2(X)〉 > 1√
2

the

function fX : Rd → R defined in the main text of the paper satisfies

|fX(x)− fX(x′)| ≤
(

6
√

2
)√λ+

2 (x)− λ−2 (x)

λ−3 (x)− λ−2 (x)
.
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Proof. If 〈v2(x), v2(x′)〉 ≥ 0, then from the proof of Lemma 3, we get

|fX(x)− fX(x′)| ≤ ‖v2(x)− v2(x′)‖
= min (‖v2(x)− v2(x′)‖, ‖v2(x)− (−v2(x′))‖)

≤ 2
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

and we are done.

Otherwise, let v be the vector v2(X) with a zero prepended to it. Note that 〈v2(x), v〉 =
〈v∗2(x), v2(X)〉 > 1√

2
. Also, let w be a unit vector in the direction of projection of v on the subspace

spanned by v2(x) and v2(x′). And w⊥ be a vector orthogonal to w such that v = αw + βw⊥. This
gives us 〈v2(x′), w〉 = 1

α 〈v2(x′), v〉 ≥ 〈v2(x′), v〉 ≥ 0 as 0 < α < 1. Similarly, 〈v2(x), w〉 > 1√
2

.

For three unit vectors w, v2(x), v2(x′) lying in a two dimensional subspace such that 〈v2(x), w〉 >
1√
2

and 〈v2(x′), w〉 ≥ 0, if 〈v2(x), v2(x′)〉 < 0, we get 〈v2(x), v2(x′)〉 ≥ −1√
2

. This implies
〈v2(x),−v2(x′)〉 ≤ 1√

2
. From these inner product values, we get ‖v2(x)− v2(x′)‖ ≤ 1.85, and

‖v2(x)− (−v2(x′))‖ ≥ 0.75.

This gives us

‖v2(x)− v2(x′)‖ ≤ 3 min(‖v2(x)− (−v2(x′))‖, ‖v2(x)− v2(x′)‖) ≤ 3 · 2
√

2

√
λ+

2 − λ
−
2

λ−3 − λ
−
2

,

where the second inequality now follows from the proof of Lemma 3.

As |fX(x)− fX(x′)| ≤ ‖v2(x)− v2(x′)‖, this finishes the proof.

Next, we show that under the conditions mentioned in our theorem, 〈v∗2(x), v2(X)〉 ≥ 1√
2

, for most
x ∼ D.

Lemma 6. For a sufficiently large training set size n, if EX∼D[ 1
λ3(X)−λ2(X) ] ≤ c for some small

enough constant c, then with probability 0.95 over the choice of X ,

Pr
x∼D

[
〈v∗2(x), v2(X)〉 ≥ 1√

2

]
≥ 0.95

Proof. From lemma 4, we know

〈v∗2(x), v2(X)〉 ≥

√
1−

λ2(x)− λ2(X)
(
1− v2(x)2

0
n+1
n

)
λ3(X)− λ2(X)

− v2(x)2
0

n+ 1

n

For n large enough, n+1
n ≈ 1, so we need to show

λ2(x)− λ2(X)
(
1− v2(x)2

0

)
λ3(X)− λ2(X)

+ v2(x)2
0 ≤

1

2

with probability 0.95 over the choice of X , and 0.95 over x.

By Markov’s inequality, we get

PrX∼D[λ3(X)− λ2(X) ≤ 1

100c
] ≤ 0.01.

For any size n unit vector, if we pick one of its coordinates uniformly at random, it’s expected squared
value is 1

n . By this argument, we get

E
X∼D,x∼D

[v2(x)2
0] =

1

n+ 1
.
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By Markov’s inequality, we get that

PrX∼D,x∼D[v2(x)2
0 ≥

1000

n+ 1
] ≤ 0.001.

This implies that with probability 0.98 over the choice of X ,

Prx∼D[v2(x)2
0 ≥

1000

n+ 1
] ≤ 0.05.

Also, note that λ2(x) ≤ λ2(X) + 1, since the second eigenvalue of a graph can go up by at most
one by adding a new vertex. We also have λ2(X) ≤ n since the eigenvalues of an un-normalized
Laplacian are bounded by the number of vertices. Putting all this together, and applying union bound,
we get that with probability 0.97 over X , and 0.95 over x,

λ2(x)− λ2(X)
(
1− v2(x)2

0

)
λ3(X)− λ2(X)

+ v2(x)2
0 ≤

1 + n( 1000
n+1 )

1
100c

+
1000

n

which is less than 1
2 for small enough constant c, and n large enough.

Combining Lemmas 5 and 6, we get that under the conditions stated in the theorem, with probability
at least 0.95 over the choice of X

Pr
x∼D

[∃x′ s.t. dist(x, x′) ≤ ε and |fX(x)− fX(x′)| ≥ δx] ≤ 0.05

for δx =
(

6
√

2
)√λ+

2 (x)− λ−2 (x)

λ−3 (x)− λ−2 (x)
.

which finishes the proof. By applying Markov inequality and a union bound, we also get that fX as
defined above is (ε, 20Ex∼D[δx], 0.1) robust with probability 0.95 over the choice of X .

Proof of Theorem 4

Theorem 4. Assume that there exists some (ε, δ) robust function F ∗ for the datasetX (not necessarily
constructed via the spectral approach). For any threshold T , let GT be the graph obtained on X by
thresholding at T . Let dT be the maximum degree of GT . Then the feature F returned by the spectral
approach on the graph G2ε/3 is at least (ε/6, δ′) robust (up to sign), for

δ′ = δ

√
8(dε + 1)

λ3(Gε/3)− λ2(Gε/3)
.

Proof. Consider the graph G2ε/3 obtained by setting the threshold T = 2ε/3 on the dataset X . Let
Gε be the graph obtained by setting the threshold T = ε on the dataset X , and let Gε/3 be the graph
obtained by setting the threshold T = ε/3 on the dataset X . Note that if all datapoints in X are
perturbed by at most ε/6 to get X ′, then the inter point distances after perturbation are within ε/3 of
the original inter point distances. Hence by Theorem 1,

min(‖F (X)− F (X ′)‖, ‖(−F (X))− (F (X ′))‖) ≤ 2
√

2

√
λ2(Gε)− λ2(Gε/3)

λ3(Gε/3)− λ2(Gε/3)
.

As λ2(Gε)−λ2(Gε/3) ≤ λ2(Gε), we will upper bound λ2(Gε) to bound δ′. Let v be the vector such
that the ith entry vi is F ∗X(xi), the feature assigned by F ∗ to the datapoint xi. Note that λ2(Gε) ≤∑

(i,j)∈Gε
(vi − vj)2, by using v as a candidate eigenvector. We claim that λ2(Gε) ≤ (dε + 1)δ2. To

show this, we partition all edges in Gε into t matchings {Mk, k ∈ [t]}. Note that for any matching
Mk ,

∑
(i,j)∈Mk

(vi − vj)2 ≤ δ2. This follows by constructing the adversarial dataset X ′ where each
datapoint has been replaced by its matched vertex (if any) in the matching Mk, and by the fact that
F ∗ is (ε, δ) robust. By Vizing’s Theorem, the number of matchings t required is at most dε + 1.
Therefore λ2(Gε) ≤ (dε + 1)δ2 and the theorem follows.
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Proof of Theorem 5

Theorem 5. Pick initial distance threshold T =
√

2 + 2ε in the `2 norm, and use the first N + 1
eigenvectors as proposed in Section 2.1 of the main paper to construct a N -dimensional feature map
f : Rd → RN . Then with probability at least 1−N2e−Ω(d) over the random choice of training set,
f maps the entire inner sphere to the same point, and the entire outer sphere to some other point,
except for a γ-fraction of both spheres, where γ = Ne−Ω(d). In particular, f is (ε, 0, γ)-robust.

We will explain the construction of the features f in detail at the end of the proof, as they become
relevant. We give the proof of this theorem as a series of lemmas.

We use Sd−1 denote the unit sphere in Rd centered on the origin, and rSd−1 denotes the sphere of
radius r centered on the origin. ‖·‖ denotes the `2 norm.

Lemma 7. LetA be any point on r1S
d−1 andB be a point chosen uniformly at random from r2S

d−1.
Then the median distance ‖A−B‖ is M =

√
r2
1 + r2

2 . Further, for any fixed ε > 0, we have

Pr
[∣∣∣‖x− y‖2 − (r2

1 + r2
2

)∣∣∣ > ε
]
≤ exp(−Ω(d)) + exp

(
−Ω

(
ε2d

r1r2

))
.

Proof. For notational simplicity let A = r1x and B = r2y for x, y ∈ Sd−1. Assume WLOG that
x = (1, 0, . . . , 0). Suppose y is drawn by drawing z ∼ N(0, Id) and computing y = z/‖z‖. Then

‖A−B‖2 = ‖r1x− r2y‖2 = r2
1 + r2

2 − 2r1r2y1.

This immediately gives that the median value of ‖A−B‖ is M =
√
r2
1 + r2

2 . Further,∣∣∣‖x− y‖2 −M2
∣∣∣ = 2r1r2|y1| = 2r1r2

|z1|
‖z‖

Let z = (z1, z2, . . . , zd), and consider z′ = (z2, . . . , zd) ∈ Rd−1. Then ‖z′‖2, by definition, is a
chi-square distributed random variable with (d − 1) degrees of freedom that is independent of z1.
The following Chernoff bounds for chi-square variables applies:

Pr

[
‖z′‖2 < d− 1

2

]
≤
(e

4

)(d−1)/4

= e−Ω(d)

Pr
[
‖z′‖2 > 2(d− 1)

]
≤
(e

4

)(d−1)/4

= e−Ω(d)

Thus, for any fixed ε, r1, r2, we have

Pr
[∣∣∣‖x− y‖2 −M2

∣∣∣ > ε
]

= Pr

[
2r1r2

|z1|
‖z‖

> ε

]
≤ Pr

[
|z1| >

ε‖z′‖
2r1r2

]
≤ Pr

[
‖z′‖2 < d− 1

2

]
+ Pr

[
|z1| >

ε‖z′‖
2r1r2

∣∣∣ ‖z′‖2 ≥ d− 1

2

]
≤ e−Ω(d) + Pr

[
z2

1 >
ε2(d− 1)

8r1r2

]
≤ e−Ω(d) + exp

(
−Ω

(
ε2d

r1r2

))
using independence of z1 and z′, and Gaussian tail bounds on z1.

Now let x1, . . . , x2N be a training set, where x1, . . . , xN are sampled i.i.d. uniform from Sd−1 and
xN+1, . . . , x2N are sampled i.i.d. uniform from RSd−1.

Lemma 8. With probability at least 1−O(N2)e−Ω(d), both of these things hold:

1. For every pair (xi, xj) of points on the inner sphere, we have ‖xi − xj‖ ≤
√

2 + ε
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2. For every pair (xi, xj) of points at least one of which is on the outer sphere, we have
‖xi − xj‖ >

√
2 + 3ε

Proof. By Lemma 7, for any constant R > 1 and ε = (R− 1)/8, the probability that any given pair
of points xi, xj for i < j ≤ 2N satisfies our condition is 1− e−Ω(d) (since

√
2 + 3ε <

√
1 +R2− ε

for ε = (R− 1)/8). Thus, the probability that all pairs satisfy our condition is 1−O(N2)e−Ω(d) as
desired.

Thus with probability 1 − O(N2)e−Ω(d), the graph that we construct at distance threshold T =√
2 + 2ε (with only the training points and no test point) has a very particular structure: one large

connected component consisting of all the points on the inner sphere, and N isolated points, one for
each point on the outer sphere.

Lemma 9. Let x be a randomly drawn test point on the inner sphere. Then with probability at
least 1 − O(N)e−Ω(d) over the choice of x, there is no x′ such that ‖x− x′‖ ≤ ε, and either (1)
‖xi − x′‖ >

√
2 + 2ε for some i ≤ N , or (2) ‖xi − x′‖ ≤

√
2 + 2ε for some i > N .

Proof. Certainly no such i exists if ‖xi − x‖ ≤
√

2 + ε for all i ≤ N and ‖xi − x‖ >
√

2 + 3ε
for all i > N . Using union bound and lemma 7, we get that a randomly drawn x satisfies this with
probability at least 1−O(N)e−Ω(d).

Lemma 10. Let x be a randomly drawn test point on the outer sphere. Then with probability at least
1−O(N)e−Ω(d) over the choice of x, there is no x′ such that ‖x− x′‖ ≤ ε and ‖xi − x′‖ ≤

√
2+2ε

for any i ≤ 2N .

Proof. Similar to the previous lemma, no such i exists if ‖xi − x‖ >
√

2 + 3ε for all i ≤ 2N . Using
union bound and lemma 7, we get that a randomly drawn x satisfies this with probability at least
1−O(N)e−Ω(d).

Lemmas 9 and 10 together give us the result that for almost all points, even after adversarial
perturbation, the graph G(x) we construct with threshold T =

√
2 + 2ε is identical for all points x

on the inner sphere, and identical for all points x on the outer sphere (except a γ = O(N)e−Ω(d)

fraction): points on the inner sphere get connected to points on the inner sphere, and points on
the outer sphere get connected to nothing. Since the map from graphs G(x) to features f(x) is
deterministic, this means that f , in fact, maps all inner sphere points to one point and all outer sphere
points to another point (except a γ-fraction); that is, f is (ε, 0, Ne−Ω(d))-robust.

It only remains to show that f maps inner-sphere and outer-sphere points to different outputs. Before
proceeding further, we now fully explain the construction of the features f . Given a training set
of N points from the inner sphere and N points from the outer sphere, construct the graph G(X)
and take the bottom-(N + 1) eigenvectors v1, v2, . . . , vN+1 and prepend a 0 to each of them to
yield v′1, v

′
2, . . . , v

′
N+1 ∈ R2N+1. To compute the feature f(x), we first construct the graph G(x).

Then, we project the vectors v′1, v
′
2, . . . , v

′
N+1 into the bottom-(N + 1) eigenspace of G(x) to yield

vectors u1, u2, . . . , uN+1. The feature assigned to G(x) is f(x) := (u1,0, u2,0, . . . , uN+1,0) =
eT0 U ∈ RN+1, where U is the matrix whose columns are the ui, and e0 = (1, 0, 0, . . . , 0) ∈ R2N+1 .
Similarly, define the matrix V ′ corresponding to vectors v′i. Let P be the projection matrix onto the
bottom-(N + 1) eigenspace of G(x)

Assume WLOG that the first N training examples are on the inner sphere, and the other N are on the
outer sphere. Then the vector

v∗ := (0, 1, 1, . . . , 1︸ ︷︷ ︸
N

, 0, 0, . . .︸ ︷︷ ︸
N

, 0) ∈ R2N+1

is in the span of the v′i, since it consists of a 0 prepended to a vector in the zero-eigenspace of G(X).
Suppose v∗ =

∑
i αiv

′
i = V ′α.

Notice that eT0 PV
′α = eT0 Pv

∗ will be 0 when x is on the outer sphere, since v∗ is itself already
in the zero-eigenspace of G(x) in this case. When x is on the inner sphere, projecting v∗ onto
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G(x) will make its first component positive, since v∗ has positive dot product with the vector
u∗ = (1, 1, 1, . . . , 0, 0, . . . ) (which is an eigenvector of G(x)), and is orthogonal to every zero
eigenvector of G(x) orthogonal to u∗—and thus eT0 PV

′α > 0 for x on the inner sphere. Thus,
eT0 U = eT0 PV

′ must take different values on the outer and inner spheres. This concludes the proof
of Theorem 5.
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