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1 Proofs

Theorem 1 If p(V ∪H) obeys the CG factorization relative to G(V ∪H), and H is block-safe then
p(V) obeys the segregated factorization relative to the segregated projection G(V).

Proof: Assume the premise of the theorem. Then, p(O ∪H) =
∏

B∈B(G) p(B|paG(B)).

For every D ∈ D(G(V)), let HD ≡ H ∩ anGD∪H(D). Then p(V) is equal to

∑
H

 ∏
B∈Bnt(G)

p(B|paG(B))

 ∏
{B}6∈Bnt(G)

p(B|paG(B))


=

 ∏
B∈Bnt(G)

p(B|paG(B))

 ∏
D∈D(G(V))

∑
HD

(∏
B∈D

p(B|paG(B))

)

=

 ∏
B∈Bnt(G)

p(B|paG(B))

 ∏
D∈D(G(V))

q(D|pasG(V)(D))

= q(B∗|paG(V)(B
∗))q(D∗|pasG(V)(D

∗)).

The fact that q(B∗|paG(V)(B
∗)) factorizes according to the CCG Gb follows by construction.

Let B̃ ≡ {B ∈ V ∪H | {B} 6∈ Bnt(G)}. Then

q(B̃|pasG(B̃)) =
∏

B:{B}6∈Bnt(G)

p(B|paG(B))

factorizes according to the CADMG (in fact a conditional DAG) G(B̃,pasG(B̃)) obtained from G(V∪
H) by making all elements in pasG(B̃) fixed, and all elements B̃ random, keeping all edges among
B̃ in G, and all outgoing directed edges from pasG(B̃) to B̃ in G. The fact that q(D∗|paG(V)(D

∗))

factorizes according Gd, the latent projection CADMG obtained from G(B̃,pasG(B̃)) by treating
H as hidden variables now follows by the inductive application of Lemmas 46 and 49 in [2] to
q(B̃|pasG(B̃)) and G(B̃,pasG(B̃)). �

Theorem 2 Assume G(V ∪H) is a causal CG, where H is block-safe. Fix disjoint subsets Y,A of
V. Let Y∗ = antG(V)V\A Y. Then p(Y|do(a)) is identified from p(V) if and only if every element

in D(G̃d) is reachable in Gd, where G̃d is the induced CADMG of G(V)Y∗ .
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Moreover, if p(Y|do(a)) is identified, it is equal to

∑
Y∗\Y

 ∏
D∈D(G̃d)

φD∗\D(q(D∗|paG(V)(D
∗));Gd)

 ∏
B∈B(G̃b)

p(B \A|paG(V)Y∗
(B),B ∩A)

∣∣∣∣∣∣
A=a

(1)

where q(D∗|paG(V)(D
∗)) = p(V)/(

∏
B∈Bnt(G(V)) p(B|paG(V)(B)), and G̃d is the induced CCG

of G(V)Y∗ .

Proof: We proceed by proving a series of subclaims.

Claim 1: If p(O) obeys the segregated factorization relative to G(O), then p(A) obeys the segregated
factorization relative to G(O)A for any subset A ⊆ O anterial in G(O). A set A is anterial if,
whenever X ∈ A, antG(X) ⊆ A.

We show this by induction. Assume p(O) obeys the segregated factorization relative to G(O), and A
consists of all elements in O other than those in B ∈ Bnt(G(O)). Then by writing p(A) =

∑
B p(O)

as a segregated factorization for p(O), we note that the nested factorization remains unchanged by
the marginalization, and the block factorization remains unchanged, except the factor corresponding
to B is removed.

Similarly, assume p(O) obeys the segregated factorization relative to G(O), and A consists of all
elements in O other than some element B not in any B ∈ Bnt(G(O)) such that chG(B) is empty.
Then by writing p(A) =

∑
B p(O) as a segregated factorization for p(O), we note that the block

factorization remains unchanged by the marginalization, and the kernel

q(B∗ \ {B} | pasG(O)(B
∗)) =

∑
B

p(V)∏
B∈Bnt(G(V)) p(B|paG(V)(B))

is nested Markov relative to the CADMG G̃(O)d obtained from G(O)d by removing B and all edges
adjacent to B. To see this, note that reachable sets in G̃(O)d are a strict subset of reachable sets in
G(O)d, since B is fixable in G(O)d, and moreover all kernels corresponding to reachable sets in
G̃(O)d may be obtained from q(B∗ | pasG(O)(B

∗)) by marginalizing B first, and applying the fixing
operator to remaining variables in B∗ \ {B}. As a result, the nested global Markov property for the
former graph is implied by the nested global Markov property of the latter graph, proving our claim.

Claim 2: The algorithm specified by the equation (1) is sound for identification of p(Y|do(a)).

Per claim 1, without loss of generality assume Y has no children in G(O). Consider the chain graph
g-formula:

p(Y(a)) =
∏

B∈B(G(O∪H))

p(B \A|paG(B),B ∩A)|A=a.

We can decompose this into factors relating to the non-trivial blocks and districts in the graph:

p(Y(a)) =
∏

B∈Bnt(G(O∪H))

p(B \A|paG(B),B ∩A)|A=a

×
∏

D∈D(G(O∪H))

p(D \A|paG(D),D ∩A)|A=a.

Since H is block-safe, the factors in the first term – those that correspond to non-trivial blocks – are
the same in the segregated graph as in the original chain graph and thus we can re-write the above as:

p(Y(a)) =
∏

B∈Bnt(GY∗ )

p(B \A|paG(B),B ∩A)|A=a

×
∏

D∈D(G(O∪H))

p(D \A|paG(D),D ∩A)|A=a.

Meanwhile the factors in the second term describe a kernel q(D∗|paG(O∪H)
(D∗)) associated with

a CADG G(O ∪ H,B∗) which we can manipulate to obtain the desired result by following the
argument in the proof of Theorem 60 in [2].
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Let A∗ = O \Y∗ ⊇ A. By the global Markov property of conditional DAGs (CDAGs) proven in
[2], p(Y∗|doG(O∪H,B∗)(a)) = p(Y∗|doG(O∪H,B∗)(a

∗)).

Let G∗((O \ A∗) ∪ H,B∗ ∪ A∗) = φA∗(G(O ∪ H,B∗)). Let σH denote the latent projection
operation such that σH(G(O ∪H) = G(O). Then, by commutativity of σH and the fixing operator
(Corollary 53 in [2]), σH(φA∗(G(O∪H,B∗))) = φA∗(σH(G(O∪H,B∗))) = G∗(Y∗,B∗ ∪A∗).
By definition of induced subgraphs, G(O,B∗)Y∗ = (φA∗(G(O,B∗)))Y∗ . By these two equalities,
we have G(O,B∗)Y∗ = G∗(O,B∗ ∪A∗)Y∗ and thus D(G(O,B∗)Y∗) = D(G∗(Y∗,B∗ ∪A∗)).

For each D ∈ D(G∗(Y∗,B∗ ∪ A∗)), let HD ≡ H ∩ anG(O∪H,B∗)D∪H(D) and H∗ ≡⋃
D∈D(G∗(Y∗,B∗∪A∗)) HD. Then, by construction, if D,D′ ∈ D(G∗(Y∗,B∗ ∪A∗) and D 6= D′

then HD ∩ HD′ = ∅. Additionally, for all D ∈ D(G∗(Y∗,B∗ ∪ A∗), it is the case that
paG(O∪H,B∗)(D ∪ HD) ∩ H∗ = HD. And Y∗ ∪ H∗ is ancestral in G(O ∪ H,B∗) which im-
plies that if v ∈ Y∗ ∪H∗, then paG(O∪H,B∗(v) ∩H ⊆ H∗.

By the DAG g-formula and the above features of the construction,
p(Y∗|doG(O∪H,B∗)(a

∗))

=
∑
H

∏
v∈(H∪Y∗)

p(v|paG(O∪H,B∗)(v))

=
∑
H∗

∏
v∈(H∗∪Y∗)

p(v|paG(O∪H,B∗)(v)) ·
∑

H\H∗

∏
v∈(H\H∗)

p(v|paG(O∪H,B∗)(v))

=
∑
H∗

∏
D∈D(G∗(Y∗,A∗∪B∗))

∏
v∈(D∪HD)

p(v|paG(O∪H,B∗)(v))

=
∏

D∈D(G∗(Y∗,A∗∪B∗))

(∑
HD

∏
v∈(D∪HD)

p(v|paG(O∪H,B∗)(v))

)
.

(2)

For any district D ∈ D(G∗(Y∗,B∗ ∪A∗)),∑
HD

∏
v∈D∪HD

p(v|paG(O∪H,B∗)(v))

=
∑
HD

∏
v∈(D∪HD)

p(v|paG(O∪H,B∗)(v)) ·
∑

H\HD

∏
v∈(H\HD)

p(v|paG(O∪H,B∗)(v))

=
∑
H

∏
v∈D∪HD

p(v|paG(O∪H,B∗)(v))

=
∑
H

φD∗\D(q(D∗|paG(O∪H,B∗)(D
∗)));G(O ∪H,B∗))

(3)

Once again, these equalities are a result of the above constructions of H and H∗. By commutativity
(Lemma 55 in [2]), we can remove references to H:

p(Y∗|doG(O∪H,B∗)(A
∗))

=
∏

D∈D(G(Y∗,B∗∪A∗))

φD∗\Dq(D
∗|paG(O,B∗)(D

∗));G(O,B∗))

=
∏

D∈D(G(Y∗,B∗∪A∗))

φD∗\Dq(D
∗|paG(D∗));Gd)

=
∏

D∈D(GY∗ )

φD∗\Dq(D
∗|paG(D∗));Gd)

The second equality is true because paG(D
∗) ⊆ paG(O,B∗)(D

∗) and by the assumption of a block-
safe chain graph. The final equality is true by block-safeness and the definition of induced subgraphs.

Finally by the fact that p(Y|doG(O∪H,B∗)(A)) =
∑

Y∗\Y p(Y∗|doG(O∪H,B∗)(A
∗)), we can re-

write the above as:
p(Y|doG(O∪H,B∗)(A)) =

∑
Y∗\Y

∏
D∈D(GY∗ )

φD∗\Dq(D
∗|paG(D∗));Gd)
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We combine this with the block portioned derived above via chain-graph g-formula to obtain the
result of the sub-claim

Claim 3: If there is a district in D(G(O)Y∗) that is not reachable in Gd, then p(Y|do(a)) is not
identifiable.

Let D ∈ D(G(O)Y∗) be unreachable. Let R = {D ∈ D| chG(D)∩D = ∅}. Let A∗ = A∩paG(D).
Then there exists a superset of D, D′, such that D and D′ form a hedge for p(R|do(a∗)) and thus
p(R|do(a∗)) is not identified [3].

Let Y′ be the minimal subset of Y such that R ⊆ antG(O)O\A(Y
′). Consider an edge subgraph G†

of G consisting of all edges in G in the hedge formed by D,D′ and edges on partially directed paths
in G(O)O\A from every element in R to some element in Y′, such that the edge subgraph does not
contain any cycles (directed or otherwise).

We proceed as follows. We first define an ADMG G̃† from G† as follows. The vertices and edges
making up the hedge structure [3] in G† are also present in G̃†. For every partially directed path σ
from an element in R to an element in Y′, we construct a directed path from R in G̃† containing
vertex copies of vertices on the undirected path σ, and which orients all undirected edges in σ away
from R and towards the element copy in G̃† of the appropriate element of Y′ in G†.

We then prove non-identifiability of p(Ỹ′|do(a∗)) in G̃†, where Ỹ′ is the set of all vertex copies in
G̃† of vertices in Y′ in G†, using standard techniques for ADMGs. In particular, we follow the proof
of Theorem 4 in the supplement of [4].

We next show that p(Y′ | do(a∗)) is not identified in G†. For the two counterexamples in the causal
model given by G̃† witnessing non-identifiability of p(Ỹ′ | do(a∗)) in the above proof, we will
construct two counterexamples in the causal model given by G† witnessing non-identifiability of
p(Y′ | do(a∗)).

To do so, we define new variables along all partially directed paths from R to Y′ in G† as Cartesian
products of variable copies in counterexamples constructed. Note that any such variable containing
only a single element in R in its anterior in G† will only have a single copy, while a variable containing
two elements in R in its anterior in G† will contain two copies, and so on. It’s clear that the two
resulting elements contain vertices in G†, agree on the observed data distribution, and disagree on
p(Y′ | do(a∗)).

What remains to show is that the distributions so constructed obey one of CG Markov properties
associated with a CG G†. Fix a (possibly trivial) block B in G†. We must show for each B ∈ B that
p(B | B \B, paG†(B)) = p(B | nbG† ,paG(B)).

For any B ∈ B in G†, there exists a set B1, . . . , Bk of variables in G̃† such that B is defined as
B1× . . .×Bk. Moreover, any variable A ∈ nbG†(B)∪ paG†(B) corresponds to a Cartesian product
A1 ×Am of variables where Ai is a child or a parent of some variables Bj . The result then follows
by d-separation in G̃†, and the fact that the part of G̃† outside of the hedge structure does not contain
any colliders by construction. �

2 Derivations

Consider Figure 1 (a). We are interested in identifying p(Y2(a1, a2)). We set Y∗ to the anterior of Y
in GV\A: Y∗ ≡ {C1, C2,M1,M2, Y2} (see GY∗ shown in Fig. 1 (b)) with B(GY∗) = {{M1,M2}}
and D(GY∗ = {{C1}, {C2}, {Y2}}. We can now proceed with the version of the ID algorithm for
SGs. The CCG portion of the algorithm simply yields p(M1,M2|A1 = a1, A2, C1, C2). Note that
this expression further factorizes according to the factorization of blocks in a chain graph. For the
ADMG portion of the algorithm, we must fix variables in three different sets {C2, A1, A2, Y1, Y2},
{C1, A1, A2, Y1, Y2}, {C1, C2, A1, A2, Y1} in Gd, shown in Fig. 1 (c), corresponding to three
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A1

C1

M1

Y1

A2

C2

M2

Y2

(a)

C2

M2

Y2

C1

M1

(b)

A1

C1

m1

Y1

A2

C2

m2

Y2

(c)

Figure 1: (a) A latent projection of the CG in (Fig. 1a in the main paper) onto observed variables.
(b) The graph representing GY∗ for the intervention operation do(a1) applied to (a). (c) The ADMG
obtained by fixing M1,M2 in (a).

districts in Fig. 1 (b). We have:

φ{C2,A1,A2,Y1,Y2}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2, C1, C2))

= φ{C2,A1,A2,Y1}(p(Y1|A1, A2,M1,M2, C1, C2, Y2)p(A1, A2, C1, C2))

= φ{C2,A1,A2}(p(A1, A2, C1, C2))

= φ{C2,A2}(p(A2, C1, C2))

= φ{C2}(p(C1, C2))

= p(C1)

(4)

φ{C1,A1,A2,Y1,Y2}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2, C1, C2))

= φ{C1,A1,A2,Y1}(p(Y1|A1, A2,M1,M2, C1, C1, Y2)p(A1, A2, C1, C2))

= φ{C1,A1,A2}(p(A1, A2, C1, C2))

= φ{C1,A2}(p(A2, C1, C2))

= φ{C1}(p(C1, C2))

= p(C2)

(5)

φ{C1,C2,A1,A2,Y1}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2, C1, C2))

= φ{A1,Y1,A2}(p(Y1, Y2|A1, A2,M1,M2, C1, C2)p(A1, A2|C1, C2))

= φ{A1,A2}(p(Y2|A1, A2,M1,M2, C1, C2)p(A1, A2|C1, C2))

=
∑
A2

p(Y2|A1, A2,M1,M2, C1, C2)p(A2|C2)

=
∑
A2

p(Y2|A1, A2,M2, C2)p(A2|C2)

(6)

with the last term evaluated at A1 = a1. Thus, the identifying functional is:

p(Y2(a1, a2)) =
∑

{C1,C2,M1,M2}

[
p(M1,M2|a1, a2, C1, C2)

×
[∑

A2

p(Y2|a1, A2,M2, C2)p(A2|C2)p(C1)p(C2)
]] (7)
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3 Simulation Study

3.1 The Auto-G-Computation Algorithm

To estimate identifying functionals corresponding to causal effects given dependent data, we generally
use maximum likelihood plug in estimation. The exception is the factor p(M | paG(M)), which may
not be estimated if Mi variables for all units i are dependent, as is the case in our simulation study.
In this case, the above density must be estimated from a single sample. Thus, standard statistical
methods such as maximum likelihood estimation fail to work. We adapt the auto-g-computation
algorithm method in [5], which exploits Markov assumptions embedded in our CG model, as well
as the pseudo-likelihood or coding estimation methods introduced in [1]. We briefly describe the
approach here.

The auto-g-computation algorithm is a generalization of the Monte Carlo sampling version of the
standard g-computation algorithm for classical causal models (represented by DAGs) [6] to causal
models represented by CGs. Auto-g-computation proceeds by generating samples from a block using
Gibbs sampling. The parameters for Gibbs factors used in the sampler (which, by the global Markov
property for CGs, take the form of p(Xi | paG(Xi) ∪ nbG(Xi))) are learned via parameter sharing
and coding or pseudo-likelihood based estimators. For any block B, the Gibbs sampler draws samples
from p(X | paG(X)), given a fixed set of samples drawn from all blocks with elements in paG(X),
or specific values of paG(X) we are interested in, as follows.
Gibbs Sampler for X:

for t = 0, let x(0) denote initial values ;
for t = 1, ..., T

draw value of X(t)
1 from p(X1|x(t−1)

paG(X1)∪nbG(X1)
));

draw value of X(t)
2 from p(X2|x(t−1)

paG(X2)∪nbG(X2)
));

...

draw value of X(t)
m from p(Xm|x(t−1)

paG(Xm)∪nbG(Xm)));

Since we are interested in estimating a functional similar to (7), we use observed values of C, and
intervened on values ai, aj as the values of paG(M) in the Gibbs sampler.

The coding-likelihood and pseudo-likelihood estimators we use are described in more detail in [5].
Both estimators rely on parameter sharing for densities p(Mi | paG(Mi)∪nbG(Mi)) across different
units i, and for the network to be sufficiently sparse such that each Mi depends on only a few other
variables in the model, relative to the total number of units.

The coding estimator uses a subset of the data that corresponds to units that form independent sets in
the network adjacency graph (where units are adjacent of they are friends in the network, and not
adjacent otherwise). A set of units is a maximal independent set in the network adjacency graph if a)
no two vertices in the set are adjacent, and b) it is impossible to add another unit to the set without
violating the adjacency constraint. A maximum independent set is a maximal independent set such
that there does not exist a larger maximal independent set in the same graph. Finding maximum
independent sets is a classic NP-complete problem; in practice we find several maximal independent
sets and pick the one with largest cardinality as a heuristic. See Table 1 below for the size of Smax

for each network size in our experiments. The coding likelihood estimator was proven consistent

N 400 800 1000 2000
|Smax| 159 309 384 763

Table 1: The size of Smax used for the coding-likelihood estimator in each network

and asymptotically normal in [5] whereas pseudo-likelihood estimation is, under mild assumptions,
consistent but not asymptotically normal. On the other hand, pseudo-likelihood estimation is more
efficient than coding likelihood estimation since it makes use of all of the data.
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3.2 Simulation Specifics

For data generation we use the following densities for Ai,Mi, Yi, parameterized by
τA = {γ0, γC1 , . . . , γCp , γU1 , . . . , γUq}, τM = {β0, βA, βC1 , . . . , βCpβAnb

, βMnb
}, τY =

{α0, αC1
, . . . , αCp

, αU1
, . . . , αUq

, αAnb
, αM}:

p(Ai = 1|Ci,Ui; τA) = expit(γ0 +
( p∑

l=1

γCl
Cil

)
+
( q∑

l=1

γUl
Uil

)
)

p(Mi = 1|Ai,Ci, {Aj ,Mj |j ∈ Ni}; τM )

= expit(β0 + βAAi +
( p∑

l=1

βCl
Cil

)
+
( ∑
j∈Ni

(βAnb
Aj + βMnb

Mj)
)
)

p(Yi = 1|Ci,Ui,Mi, {Aj |j ∈ Nj}; τY )

= expit(α0 +
( p∑

l=1

αCl
Cil

)
+
( q∑

l=1

αUl
Uil

)
+
( ∑
j=Ni

αAnb
Aj

)
+ αMMi).

The values of the parameters for the beta distributions we use to generate Ci,Ui can be found in
Table 2a while the values of τA, τM , τY can be found in Table 2b.

Variable a b
C1 1.5 3
C2 6 2
C3 0.8 0.8
U1 2.3 1.1
U2 0.9 1.1
U3 2 2

(a) Parameters for C and U

Parameter Value
τA (-1, 0.5, 0.2, 0.25, 0.3, -0.2, 0.25)
τM (-1, -0.3, 0.4, 0.1, 1, -0.5, -1.5)
τY (-0.3, -0.2, 0.2, -0.05, 0.1, -0.2, 0.25, -1, 3)

(b) Parameters for τA, τM , τY

Table 2: The parameters for each generating distribution

3.3 Extended Results

In the main paper we gave confidence intervals and the mean and standard deviation of the bias of
our estimators. All results were calculated by averaging over 1000 simulated networks.

Ground Truth Network Average Effects
N 400 800 1000 2000
Ground
Truth -.455 -.453 -.455 -.456

Table 3: The ground truth effects for each network, calculated by averaging over 5 samples of the
data generating process for each network under the relevant interventions

As discussed in the main body of the paper, the estimators we use are able to recover the effects of
interest reasonably well. The approximate ground truth values for these effects can be found in Table
3. The fact that the coding estimator restricts the network to a small fraction of its total units means it
is considerably less efficient than the pseudo-likelihood estimator.

Though the pseudo-likelihood estimator is not in general asymptotically normal, it does not perform
substantially worse than the provably asymptotically normal coding-likelihood estimator. In both
cases, the true effect is covered by the 95% confidence interval of the estimator.
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