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Appendices

A Basic results in Fourier space

A.1 Fourier transform conventions

Fourier transforms are defined with different scaling conventions in different branches of science.
Here, the symmetric version of the Fourier transform written in terms of angular frequencies is used:
for f a function on Rp, we define

F [f ](k) = f̂(k) =
1

(2π)
p
2

∫
Rp
f(x)e−ik

T xdx

and

f(x) = F−1
[
F [f ]

]
(x) =

1

(2π)
p
2

∫
Rp
f̂(k)eik

T xdk.

Parseval’s identity states that for two functions f and g,∫
Rp
f(x)g(x)dx =

∫
Rp
f̂(k)ĝ(k)dk,

where ·̄ denotes complex conjugation. For more details, see [1, Chapter 11].

A.2 Relation between convex duality and the Fourier transform

The motivation for using the Fourier transform to study Bayesian inference problems stems from
the correspondence between the Fourier and Legendre-Fenchel transforms of convex functions. This
correspondence is an example of so-called idempotent mathematics, and a survey of its history and
applications can be found in [2], while a formal treatment along the lines below can be found in [3],
and a summary of analogous properties between the Legendre-Fenchel and Fourier transforms can
be found in [4]. The basic argument is presented here, without any attempt at being complete or
rigorous.

Let h be a convex function on Rp and assume it is sufficiently smooth for the statements below
to hold without needing too much attention to detail. The Gibbs probability distribution for h at
inverse temperature τ is defined as p(x) = 1

Z e
−τh(x), with Z =

∫
Rp e

−τh(x)dx the partition function.
Define for z ∈ Cp

h∗τ (z) =
1

τ
ln

∫
Rp
e−τ [h(x)−zT x]dx.
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By the Laplace approximation, it follows that for τ large and u ∈ Rp, to leading order in τ ,
h∗τ (u) ≈ h∗(u) = max

x∈Rp
[uTx− h(x)], (1)

the Legendre-Fenchel transform of h. The Fourier transform of e−τh is

F
[
e−τh

]
(τk) =

1

(2π)
p
2

∫
Rp
e−τh(x)e−iτk

T xdx =
eτh

∗
τ (−ik)

(2π)
p
2

. (2)

Now assume that h = f + g can be written as the sum of two convex functions f and g. It is
instructive to think of h(x) as minus a posterior log-likelihood function of regression coefficients
x, with a natural decomposition in a part f(x) coming from the data likelihood and a part g(x)
representing the prior distribution on x. We again assume that f and g are smooth.

The Parseval identity for Fourier transforms yields∫
Rp
e−τ [f(x)+g(x)]dx =

∫
Rp
F
[
e−τf

]
(k)F

[
e−τg

]
(k)dk =

( τ
2π

)p ∫
Rp
eτ [f∗τ (ik)+g∗τ (−ik)]dk,

where a change of variables k → τk was made. When τ is large, the Laplace approximation of the
l.h.s. states that, to leading order in τ

1

τ
ln

∫
Rp
e−τ [f(x)+g(x)]dx ≈ − min

x∈Rp

[
f(x) + g(x)

]
= max
x∈Rp

[
−f(x)− g(x)

]
. (3)

The integral on the r.h.s. can be written as a complex contour integral∫
Rp
eτ [f∗τ (ik)+g∗τ (−ik)]dk =

1

ip

∫
iRp

eτ [f∗τ (z)+g∗τ (−z)]dz,

where iRp denotes a p-dimensional contour consisting of vertical contours running along the imag-
inary axis in each dimension. The steepest descent or saddle point approximation [5] requires
that we deform the contour to run through the saddle point, i.e. a zero of the gradient function
∇[f∗τ (z) + g∗τ (−z)]. Under fairly general conditions (see for instance [6]), f∗τ (z) + g∗τ (−z) will
attain its maximum modulus at a real vector, and hence the new integration contour will take the
form z = ûτ + ik where ûτ = argminu∈Rp [f∗τ (u) + g∗τ (−u)] and k ∈ Rp. Note that in the limit
τ → ∞, ûτ → û = argminu∈Rp [f∗(u) + g∗(−u)]. The stationary phase approximation yields,
again to leading order in τ

1

τ
ln

∫
Rp
eτ [f∗τ (ik)+g∗τ (−ik)]dk =

1

τ
ln

∫
Rp
eτ [f∗τ (ûτ+ik)+g∗τ (−ûτ−ik)]dk

≈ min
u∈Rp

[
f∗τ (u) + g∗τ (−u)

]
≈ min
u∈Rp

[
f∗(u) + g∗(−u)

]
(4)

Combining eqs. (3) and (4), we recover Fenchel’s well-known duality theorem
max
x∈Rp

[
−f(x)− g(x)

]
= min
u∈Rp

[
f∗(u) + g∗(−u)

]
.

In summary, there is an equivalence between convex duality for log-likelihood functions and switching
from coordinate to frequency space using the Fourier transform for Gibbs probability distributions,
which becomes an exact mapping in the limit of large inverse temperature. As shown in this paper,
this remains true even when f or g are not necessarily smooth (e.g. if g(x) = ‖x‖1 is the `1-norm).

A.3 The Fourier transform of the multivariate normal and Laplace distributions

To derive eq. (10), observe that f(x) is a Gaussian and its Fourier transform is again a Gaussian:

F(e−2τf ) =
1

(2π)
p
2

∫
Rp
e−2τf(x)eik

T xdx =
1√

(2τ)p det(C)
exp

{
− 1

4τ
(k − 2iτw)TC−1(k − 2iτw)

}
.

(5)
To calculate the Fourier transform of e−τg, note that in one dimension∫

R
e−γ|x|e−ikxdx =

2γ

k2 + γ2
,

and hence

F(e−2τg)(k) =
1

(2π)
p
2

p∏
j=1

4µτ

k2
j + 4τ2µ2

.

After making the change of variables k′j = 1
2τ kj , eq. (10) is obtained.
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A.4 Cauchy’s theorem in coordinate space

Cauchy’s theorem [7, 8] states that we can freely deform the integration contours in the integral
in eq. (11) as long as we remain within a holomorphic domain of the integrand, or simply put, a
domain where the integrand does not diverge. Consider as a simple example the deformation of the
integration contours from zj ∈ iR in eq. (11) to zj ∈ w′j + iR, where |w′j | < µ for all j. We obtain

Z =
(−iµ)p

(πτ)
p
2

√
det(C)

∫ w′1+i∞

w′1−i∞
· · ·
∫ w′p+i∞

w′p−i∞
eτ(z−w)TC−1(z−w)

p∏
j=1

1

µ2 − z2
j

dz1 . . . dzp

=
µp

(πτ)
p
2

√
det(C)

∫
Rp
e−τ(w′−w+ik)TC−1(w′−w+ik)

p∏
j=1

1

µ2 − (w′j + ikj)2
dk,

where we parameterized zj = w′j + ikj . Using the inverse Fourier transform, and reversing the
results from Section 2 and Appendix A.3, we can write this expression as

Z =

∫
Rp
e−2τf̃(x)e−2τg̃(x),

where

f̃(x) =
1

2
xTCx− (w − w′)Tx (6)

g̃(x) =

p∑
j=1

(µ|xj | − w′jxj). (7)

Comparison with eqs. (8)–(9) shows that the freedom to deform the integration contour in Fourier
space corresponds to an equivalent freedom to split e−τH(x) into a product of two functions. Clearly
eq. (7) only defines an integrable function e−2τg̃ if |w′j | < µ for all j, which of course corresponds to
the limitation imposed by Cauchy’s theorem that the deformation of the integration contours cannot
extend beyond the domain where the function

∏
j(µ

2 − z2
j )−1 remains finite.

A.5 Stationary phase approximation in the zero-effect case

Assume that |wj | < µ for all j. It then follows immediately that the maximum-likelihood or
minimum-energy solution x̂ = argminxH(x) = 0. As above, we can deform the integration
contours in (11) into steepest descent contours passing through the saddle point z0 = w of the
function h(z) = (z − w)TC−1(z − w) (cf. Figure S1a). We obtain

Z =
(−iµ)p

(πτ)
p
2

√
det(C)

∫ w1+i∞

w1−i∞
· · ·
∫ wp+i∞

wp−i∞
eτ(z−w)TC−1(z−w)

p∏
j=1

1

µ2 − z2
j

dz1 . . . dzp

=
µp

(πτ)
p
2

√
det(C)

∫
Rp
e−τk

TC−1k

p∏
j=1

1

µ2 − (wj + ikj)2
dk, (8)

where we parameterized zj = wj + ikj . This integral can be written as a series expansion using the
following standard result, included here for completeness.
Lemma 1. Let C ∈ Rp × Rp be a positive definite matrix and let ∆C be the differential operator

∆C =

p∑
i,j=1

Cij
∂2

∂ki∂kj
.

Then
1

π
p
2

√
det(C)

∫
Rp
e−k

TC−1kf̂(k)dk =
(
e

1
4 ∆C f̂

)
(0).

Proof. First note that

∆Ce
−ikT x = −

∑
ij

Cijxixje
−ikT x = −(xTCx) e−ik

T x, (9)
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i.e. eik
T x is an ‘eigenfunction’ of ∆C with eigenvalue −(xTCx), and hence

e
1
4 ∆Ce−ik

T x = e−
1
4x
TCxe−ik

T x.

Using the (inverse) Fourier transform, we can define

f(x) =
1

(2π)
p
2

∫
Rp
f̂(k)eik

T xdk,

and write

f̂(k) =
1

(2π)
p
2

∫
Rp
f(x)e−ik

T xdx.

Hence(
e

1
4 ∆C f̂

)
(k) =

1

(2π)
p
2

∫
Rp
f(x)e

1
4 ∆Ceik

T xdx =
1

(2π)
p
2

∫
Rp
f(x)e−

1
4x
TCxe−ik

T xdx.

Using Parseval’s identity and the formula for the Fourier transform of a Gaussian [eq. (5)], we obtain(
e

1
4 ∆C f̂

)
(0) =

1

(2π)
p
2

∫
Rp
f(x)e−

1
4x
TCxdx =

1

π
p
2

√
det(C)

∫
Rp
f̂(k)e−k

TC−1kdk

In the derivation above, we have tacitly assumed that the inverse Fourier transform f of f̂ exists.
However, the result remains true even if f is only a distribution, i.e. f̂ need not be integrable. For a
more detailed discussion, see [1, Chapter 11, Section 11.9].

Applying Lemma 1 to eq. (8), it follows that

Z =
(µ
τ

)p
e

1
4τ ∆C

p∏
j=1

1

µ2 − (wj + ikj)2

∣∣∣∣
k=0

=
(µ
τ

)p[ p∏
j=1

1

µ2 − w2
j

+O
(1

τ

)]
,

with ∆C as defined in eq. (9). It follows that the effect size expectation values are, to first order in
τ−1,

E(xj) =
1

2τ

∂ logZ

∂wj
∼ 1

τ

wj
µ2 − w2

j

,

which indeed converge to the minimum-energy solution x̂ = 0.

A.6 Generalized partition functions for the expected effects

Using elementary properties of the Fourier transform, it follows that

F
[
xje
−2τf(x)

]
(k) = i

∂F
[
e−2τf(x)

]
(k)

∂kj
, (10)

with f defined in eq. (8), and hence, repeating the calculations leading up to eq. (10), we find

E(xj) =

∫
Rp xje

−τH(x)dx∫
Rp e

−τH(x)dx
=
Z
[(
C−1(w − z)

)
j

]
Z

∼
[
C−1(w − ûτ )

]
j
. (11)

Note that eq. (10) can also be applied to the Laplacian part e−2τg(x), with g defined in eq. (9). This
results in

E(xj) =
Z
[

zj
τ(µ2−z2j )

]
Z

∼ ûτ,j
τ(µ2 − û2

τ,j)
. (12)

By the saddle point equations, eq. (13), eqs. (11) and (12) are identical. As a rule of thumb, ‘tricks’
such as eq. (10) to express properties of the posterior distribution as generalized partition functions
lead to accurate approximations if the final result does not depend on whether the trick was applied
to the Gaussian or Laplacian part of the Gibbs factor. For higher-order moments of the posterior
distribution, this means that the leading term of the stationary phase approximation alone is not
sufficient.
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B Proof of Theorem 1

B.1 Saddle-point equations

Consider the function H∗τ defined in eq. (12),

H∗τ (z) = (z − w)TC−1(z − w)− 1

τ

p∑
j=1

ln(µ2 − z2
j ),

with z restricted to the domainD = {z ∈ Cp : |<zj | < µ, j = 1, . . . , p}. Writing z = u+ iv, where
u and v are the real and imaginary parts of z, respectively, we obtain

<H∗τ (z) = (u− w)TC−1(u− w)− vTC−1v − 1

2τ

p∑
j=1

{
ln
[
(µ+ uj)

2 + v2
j )
]

+ ln
[
(µ− uj)2 + v2

j )
]}

=H∗τ (z) = 2(u− w)TC−1v − 1

τ

p∑
j=1

{
arctan

( vj
µ+ uj

)
+ arctan

( vj
µ− uj

)}
,

where <c and =c denote the real and imaginary parts of a complex number c, respectively.

By the Cauchy-Riemann equations z = u+ iv is a saddle point of H∗τ if and only if it satisfies the
equations

∂<H∗τ
∂uj

= 2[C−1(u− w)]j −
1

τ

{ µ+ uj
(µ+ uj)2 + v2

j

− µ− uj
(µ− uj)2 + v2

j

}
= 0

∂<H∗τ
∂vj

= −2[C−1v]j −
1

τ

{ vj
(µ+ uj)2 + v2

j

+
vj

(µ− uj)2 + v2
j

}
= 0

The second set of equations is solved by v = 0, and because <H∗τ (u+ iv) < <H∗τ (u) for all u and
v 6= 0, it follows that v = 0 is the saddle point solution. Plugging this into the first set of equations
gives

[C−1(u− w)]j +
uj

τ(µ2 − u2
j )

= 0, (13)

which is equivalent to eq. (13).

B.2 Analytic expression for the partition function

Next, consider the complex integral

I = (−i)p
∫ i∞

−i∞
· · ·
∫ i∞

−i∞
eτH

∗
τ (z)Q(z)dz1 . . . dzp,

i.e. I is the generalized partition function upto a constant multiplicative factor. By Cauchy’s theorem
we can freely deform the integration contours to a set of vertical contours running parallel to the
imaginary axis and passing through the saddle point, i.e. integrate over z = ûτ + ik, where ûτ is the
saddle point solution and k ∈ Rp. Changing the integration variable back from complex z to real k,
we find

I = eτ(w−ûτ )C−1(w−ûτ )

∫
Rp
e−τF (k)Q(ûτ + ik)dk

where

F (k) = kTC−1k − 2ikTC−1(ûτ − w) +
1

τ

p∑
j=1

ln(µ− ûτ,j − ikj) +
1

τ

p∑
j=1

ln(µ+ ûτ,j + ikj).

We start by computing the Taylor series for F . First note that the nth derivative of f±j (kj) =

ln(µ± ûτ,j ± ikj) evaluated at kj = 0 is given by

(f±j )(n)(0) = − (∓i)n(n− 1)!

(µ± ûτ,j)n
.
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By the saddle point equations (13)

1

τ

p∑
j=1

f+′

j (0)kj +
1

τ

p∑
j=1

f−
′

j (0)kj =
i

τ

p∑
j=1

kj
µ+ ûτ,j

− i

τ

p∑
j=1

kj
µ− ûτ,j

= 2ikTC−1(ûτ,j − w).

Hence the linear terms cancel and we obtain

F (k) =
1

τ

p∑
j=1

[
ln(µ+ ûτ,j) + ln(µ− ûτ,j)

]
+ kTC−1k +

1

τ

p∑
j=1

µ2 + û2
τ,j

(µ2 − û2
τ,j)

2
k2
j

− 1

τ

p∑
j=1

∑
n≥3

1

n

[ 1

(µ− ûτ,j)n
+

(−1)n

(µ+ ûτ,j)n

]
(ikj)

n

=
1

τ

p∑
j=1

ln(µ2 − û2
τ,j) + kT (C−1 +D−1

τ )k − 1

τ
Rτ (ik),

with Dτ the diagonal matrix defined in eq. (15) and Rτ the function defined in eq. (17). Hence

I = eτ(w−ûτ )C−1(w−ûτ )

p∏
j=1

1

µ2 − û2
τ,j

∫
Rp
e−τk

T (C−1+D−1
τ )keRτ (ik)Q(ûτ + ik)dk.

Application of Lemma 1 results in∫
Rp
e−τk

T (C−1+D−1
τ )keRτ (ik)Q(ûτ + ik)dk

=
(2π)

p
2

(2τ)
p
2

√
det(C−1 +D−1

τ )
exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ûτ + ik)

∣∣∣∣
k=0

=
(π
τ

) p
2
(det(Dτ ) det(C)

det(C +Dτ )

) 1
2

exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ûτ + ik)

∣∣∣∣
k=0

= π
p
2

∏
j(µ

2 − û2
τ,j)∏

j(µ
2 + û2

τ,j)
1
2

( det(C)

det(C +Dτ )

) 1
2

exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ûτ + ik)

∣∣∣∣
k=0

,

where we used the equality

C−1 +D−1
τ = C−1(C +Dτ )D−1

τ ,

and ∆τ is the differential operator defined in eq. (16). Hence

Z[Q] =
µp

(πτ)
p
2

√
det(C)

I

=
( µ√

τ

)p 1∏
j(µ

2 + û2
τ,j)

1
2

eτ(w−ûτ )C−1(w−ûτ )√
det(C +Dτ )

exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ûτ + ik)

∣∣∣∣
k=0

.

The derivation above is formal and meant to illustrate how the various terms in the partition function
approximation arise. It is rigorous if the inverse Fourier transform of eRτ (ik)Q(ûτ + ik) exists
at least a a tempered distribution (cf. the proof of Lemma 1). This is the case if Q has compact
support. If this is not the case, one first has to truncate I to a compact region around the saddle
point, and use standard estimates [5] that the contribution of the region not containing the saddle
point is exponentially vanishing. Likewise, application of the operator e

1
4τ2

∆τ is defined through its
series expansion, but this is to be understood as an asymptotic expansion (see below) which need not
result in a convergent series. None of this is different from the standard theory for the asymptotic
approximation of integrals [5].

B.3 Asymptotic properties of the saddle point

Let û = limτ→∞ ûτ . By continuity, û is a solution to the set of equations

(uj − µ)(uj + µ)
[
C−1(u− w)

]
j

= 0 (14)

6



subject to the constraints |uj | ≤ µ. Denote by I ⊆ {1, . . . , p} the subset of indices j for which[
C−1(û− w)

]
j
6= 0. To facilitate notation, for v ∈ Rp a vector, denote by vI ∈ R|I| the sub-vector

corresponding to the indices in I . Likewise denote by CI ∈ R|I|×|I| the corresponding sub-matrix
and by C−1

I the inverse of CI , i.e. C−1
I = (CI)

−1 6= (C−1)I . Temporarily denoting B = C−1, we
can then rewrite the equations for û as

ûI = ±µ[
C−1(û− w)

]
Ic

= [B(û− w)]Ic = BIc(ûIc − wIc) +BIcI(ûI − wI) = 0,

or, using standard results for the inverse of a partitioned matrix [9],

ûIc = wIc +B−1
Ic BIcI(wI − ûI) = wIc − CIcIC−1

I (wI − ûI).

Finally, define x̂ = C−1(w − û), and note that

x̂I = [B(w − û)]I = BI(wI − ûI) +BIIc(wIc − ûIc) = (BI −BIIcB−1
Ic BIc,I)(wI − ûI)

= C−1
I (wI − ûI) 6= 0 (15)

x̂Ic = 0. (16)

As we will see below, x̂ = argminx∈Rp H(x) is the maximum-likelihood lasso or elastic net solution
(cf. Appendix C), and hence the set I corresponds to the set of non-zero coordinates in this solution.
Note that it is possible to have ûj = ±µ for j ∈ Ic (i.e. x̂j = 0). This happens when µ is exactly at
the transition value where j goes from not being included to being included in the ML solution. We
will denote the subsets of Ic of transition and non-transition coordinates as Ict and Icnt, respectively.
We then have the following lemma:
Lemma 2. In the limit τ →∞, we have

τ(µ2 − û2
τ,j)

2 =


O(τ−1) j ∈ I
O
[
(τ x̂2

τ,j)
−1
]

j ∈ Ict
O(τ) j ∈ Icnt

(17)

Proof. From the saddle point equations, we have

τ(µ2 − û2
τ,j)

2 =
1

τ

( ûτ,j
x̂τ,j

)2

.

If j ∈ I , x̂τ,j → x̂j 6= 0 and ûτ,j → ûj = ±µ, and hence τ(µ2 − û2
τ,j)

2 = O(τ−1). If
j ∈ Icnt, µ2 − û2

τ,j → µ2 − û2
j > 0, and hence τ(µ2 − û2

τ,j)
2 = O(τ). If j ∈ Ict , x̂τ,j → 0 and

ûτ,j → ûj = ±µ, and hence τ(µ2 − û2
τ,j)

2 = O
[
(τ x̂2

τ,j)
−1
]
.

B.4 Asymptotic properties of the differential operator matrix

Let
Eτ = τDτ (C +Dτ )−1C =

τ

2

[
Dτ (C +Dτ )−1C + C(C +Dτ )−1Dτ ], (18)

where the second equality is simply to make the symmetry of Eτ explicit. We have the following
result:
Proposition 1. Using the block matrix notation introduced above, and assuming Ict = ∅, the leading
term of Eτ in the limit τ →∞ can be written as

Eτ ∼ τ
(

Dτ,I
1
2Dτ,IC

−1
I CIIc

1
2Dτ,IC

−1
I CIIc (C−1)Ic

)
, (19)

where I is again the set of non-zero coordinates in the maximum-likelihood solution.

Proof. Again using standard properties for the inverse of a partitioned matrix [9], and the fact that
Dτ is a diagonal matrix, we have for any index subset J[

(C +Dτ )−1
]
J

=
[
CJ +Dτ,J − CJ,Jc(CJc +Dτ,Jc)

−1CJc,J
]−1

(20)[
(C +Dτ )−1

]
J,Jc

= −(CJ +Dτ,J)−1CJc,J
[
(C +Dτ )−1

]
Jc

(21)
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By Lemma 2, in the limit τ →∞, Dτ vanishes on I and diverges on Ic. Hence

(CI +Dτ,I)
−1 ∼ C−1

I (22)

(CIc +Dτ,Ic)
−1 ∼ D−1

τ,Ic (23)

Plugging these in eqs. (20) and (21), and using the fact that CI,IcD−1
τ,IcCIc,I is vanishingly small

compared to CI , yields

(C +Dτ )−1 ∼
(

C−1
I −C−1

I CI,IcD
−1
τ,Ic

−D−1
τ,IcCIc,IC

−1
I D−1

τ,Ic

)
Plugging this in eq. (18), and again using that D−1

τ,Ic is vanishingly small compared to constant
matrices yields eq. (19).

From the fact that by Lemma 2, τDτ,I ∼ const, it follows immediately that, if Ict = ∅,

(Eτ )ij =

{
O(τ) i, j ∈ Ic
const otherwise

(24)

For transition coordinates, eq. (17) may diverge or not, depending on the rate of x̂τ,j → 0. Define

J = I ∪
{
j ∈ Ict : lim

τ→∞
τ

1
2 x̂τ,j 6= 0

}
. (25)

Then Dτ diverges on Jc and converges (but not necessarily vanishes) on J , and eqs. (22) and (23)
remain valid if we use the set J rather than I to partition the matrix (with a small modification in
eq. (22) to keep an extra possible constant term). Hence, we obtain the following modification of
eq. (24):

(Eτ )ij =

{
O(τ) i, j ∈ Jc
const otherwise

(26)

B.5 Asymptotic properties of the differential operator argument

Next we consider the function Rτ (z) appearing in the argument of the differential operator in eq. (14)
and defined in eq. (17),

Rτ (z) =

p∑
j=1

Rτ,j(zj)

Rτ,j(zj) =
∑
m≥3

1

m

[ 1

(µ− ûτ,j)m
+

(−1)m

(µ+ ûτ,j)m

]
(zj)

m.

We have the following result:
Lemma 3. Rτ,j(zj) is of the form

Rτ,j(zj) = z3
j qτ,j(zj)

with qτ,j an analytic function in a region around zj = 0 and

qτ,j(zj) ≤


O(τ2) j ∈ J
O(τ) j ∈ Jc ∩ Ict
const j ∈ Icnt

with J defined in eq. (25).

Proof. The first statement follows from the fact that the series expansion of Rτ,j(zj) contains only
powers of zj greater than 3. The asymptotics as a function of τ for j ∈ I and j ∈ Icnt follow
immediately from Lemma 2 and the definition of Rτ,j (Appendix B.2),

Rτ,j(zj) = − ln
[
µ2 − (ûτ,j + zj)

2
]

+ ln(µ2 − û2
τ,j)−

2ûτ,j
µ2 − û2

τ,j

zj −
µ2 + û2

τ,j

(µ2 − û2
τ,j)

2
z2
j .

For j ∈ J ∩ Ict , we have from Lemma 2 at worst (µ2 − û2
τ,j)
−2 = O

[
(τ x̂τ,j)

2
]
≤ O(τ2), whereas

for j ∈ Jc ∩ Ict , we have at worst (τ x̂τ,j)
2 = τ(τ

1
2 x̂τ,j)

2 ≤ O(τ).
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B.6 Asymptotic approximation for the partition function

To prove the analytic approximation eq. (18), we will show that successive terms in the series
expansion of e

1
4τ2

∆τ result in terms of decreasing power in τ . The argument presented below is
identical to existing proofs of the stationary phase approximation for multi-dimensional integrals [5],
except that we need to track and estimate the dependence on τ in both ∆τ and Rτ .

The series expansion of the differential operator exponential can be written as:

exp
{ 1

4τ2
∆τ

}
=
∑
m≥0

1

m!(2τ)2m
∆m
τ

=
∑
m≥0

1

m!(2τ)2m

p∑
j1,...,j2m=1

Ej1j2 . . . Ej2m−1j2m

∂2m

∂kj1 . . . ∂kj2m

=
∑
m≥0

1

m!(2τ)2m

∑
α : |α|=2m

Sτ,α
∂2m

∂kα1
1 . . . ∂k

αp
p
,

where E is the matrix defined in eq. (18) (its dependence on τ is omitted for notational sim-
plicity), α = (α1, . . . , αp) is a multi-index, |α| =

∑
j αj , and Sτ,α is the sum of all terms

Ej1j2 . . . Ej2m−1j2m that give rise to the same multi-index α. From eq. (26), it follows that only
coordinates in Jc give rise to diverging terms in Sτ,α, and only if they are coupled to other coordinates
in Jc. Hence the total number

∑
j∈Jc αj of Jc coordinates can be divided over at most 1

2

∑
j∈Jc αj

E-factors, and we have

Sτ,α ≤ O
(
τ

1
2

∑
j∈Jc αj

)
.

Turning our attention to the partial derivatives, we may assume without loss of generality that the
argument function Q is a finite sum of products of monomials and hence it is sufficient to prove
eq. (18) with Q of the form Q(z) =

∏p
j=1Qj(zj). By Cauchy’s theorem and Lemma 3, we have for

ε > 0 small enough,

∂αj

∂k
αj
j

eRτ,j(ikj)Qj(ikj)
∣∣∣
kj=0

=
αj !

2πi

∮
|z|=ε

1

zαj+1
eRτ,j(zj)Qj(zj)dzj

=
αj !

2πi

∑
n≥0

1

n!

∮
|z|=ε

z
3n−αj−1
j qj(zj)

nQj(zj)dzj

=
αj !

2πi

∑
0≤n< 1

3 (αj+1)

1

n!

∮
|z|=ε

z
3n−αj−1
j qj(zj)

nQj(zj)dz

≤


O
(
τ

2
3αj
)

j ∈ J
O
(
τ

1
3αj
)

j ∈ Jc ∩ Ict
const j ∈ Icnt

The last result follows, because for j ∈ J or j ∈ Jc ∩ Ict , qj scales at worst as τ2 or τ , respectively,
and hence, since only powers of qj strictly less than 1

3 (αj + 1) contribute to the sum, the sum must
be a polynomial in τ of degree less than 2

3αj or 1
3αj , respectively (αj can be written as either 3t,

3t + 1 or 3t + 2 for some integer t; in all three cases, the largest integer strictly below 1
3 (αj + 1)

equals t, and t ≤ 1
3αj).

Hence∑
α : |α|=2m

Sτ,α
∂2m

∂kα1
1 . . . ∂k

αp
p
eRτ (ik)Q(ik)

∣∣∣∣
k=0

=
∑

α : |α|=2m

Sτ,α
∏
j

∂αj

∂k
αj
j

eRτ,j(ikj)Qj(ikj)
∣∣∣
kj=0

≤ O
(
τ

1
2

∑
j∈Jc αjτ

2
3

∑
j∈J αj+

1
3

∑
j∈Jc∩Ict

αj) = O
(
τ

2
3

∑
j∈J αj+

1
2

∑
j∈Icnt

αj+
5
6

∑
j∈Jc∩Ict

αj)
≤ O

(
τ

5
6

∑p
j=1 αj

)
= O

(
τ

5
3m
)
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This in turn implies that the mth term in the expansion,

exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ik)

∣∣∣∣
k=0

=
∑
m≥0

1

m!(2τ)2m

∑
α : |α|=2m

Sτ,α
∏
j

∂αj

∂k
αj
j

eRτ,j(ikj)Qj(ikj)
∣∣∣
kj=0

(27)
is bounded by a factor of τ−

1
3m. Hence eq. (27) is an asymptotic expansion, with leading term

exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ik)

∣∣∣∣
k=0

∼
p∏
j=1

Qj(0) = Q(0).

C Zero-temperature limit of the partition function

The connection between the analytic approximation (18) and the minimum-energy (or maximum-
likelihood) solution is established by first recalling that Fenchel’s convex duality theorem implies
that [10]

x̂ = argmin
x∈Rp

H(x) = argmin
x∈Rp

[
f(x) + g(x)

]
= ∇f∗(−û) = C−1(w − û),

where f and g are defined in eqs. (8)–(9),

f∗(u) = max
x∈Rp

[
xTu− f(x)

]
=

1

2
(w + u)TC−1(w + u)

is the Legendre-Fenchel transform of f , and

û = argmin
{u∈Rp : |uj |≤µ,∀j}

f∗(−u) = argmin
{u∈Rp : |uj |≤µ,∀j}

(w − u)TC−1(w − u). (28)

One way of solving an optimization problem with constraints of the form |uj | ≤ µ is to approxi-
mate the hard constraints by a smooth, so-called ‘logarithmic barrier function’ [11], i.e. solve the
unconstrained problem

ûτ = argmin
u∈Rp

[
(w − u)TC−1(w − u)− 1

τ

p∑
j=1

ln(µ2 − u2
j )
]

(29)

such that in the limit τ →∞, ûτ → û. Comparison with eqs. (12)–(13), shows that (29) is precisely
the saddle point of the partition function, whereas the constrained optimization in eq. (28) was
already encountered in eq. (14). Hence, let I again denote the set of non-zero coordinates in the
maximum-likelihood solution x̂. The following result characterizes completely the partition function
in the limit τ →∞, provided there are no transition coordinates.
Proposition 2. Assume that µ is not a transition value, i.e. j ∈ I ⇔ x̂j 6= 0 ⇔ |ûj | = µ. Let
σ = sgn(û) be the vector of signs of û. Then sgn(x̂I) = σI , and

Z ∼ eτ(wI−µσI)TC−1
I (wI−µσI)

2
|I|
2 τ

|I|
2 +|Ic|

√
det(CI)

∏
j∈Ic

µ

µ2 − û2
j

. (30)

In particular,

lim
τ→∞

1

τ
lnZ = (wI − µσI)TC−1

I (wI − µσI) = H(x̂) = min
x∈Rp

H(x).

Proof. First note that from the saddle point equations

(µ2 − û2
τ,j)x̂τ,j =

ûτ,j
τ
,

where as before x̂τ = C−1(w−ûτ ), and the fact that |ûτ,j | < µ, it follows that sgn(x̂τ,j) = sgn(ûτ,j)
for all j and all τ . Let j ∈ I . Because x̂τ,j → x̂j 6= 0, it follows that there exists τ0 large enough
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such that sgn(x̂τ,j) = sgn(x̂j) for all τ > τ0. Hence also sgn(ûτ,j) = sgn(x̂j) for all τ > τ0, and
since ûτ,j → ûj 6= 0, we must have sgn(ûj) = sgn(x̂j).

To prove eq. (30), we will calculate the leading term of det(C +Dτ ) in eq. (18). For this purpose,
recall that for a square matrix M and any index subset I , we have [9]

det(M) = det(MI) det(MIc −MIcIM
−1
I MIIc) =

det(MI)

det
[
(M−1)Ic

] (31)

Taking M = C + Dτ , it follows from eqs. (20)–(23) that det(CI + Dτ,I) ∼ det(CI), and
det
[
(M−1)Ic

]
∼ det(D−1

τ,Ic), and hence

det(C +Dτ ) ∼ det(CI) det(Dτ,Ic) = τ |I
c| det(CI)

∏
j∈Ic

(µ2 − û2
τ,j)

2

µ2 + û2
τ,j

.

Hence

τ
p
2

p∏
j=1

√
µ2 + û2

τ,j

√
det(C +Dτ ) ∼ τ

p+|Ic|
2

√
det(CI)

∏
j∈I

√
µ2 + û2

τ,j

∏
j∈Ic

(µ2 − û2
τ,j)

∼ τ
p+|Ic|

2 2
|I|
2 µ|I|

√
det(CI)

∏
j∈Ic

(µ2 − û2
j ),

where the last line follows by replacing ûτ,j by its leading term ûj , and using û2
j = µ2 for j ∈ I .

Plugging this in eq. (18) and using eqs. (15)–(16) to get the leading term of the exponential factor
results in eq. (30).

The leading term in eq. (30) has a pleasing interpretation as a ‘two-phase’ system,

Z =
1

(2π)
|I|
2

ZIZIc

where ZI and ZIc are the partition functions (normalization constants) of a multivariate Gaussian
distribution and a product of independent shifted Laplace distributions, respectively:

ZI =
(π
τ

) |I|
2
eτ(wI−µσI)TC−1

I (wI−µσI)√
det(CI)

=

∫
R|I|

e−τ [xTI CIxI−2(wI−µσI)T xI ]dxI

ZIc =
1

τ |Ic|

∏
j∈Ic

µ

µ2 − û2
j

=

∫
R|Ic|

e−2τ [µ
∑
j∈Ic |xj |−û

T
IcxIc ]dxIc .

This suggests that in the limit τ →∞, the non-zero maximum-likelihood coordinates are approxi-
mately normally distributed and decoupled from the zero coordinates, which each follow a shifted
Laplace distribution. At finite values of τ however, this approximation is too crude, and more accurate
results are obtained using the leading term of eq. (18). This is immediately clear from the fact that
the partition function is a continous function of w ∈ Rp, which remains true for the leading term of
eq. (18), but not for eq. (30), which exhibits discontinuities whenever a coordinate enters or leaves
the set I as w is smoothly varied.

D Analytic results for independent predictors

When predictors are independent, the matrix C is diagonal, and the partition function can be written
as a product of one-dimensional integrals

Z =

∫
R
e−τ(cx2−2wx+2µ|x|)dx,

where c, µ > 0 and w ∈ R. This integral can be solved by writing Z = Z+ + Z−, where

Z± =

∫ ∞
0

e−τ [cx2±2(w±µ)x]dx = eτ
(w±µ)2

c

∫ ∞
0

e−τc(x±
w±µ
c )2dx =

eτ
(w±µ)2

c

√
τc

∫ ∞
±
√

τ
c (w±µ)

e−y
2

dy

=
1

2

√
π

τc
eτ

(w±µ)2
c erfc

(
±
√
τ

c
(w ± µ)

)
=

1

2

√
π

τc
erfcx

(
±
√
τ

c
(w ± µ)

)
, (32)
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where erfc(x) = 2√
π

∫∞
x
e−y

2

dy and erfcx(x) = ex
2

erfc(x) are the complementary and scaled
complementary error functions, respectively. Hence,

logZ = log
[
erfcx

(√τ

c
(µ+ w)

)
+ erfcx

(√τ

c
(µ− w)

)]
+

1

2

(
log π − log(τc)

)
− log 2,

and

x̂τ = E(x) =
1

2τ

∂ logZ

∂w

=
1

c

(µ+ w) erfcx
(√

τ
c (µ+ w)

)
− (µ− w) erfcx

(√
τ
c (µ− w)

)
erfcx

(√
τ
c (µ+ w)

)
+ erfcx

(√
τ
c (µ− w)

)
=
w

c
+
µ

c

erfcx
(√

τ
c (µ+ w)

)
− erfcx

(√
τ
c (µ− w)

)
erfcx

(√
τ
c (µ+ w)

)
+ erfcx

(√
τ
c (µ− w)

)
=
w

c
+ (1− 2α)

µ

c
,

where
α =

1

1 +
erfcx

(√
τ
c (µ−w)

)
erfcx

(√
τ
c (µ+w)

) .

E Numerical recipes

E.1 Solving the saddle point equations

To calculate the partition function and posterior distribution at any value of τ , we need to solve the
set of equations in eq. (13). To avoid having to calculate the inverse matrix C−1, we make a change
of variables x = C−1(w − u), or u = w − Cx, such that eq. (13) becomes

xj
[
wj − (Cx)j − µ

][
wj − (Cx)j + µ

]
+

1

τ

[
wj − (Cx)j

]
= 0. (33)

We will use a coordinate descent algorithm where one coordinate of x is updated at a time, using the
current estimates x̂ for the other coordinates. Defining

aj = wj −
∑
k 6=j

Ckj x̂k,

we can write eq. (33) as

C2
jjx

3
j − 2ajCjjx

2
j +

(
a2
j − µ2 − Cjj

τ

)
xj +

aj
τ

= 0

The roots of this 3rd order polynomial are easily obtained numerically, and by construction there will
be a unique root for which uj = wj − (Cx)j = aj − Cjjxj is located in the interval (−µ, µ). This
root will be the new estimate x̂j . Given a new x̂(new)

j , we can update the vector a as

a(new)
k =

{
a(old)
j k = j

a(old)
k − Ckj

(
x̂(new)
j − x̂(old)

j

)
k 6= j

and proceed to update the next coordinate.

After all coordinates of x̂ have converged, we obtain ûτ by performing the matrix-vector operation
ûτ = w − Cx̂,

or, if we only need the expectation values,
Eτ (x) = x̂.

For τ = ∞, the solution to eq. (33) is given by the maximum-likelihood effect size vector (cf.
Appendix C), for which ultra-fast algorithms exploiting the sparsity of the solution are available [12].
Hence we use this vector as the initial vector for the coordinate descent algorithm for τ < ∞ and
expect fast convergence if τ is large. Solutions for multiple values of τ can be obtained along a
descending path of τ -values, each time taking the previous solution as the initial vector for finding
the next solution.
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E.2 High-dimensional determinants in the partition function

Calculating the stationary phase approximation to the partition function involves the computation
of the p-dimensional determinant det(C +Dτ ) [cf. eq. (18)], which can become computationally
expensive in high-dimensional settings. However, when C is of the form C = ATK−1A

2n + λ1 [cf.
eq. (6)] with A ∈ Rn×p, K ∈ Rn×n invertible, and p > n, these determinants can be written as
n-dimensional determinants, using the matrix determinant lemma:

det(C +Dτ ) = det
(ATK−1A

2n
+D′τ

)
=

det(D′τ )

det(K)
det
(
K +

A(D′τ )−1AT

2n

)
, (34)

where D′τ = Dτ + λ1 is a diagonal matrix whose determinant and inverse are trivial to obtain.

To avoid numerical overflow or underflow, all calculations are performed using logarithms of partition
functions. For n large, a numerically stable computation of eq. (34) uses the equality log detB =
tr logB =

∑n
i=1 log εi, where B = K + 1

2nA(D′τ )−1AT and εi are the eigenvalues of B.

E.3 Marginal posterior distributions

Calculating the marginal posterior distributions p(xj) [eq. 20] requires applying the analytic approx-
imation eq. (14) using a different ûτ for every different value of xj . To make this process more
efficient, two simple properties are exploited:

1. For xj = x̂τ,j , the saddle point for the (p− 1)-dimensional partition function Z(CIj , wIj −
xjCj,Ij , µ) is given by the original saddle point vector x̂τ,k, k 6= j. This follows easily from
the saddle point equations.

2. If xj changes by a small amount, the new saddle point also changes by a small amount.
Hence, taking the current saddle point vector for xj as the starting vector for solving the set
of saddle point equations for the next value xj + δ results in rapid convergence (often in a
single loop over all coordinates).

Hence we always start by computing p(xj = x̂τ,j) and then compute p(xj) separately for a series of
ascending values xj > x̂τ,j and a series of descending values xj < x̂τ,j

E.4 Sampling from the one-dimensional distribution

Consider again the case of one predictor, with posterior distribution

p(x) =
e−τ(cx2−2wx+2µ|x|)

Z
. (35)

To sample from this distribution, note that

p(x) = (1− α) p(x | x < 0) + αp(x | x ≥ 0),

where

p(x | x ∈ R±) =
e−τ(cx2−2(w∓µ)x)

Z∓
, (36)

Z± were defined in eq. (32), and

α = P (x ≥ 0) =

∫ ∞
0

p(x)dx =
1

Z

∫ ∞
0

e−τ [cx2−2(w−µ)x]dx =
Z−

Z
=

1

1 +
erfcx

(√
τ
c (µ−w)

)
erfcx

(√
τ
c (µ+w)

) .
Eq. (36) defines two truncated normal distributions with means (w ∓ µ)/c and standard deviation
1/
√

2τc, for which sampling functions are available. Hence, to sample from the distribution (35), we
first sample a Bernoulli random variable with probability α, and then sample from the appropriate
truncated normal distribution.
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E.5 Gibbs sampler

To sample from the Gibbs distribution in the general case, we use the ‘basic Gibbs sampler’ of [13].
Let x̂ be the current vector of sampled regression coefficients. Then a new coefficient xj is sampled
from the conditional distribution

p
(
xj | {x̂k, k 6= j}

)
=
e−τ [Cjjx

2
j−2ajxj+2µ|xj |]

Zj
, (37)

where aj = wj −
∑
k 6=j Ckj x̂k and Zj is a normalization constant. This distribution is of the same

form as eq. (35) and hence can be sampled from in the same way. Notice that, as in section E.1, after
sampling a new x̂j , we can update the vector a as

a(new)
k =

{
a(old)
j k = j

a(old)
k − Ckj

(
x̂(new)
j − x̂(old)

j

)
k 6= j

.

E.6 Maximum a-posteriori estimation of the inverse temperature

This paper is concerned with the problem of obtaining the posterior regression coefficient distribution
for the Bayesian lasso and elastic net when values for the hyperparameters (λ, µ, τ) are given. There
is abundant literature on how to select values for λ and µ for maximum-likelihood estimation, mainly
through cross validation or by predetermining a specific level of sparsity (i.e. number of non-zero
predictors). Hence we assume an appropriate choice for λ and µ has been made, and propose to then
set τ equal to a first-order approximation of its maximum a posteriori (MAP) value, i.e. finding the
value which maximizes the log-likelihood of observing data y ∈ Rn and A ∈ Rp, similar to what was
suggested by [13]. To do so we must include the normalization constants in the prior distributions
(2)–(3):

p(y | A, x, τ) =
( τ

2πn

)n
2

e−
τ
2n‖y−Ax‖

2

=
( τ

2πn

)n
2

e−
τ
2n‖y‖

2

e−
τ
2n [xTATAx−2(AT y)T x]

p(x | λ, µ, τ) =
e−τ(λ‖x‖2+2µ

∑
j |xj |)

Z0

where for λ > 0,

Z0 =

∫
Rp
dx e−τ(λ‖x‖2+2µ

∑
j |xj |) =

(∫
R
dx e−τ(λx2+2µ|x|)

)p
=
(

2

∫ ∞
0

dx e−τ(λx2+2µx)
)p

=
(2e

µ2τ
λ

√
λτ

∫ ∞√
µ2τ
λ

e−t
2

dt
)p

=

(√
π

λτ
e
µ2τ
λ erfc

(√µ2τ

λ

))p
∼
( 1

µτ

)p
, (38)

and the last relation follows from the first-order term in the asymptotic expansion of the complemen-
tary error function for large values of its argument,

erfc(x) ∼ e−x
2

x
√
π
.

For pure lasso regression (λ = 0), this relation is exact:

Z0 =
( 1

µτ

)p
.

Hence, the log-likelihood of observing data y ∈ Rn and A ∈ Rp given values for λ, µ, τ is

L = log

∫
Rp
dx p(y | A, x, τ)p(x | λ, µ, τ)

=
n

2
log τ − ‖y‖

2

2n
τ − logZ0 + log

∫
Rp
dx e−τH(x) + const,

where ‘const’ are constant terms not involving the hyperparameters. Taking the first order approxima-
tion

logZ = log

∫
Rp
dx e−τH(x) ∼ −τHmin = −τH(x̂),
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where x̂ are the maximum-likelihood regression coefficients, we obtain

L ∼
(
p+

n

2

)
log τ −

[‖y‖2
2n

+H(x̂)
]
τ + p logµ

=
(
p+

n

2

)
log τ −

[ 1

2n
‖y −Ax̂‖2 + λ‖x̂‖2 + 2µ‖x̂‖1

]
τ + p logµ

which is maximized at

τ =
p+ n

2
1

2n‖y −Ax̂‖2 + λ‖x̂‖2 + 2µ‖x̂‖1
.

Note that a similar approach to determine the MAP value for λ would require keeping an additional
second order term in eq. (38), and that for p > n it is not possible to simultaneously determine MAP
values for all three hyperparameters, because it leads to a set of equations that are solved by the
combination λ = µ = 0 and τ =∞.

F Experimental details

F.1 Hardware and software

All numerical experiments were performed on a standard Macbook Pro with 2.8 GHz
processor amd 16 GB RAM running macOS version 10.13.6 and Matlab version
R2018a. Maximum-likelihood elastic net models were fitted using Glmnet for Matlab
(https://web.stanford.edu/~hastie/glmnet_matlab/). Matlab software to solve the
saddle point equations, compute the partition function and marginal posterior distributions, and
run a Gibbs sampler, is available at https://github.com/tmichoel/bayonet/. Bayesian
horseshoe and an alternative Bayesian lasso Gibbs sampler were run using the BayesReg toolbox
for Matlab [14], available at https://uk.mathworks.com/matlabcentral/fileexchange/
60823-bayesian-penalized-regression-with-continuous-shrinkage-prior-densities.

F.2 Diabetes and leukemia data

The diabetes data were obtained from https://web.stanford.edu/~hastie/CASI_files/
DATA/diabetes.html. The leukemia data were obtained from https://web.stanford.edu/
~hastie/CASI_files/DATA/leukemia.html. Data were standardized according to eq. (1), and
no further processing was performed. For the results in Figure 2, λ was set to 0.1, µ was selected
as the smallest value with a maximum-likelihood solution with 5 (diabetes data) or 10 (leukemia
data) non-zero predictors, and τ was set to its maximum a-posteriori value given λ and µ, yielding
τ = 682.3 (diabetes data) and 9.9439 · 103 (leukemia data).

F.3 Cancer Cell Line Encyclopedia data

Normalized expression data for 18,926 genes in 917 cancer cell lines were obtained from
the Gene Expression Omnibus accession number GSE36139 using the Series Matrix File
GSE36139-GPL15308_series_matrix.txt. Drug sensitivity data for 24 compounds in 504 cell
lines were obtained from the supplementary material of [15] (tab 11 from supplementary file
nature11003-s3.xls); 474 cell lines were common between gene expression and drug response
data and used for our analyses. Of the available drug response data, only the activity area (‘actarea’)
variable was used; 7 compounds had more than 40 zero activity area values (meaning inactive com-
pounds) in the 474 cell lines and were discarded. For the remaining 17 compounds, the following
procedure was used to compare the stationary phase approximation for the Bayesian elastic net to
BayReg’s lasso and horseshoe regression methods and maximum-likelihood elastic net and ridge
regression:

1. For each response variable (drug), possible hyper-parameter values were set to λ = 0.1

(fixed); µn = µmax × r
N+1−n
N , where N = 10, n = 1, . . . , 10, r = 0.01 and µmax =

maxj=1,...,p |wj |, with w as defined in eq. (6)–(7) and p = 18, 926; τm = 100.25(m+M−1),
where M = 12, m = 1, 2, . . . , 13.

2. For each training data set, and for each drug, the following procedure was performed:
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(a) The 1,000 genes most strongly correlated with the response were selected as candidate
predictors.

(b) Response and predictor data were standardized.
(c) Ten-fold cross-validation was carried out, by randomly dividing the 427 training sam-

ples in 10 sets of 42 samples for testing; running Bayesian and maximum-likelihood
elastic net on the remaining 385 samples and evaluating predictive performance (corre-
lation of predicted and true drug sensitivities) on the test set. The values µ̂ML, µ̂BAY
nd τ̂BAY with best median performance were selected.

(d) Maximum-likelihood coefficients for ridge regression (λ = 0.1, µ = 0) and elastic net
regression (λ = 0.1, µ = µ̂ML) were calculated on the training set (427 samples).

(e) Bayesian posterior expectation values using the stationary phase approximation for
elastic net (λ = 0.1, µ = µ̂ML, τ = τ̂BAY ) were calculated on the training set (427
samples).

(f) Bayesian posterior expectation values for lasso and horseshoe regression using Gibbs
sampling (using BayReg with default parameter settings) were calculated on the training
set (427 samples).

(g) Drug responses were predicted on the original data scale in the 47 held-out validation
samples using all sets of regression coefficients, and the Pearson correlation with the
true drug response was calculated.

3. For each drug, the median correlation value over the 10 predictions was taken, resulting in
the values shown in Figure 3a.

The top 1,000 most correlated genes were pre-filtered in each training data set, partly because in
trial runs this resulted in better predictive performance than pre-selecting 5,000 or 10,000 genes, and
partly to speed up calculations.

Figure 3d shows the regression coefficients for the training fold whose performance was closest to
the median.

For Figure 3c, Bayesian posterior expectation values using the stationary phase approximation for
elastic net and maximum-likelihood regression coefficients were calculated on each training set (427
samples) over a denser grid of 20 values for µ (same formula as above with N − 20) and the same 13
values for τ , and evaluated on the 47 validation samples; the median correlation value of predicted
and true drug sensitivities over the ten folds is shown. Figure 3b shows the dependence on µ of the
maximum-likelihood performance, and performance of the best τ at every µ for the Bayesian method.
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Figure S1: Illustration of the stationary phase approximation procedure for p = 1. (a) Contour plot
of the complex function (z − w)2. If µ = µ2, the integration contour can be deformed from the
imaginary axis to a steepest descent contour parallel to the imaginary axis and passing through the
saddle point z0 = w, whereas if µ = µ1, this cannot be done without passing through the pole at
z = µ. (b,c) Contour plots of the complex function (z − w)2 − 1

τ ln(µ2 − z2) for |w| < µ and
|w| ≥ µ, respectively. In both cases the function has a unique saddle point uτ with |uτ | < µ and a
steepest descent contour that is locally parallel to the imaginary axis.
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Figure S2: Same as Figure 3b and c, for drugs 2–9 from Figure 3a.
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Figure S3: Same as Figure 3b and c, for drugs 10–17 from Figure 3a.
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