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1 Preliminaries

In this section, we provide some background knowledge and lemmas, which is needed in our proofs.
For the sake of convenience, C', Cy, ¢, ¢g and so on are reserved for absolute constants.

1.1 Sub-Gaussian Random Variable/Vector

A random variable x is sub-Gaussian if the 15-norm defined below is finite

E|z|
lelly, =sup 227 < 4o s
>1 4
A random vector x € R is sub-Gaussian if (x, u) is sub-Gaussian for any u € R?, and |[x]|,, =
supyere [|(x, w)[[,,- A complete introduction can be found in [6]. Here we list some of the
well-known properties of sub-Gaussian random variables/vectors, which are extracted from [6]].

Proposition A (Sub-Gaussian Tail) A random variable x satisfies the following inequality iff

llzllly, < )

P(|z| >¢€) <e-exp (—i;) , (S.2)
where C' is a absolute constant.
Proposition B If x1, 2o, ..., x, are independent centered sub-Gaussian random variables, then

>, T is also a centered sub-Gaussian random variable with
2

n n
2 2
Safl <2, (8.3)
i=1 o i=1
where C'is an absolute constant.
Proposition C If z1,29,...,x, are independent centered sub-Gaussian random variables (not
necessarily identical), then x = [z1, ..., x,]7 is a centered sub-Gaussian random vector with
X < C max ||z, S.4
Il < € e flaill, (5.4)

where C'is an absolute constant.

Essentially Proposition |C|can be shown using the definition of sub-Gaussian vector and Proposition
which we generalize to independent sub-Gaussian vectors as follows.
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Lemma A If x1,Xs,...,X, are all m-dimensional independent centered sub-Gaussian random
_ T ™T R™™ . :
vectors, then x = [x1,...,X, |’ € is also a centered sub-Gaussian random vector with

Iy, < C ma flxll, (55)
where C'is an absolute constant.

T T

Proof: Define a = [al al ... al]T € S™ 1 where each a; is m-dimensional. We have

> (xivay)
i=1

n

n
2 2
<A i anlly, < 4| €2 D lladli3lixally,
o i=1 i=1

¢, @) ll,, =

n
2 2. ) = .
023 ol e, il = € o il

where we use Proposition [B] for the first inequality. Based on the definition of sub-Gaussian random
vector, we complete the proof. [ ]

1.2 Generic Chaining and Gaussian Width

One important tool that we use in our probabilistic argument is generic chaining [4} 5], which is
powerful for bounding the suprema of stochastic processes. Suppose { Z }t<7 is a centered stochastic
process, where each Z; is a centered random variable. We assume the index set 7 is endowed with
some metric (distance function) s(-, -). A key notion in generic chaining is y-functional 2 (7T, s),
which is defined for the metric space (7, ). One can think of ~,-functional as a measure of the size
of set 7 w.r.t. metric s. For self-containedness, we give the expression of v2(7T, s).

T,s)= inf su 2"/2 . diam (P, (t), s) , (S.6)
Y2(T, s) ot te%; (Pn(t),s)

where {P,}52 o = {Po,P1,...,Pn,...} is a sequence of partitions for 7, which satisfy that
|Po| = 1, |Pn| < 22" for n > 1, and that P, is a finer partition than P,,, i.e., every Q € Py 41
is a subset of some Q' € P,,. P,(t) denotes the subset of T that contains t in the n-th partition,
and diam (P, (t), s) measures the diameter of P, (t) w.r.t. metric s(-,-). Note that y,-functional
is a purely geometric concept, which involves no probability. Given that vy,-functional is fairly
involved, we are not going to discuss any insights behind this definition, and refer interested readers
to the introductory books [4} 5]]. Based on its definition, we list a few straightforward properties of
~o-functional here.

’72(7—781) S ,72(7—7 52) ifsl(uav) S SQ(U,V),VU,V S T (S7)

Y2 (T,B88) =B -~v2(T,s) forany 8> 0. (S.8)

v2(T1, 81) = v2(T2,s2) if 3 a global isometry between (77, s1) and (732, s2) (S.9)
The following lemma concerned with the suprema of {Z;} combines Theorem 2.2.22 and 2.2.27
from [5]].

Lemma B Given metric space (T, s), if the associated centered stochastic process { Zi }re1 satisfies
the condition

2
P(|Zu— Zyv| > €) < Chexp (—2016>, YuveT, (S.10)
s*(u,v)
then the following inequalities hold
E {sup Zt} < Covyo (T, 8) , (S.11)
teT
P ( sup |Zu — Zy| > C3 (y2(T, s) + € - diam (T, s))) < Cyexp (—62) , (S.12)
u,veT

where Cy, C1, Co, C3 and Cy are all absolute constants.



Another useful result based on generic chaining is the Theorem D in [2].

Lemma C (Theorem D in [2]]) There exist absolute constants C4, Co for which the following holds.
Let (2, ) be a probability space on which X is defined, and X1, . . ., X,, be independent copies of X.
Let set 1 be a subset of the unit sphere of Ly (), i.e, H € Sp, = {h: ||l =/ Jo P2 (X)dX =
1}, and assume that sup,eqq ||Rll,, < &. Then, for any 8> 0 and n > 1 satisfying

Cirv2(H, I llly,) < By, (S.13)
with probability at least 1 — exp(—Cy3%n/k%),

% i h?(X;) — E [n?]

sup
heH

<B. (S.14)

The suprema in both Lemma[B]and|[C| are characterized in terms of ~,-functional, which is not easily
computable. In order to further bound the ~»-functional, one needs the so-called majorizing measures
theorem 3.

Lemma D Given any Gaussian process {Y; }te7, define s(u,v) = \/E|Y, — Y, |? foru,v € T.
Then (T, s) can be upper bounded by

Y2(T,s) < ColE [sup Yt] ; (S.15)
teT

where Cy is an absolute constant.

We construct the simple Gaussian process {Y; = (t,g) }+c7 for any 7 C R?, where g is a standard
Gaussian random vector. Hence s(u,v) = \/E|Y, — Y52 = VE[(u—v,g)> = |[u — v|j2. It
follows from Lemma [D that

2o (T - l2) < CoE [fu; <t,g>} — Co-w(T), (5.16)
S

which makes the connection between 7,-functional and Gaussian width. One technique we utilize in
our proof for bounding Gaussian width is as follows, which originates in [[1].

Lemma E (Lemma 2 in [1l]) Let M > 4, Ay,--- , Ay C RP, and A = U,,, A,,. The Gaussian

width of A satisfies
w(A) < max w(Apy)+ Qbup |z||2+/1log M (S.17)

1<m<M

1.3 Proof of Lemmal[ll

Statement of Lemma.: 1k Assume that X € R™*P has dependent anisotropic rows such that X =
E2XA2, where E € R™*™ encodes the dependency between rows, X € R™*P has independent
isotropic rows, and A € RP*P introduces the anisotropicity. In this setting, if each row of X
satisfies |||>~<ZH\1/)2 < &, then condition (7)) and () hold with k = CR, fimin = Amin(Z)Amin (A), and
Hmax = )\max(E))\max(A)-

Proof: Letw = Ezu for anyu € S

m—1 and we have

Ir,=E [A%XTE%uuTE%XA%}

T A%
w1 XlAAz
1. 1. .
=E [A?xl, .,A2xm} [W1y ...y W] :
~ 1
W x,TnAE
m m m
L. 7,1 ~ ~T 1 — 2
= E E ww;E |A2x; JA2 = E wlAﬂE[xle]A?: E2u|| -A
2
i=1 j=1 i=1



It is clear that

)\min(E) : )\min(A) S Amin(ru) S )\max(ru) S )\max(E) . Amax(A) )

which indicates that condition () holds. If [|[%,[] ,, < &, then
T A -1
_1 viAT2 ~
IXfl,, = sup viT, 2XTuH = sup ||-—r—" A:XTE?u
vesr! Y2 yesrt ||| [E2 ®
ues™ ! ues™—1 2
TXT
v X S N
= sup |[|-—=7— ‘Eru = sup ’Xv <Ck
vesr=1 ||| [|[EZull2 vesp—1 b2
ues™ !
where the inequality follows from noting that the vector Xv has independent elements with t)9-norm
bounded by &, and thus H‘Xv ‘ < CF for any v € SP~!, Therefore condition (7)) also holds with
2
Kk = CE. ]

2 Proofs for Section 3.1]

2.1 Proof of Lemmal[2|

Statement of Lemma 2 Suppose the RE condition () is satisfied by X1, . .., X,, and X with o > 0
for the set A(6*) = cone{ v | [0+ v| <|6*]|} N SP~L. If v, is admissible, then 6 in (IT)
satisfies

=

<o2u(9*). I (S.18)
2 (0%

in which U (0*) is the restricted norm compatibility defined as W(6*) = sup¢ 4(¢+) Vs

Proof: Since 0 is feasible and ¥n 1s selected to be admissible, we have

n

LS XTI (x,0 - y0)
n

i=1

n

1 — *
< Yo, HnZXZTE N(X0" —yy)
i=1

<M

*

*

— ZXT “1X,(0 — 64| <27y,

*

ZXT X0 -67)

— < ZXT »1X,(0 - 0*)><||é—0*||-

— (0-09T < ZxTz 1x>(é-9*)g2%||é_o*||

=1

*

As ||0]| < ||6*|, we have 0-0"_ c 4 (6*). By the assumption of RE condition, we further obtain

16—6~ 2
allf - 673 < (6 —6)" ( ZXT )9 0") < 27,[16 — 07|
~ 6-06 2
— ||9—9||2_u 2 < pw(er). 2o
10— 6% « @
where we use the definition of restricted norm compatibility. [ ]



2.2 Proof of Lemma[3

Statement of Lemma Given sub-Gaussian X € R™*P with its i.i.d. copies X1,...,X,,
and covariance X € R™ ™ with eigenvectors uy, ... Uy, let T = E[XTS7'X] and T' =
LY XXX, Define the set Ar, for A C SP~! and each T; = E[XTuju]X] as
Ar;, = {V €SP I‘j_%v € cone(A)}. Ifn > Cik* - max; {w?(Ar,)}, with probability at

least 1 — mexp(—Can/k*), we have

. 1
viTv > QVTI‘V, Vved. (S.19)

Proof: Assume that the eigenvalue decomposition of ¥ is given by ® = Y7 —; o, uf For

convenience, we denote z/ = XTu;, z XTuJ, and T; = 157" X7Tuwu?X;. Note that
m T'; 1 T,
T, =E[z/z7" D=3, 50T = 1Sz f ,andF:ijl 2. In order to apply Lemma

we let (€2, 117) be the probability measure that z’ is defined on, and construct the function set

H; = {hv = <I‘j_%v, > |ve Arj}

It is easy to see that for any h, € H;,
N _1 _1 P _1
B[] = By, [V, 2092 T 00| = VIT 2 (B, [ ] Ty 2y = vIv =1,

ie, Hj CSpyp, = {h] IRl 0,y = 1}. Based on the definition of sub-Gaussian X, we also
have for any v € Ar,

_1 . T _1 T
Il = [|(r5 2 vz | =Ty X w|| <,
o 2
and also for any vi, vy € Ar,, we have
_1 .
v, = hvally, = || v1 = va) T3 22| < s = vl

If we choose 8 = 1, using (S-7), (S-8) and (S9), then we have
ek -2 (Hys IFllly,) < cir? -2 (Ary, |- [l2) < crear® - w(Ar,) < Bv/n

when n > Cik*w?(Ar,) where C; = 4cicj. By Lemma with probability at least
1 — exp(—c2%n/k*) = 1 — exp(—Can/k*) where Cy = c/4, we have

2 Tp=t,i -3
sup he( = sup v, z v—1
heH; nz ] vEAr, Z i
r*%f riv_1 <2
= sup |v . ; vV — < —
vEAr ’ I 2
_ _1
— VT, ?IT; *v> VveAr,

_1
Let w =I'; *v, and note that the inequalities above are preserved under arbitrary scaling of w. By
recalling the definition of Ar]. , it is not difficult to see that

A 1
wiT;w > §wTrjw, VweA. (S.20)

Combining (S.20) for each I'; using union bound, we obtain

m I 1 m T. R 1
WT<Z ]>W>2WT<ZJ>W, VweAd = WTI‘WZ§WTI‘W’ VweA,

o o
i=1 7 i=1 7

which completes the proof by renaming w as v. [ ]



2.3 Proof of Lemmad]

Statement of Lemma [ Ler x( be the 1o-norm of standard Gaussian random vector and T'y, =
E[XTuuTX], where u € S™~1 is fixed. For Ar, defined in LemmaEI we have

w(Ar,) < Cro v/ tmax/ fmin - (w(A) +3) (s.21)

Proof:  Recall the definition of Gaussian width w(Ar,) = E [supVe A, (Vs g>}, where g is a stan-

dard Gaussian random vector. Given the assumption (8), we have fimin < Amin(Tu) < Amax(Tu) <
Imax, and note that

1 1 1
sup (v,g) = sup <1"u 2y, I‘ﬁg> < sup <v, I‘{ig>
vEAr, vEAr, v€cone(A)ﬂ%IBP
. VP (S.22)

1
= . sup <v7 T3 g> ,
v/ Mmin vEcone(A)NBP b

_1 _1
where the inequality follows from I'y, 2v € cone(A) and ||[T'y 2 v]|2 <

1
Vv Hmin
chaining to bound the right-hand side above. Denote the set cone(.A) N BP by 7, and we consider

. Now we use generic

1
the stochastic process {Zy, = (v,I'3g)}ve7. For any v, vo € T, we have
1 1
126, = Zually, = || a1 = vl <o [ vi = va)), < mov/Fmas - [v2 = vallo
2

If we define for 7 the metric s(v1, V2) = Ko/fimax - ||[V1 — V2l|2, it follows from Propositionthat

P(|Zy, — Zy,| > €) < ( ce? ) ( ce? )
- Z€)<le-exp| — =e-exp| ———"<) .
v K bmax[V1 = va[[3 s2(v1,v2)

By Lemma [B] (S.8) and (S.16), we obtain

E {su1;<v, F{igﬁ =E [SUI; Zv] < c172(T, s) = c1hov/Hmax V2 (T, || - ||2) < ci1cak0y/Timax - w(T)
ve ve
(S.23)

Note that 7 = cone(A) NB? C conv(AU {0}). By LemmalE] we have

w(T) < w(conv(AU{0})) = w(AU{0}) < max {w(A), w(0)} +2vVIn4 < w(A) + 3.
(S.24)

Combining (S:22)), (S:23) and (S.24), we have

1 3 Mmax
w(Ar,) =E | sup (v,g)| < E [Sup <V,I‘ﬁg>:| < CICZKO\F. w(A) +3) ,
( ) VEAru< > \/m veT HMmin ( ( ) )
(S.25)
where the last inequality follows from condition (8). ]

2.4 Proof of Corollary ]|

Statement of Corollary Under the notations of Lemmaand ifn > Cyrir - ﬁ (w(A) +

3)2, then the following inequality holds for all v.€ A C SP~! with probability at least 1 —
mexp(—Cyn/k?),

vty > £ “2““ STr(EY) (S.26)

Proof:  Given the definition of sub-Gaussian X and Lemma[3] we have

vITv > %VTFV = %VT Z i -E [XTuju;rX} v

@)}



Using the bound in Lemmaf4] we have

n > Cr2et B0 A4) +3)2 = 0> Okt max {w?(Ap,)}

Hmin J

We complete the proof by combining the two equations above. [ ]

2.5 Proof of Lemmal[3

Statement of Lemma 5] I: Assume that X; is sub-Gaussian and 1; ~ N(0,X,). The following
2 2
inequality holds with probability at least 1 — exp ( ) Cs exp ( Giw (B)>

4p2
1 & B
- > Xz,
=1

where B denotes the unit ball of norm || - ||,

< WJ%T VT (ETEE ) w(B), (8.27)

o, and T = HE’12§||F/||2712§H2-

Proof:  Since design X; and noise 7); are independent, we first consider the scenario where each n;
is arbitrary but fixed vector. Using the definition of dual norm, we have

I 1 1 i 1 _1
SN XIm | == ZXTE m)=—-supy <A5 v, A, 2Xf2*1m->
n o ) n veB n veB =1

where A; = Ex, [X?S71n,nI'£71X,]. Based on the definition of sub-Gaussian X, we get

_1
[ =

— s Ty—1
<cp max |||A; X5 X7

1<i<n

n
Z <A§v, A;%X?Z_lm>
i=1

2

P2
n 1
< cok z HAZE
i=1

where we use Lemma [A]in the first inequality by treating the sum of inner products as one “big”
inner product. The last inequality follows from the definition of fiax in (). Now we consider the
stochastic process {Z = <V, S X?Efln» }VEB’ where n; is still fixed. For any Zy,, and Z,,
by the argument above and Proposition[A] we have

2
2”"”% < CoR/Hmax

n

— 2
Yo I= s - 1vIlz
i=1

n
Do IE 3 - vi = vall2 £ s(vi, v2)
i=1

|||ZV1 - ZV2|||w2 < Coﬁ\/m .

(| |> )< 0162
— i Z —Z € € - ex — S, <
Vi Vo >~ p 2( L 2)

It follows from (S.8), (S.16) and Lemma[B]that

_ 2
’72(87 8) = CoR+/Mmax * Z ||E 177i||2 : 72(85 || . H2) S CoC1 R/ Hmax * ( ) )
i=1

vi,veEB

Px, ( Sup | Zy, — Zy,| > c2 (v2(B, s) + € - diam (B, s))) < czexp (—62)

Combining the two inequalities above with the symmetry of B, we obtain

]:EDX sup Zv > CoC2Ry/ Umax *
veB

Sl (5 0@+ e mpivie) | < e (<)




ciw(B) c2w?(B)

Letting p = supycp ||V||2, € = 5, » With probability at least 1 — 3 exp(— 72 ), we have
n n
sug Zy = ZX?E_lm < coc1 ok tmax * Z ||E—1ni|\§ -w(B) (S.28)
Ve =1 * i=1

for any given set of 17;. Now we incorporate the randomness of 77;. Essentially we need to bound

n n 1
_ 2 _ 3=
SIEmils = | Y =i
i=1 i=1
where each 7); is an m-dimensional standard (isotropic) Gaussian random vector. Given v =

VT, I € B Denote £(v) = [, [ S5k,

2
)
2

2
, and we have
2

2 n 1

)

2
2

0 - r = | |30 sty
=1

IN

_ HE*lEéwi
2

SIS
=1

2

Z HE—lEé(vi — Wl)
2
=1

IN

2 ) il
2||Vz‘—Wz‘||2:HE D

< |3t
=1

v —wl2
2

1
which implies that f is a Lipschitz function with parameter || X132 ||5. The first two inequalities use
the triangular inequality for Ly norm. Letting 7 = [T, ..., 7L]7, by the concentration inequality
for Lipschitz function of Gaussian random vector (see Proposition 5.34 in [6]), we obtain

P(f(n) —Ef(n) > 1) < exp <_tl>
221223

n N 9 n N 9 2
— P ZHz—lszh _E ZHE—lEfﬁi >t| <exp ()
i=1 2 i=1 2 2=t 3

n n 1 1 42
= P [D 1= ml;— |ED Tr (z—lz:;m?z:z—l) >t | <exp <1>
i=1 i=1 =132 I3

n 7t2
SIEml; - VT (5S> ¢ | < exp ()
=1

= P -
221223

where we use Jensen’s inequality in the third step for bounding the expectation Ef(7). Let-
1 1

tingt = /Tr (T 18,2 1) -nand 7 = |E712Z||/|=7122 |2, with probability at least

1—exp (7”772) we have

SIE s < 2vn - VT (B85, (S.29)
=1

1
where we use the relation Tr (X7!3,%71) = | £~'32||2. By applying a union bound to (S:28)

and (S.29), with probability at least 1 — exp (7”772) — g exp(— cf 1:; () ), the following inequality




holds

]_ n 2 : max
SN XTwly,|| < OSSR S ) w(B) (S30)
n 2 Vn

Finally we complete the proof by letting C' = 2¢gcyca, C1 = c1, and Cy = c3. ]

*

2.6 Proof of Theorem ]

Statement of Theorem Under the setting ofLemma ifn > Cprgrt - Bmex . ((A(0%)) + 3)?,

Hmin

Erpep— .
and 7y, is set to Cgfi\/”“““‘ Dr(BIE.270) w(B), the estimation error of @ given by (1)) satisfies

n

fimax /10 (715,571 (0%) - w(B)
Hrznin Tr (271) \/ﬁ ’
with probability at least 1 — m exp (— 6;34") — exp (—”TTQ) — Cyexp (—M).

16— 6%|l2 < Cr (S.31)

4p2

Proof: By Corollary (1| we have the RE condition hold with o = £azi» . Ty(X~1) for A(6*).
Combining Lemma [2]and [5} we get

5 o o Tn fimax /Ir (715,571 ¥(0%) - w(B)
0—0% <29(0")- — < C . . S.32
1667l < 2w(0%) - T < O, [ YIRS LB s
and the probability is computed via union bound. ]

2.7 Proof of Lemmal6]

Statement of Lemma@: Assume X is defined as in Lemmasuch that X = 22X A2, and rows of
X are i.id. with ||%;|| < & Ifmn > Cir3i* - % - (w(A) + 3)2, with probability at
least 1 — exp(—Camn/k*), the following inequality is satisfied by all v € A C SP~1,

vITv > % Aumin (552*15%> Amin (A) (5.33)
Proof: Let 5{3 ! denote the j-th row of X;, which is identically distributed as x. In order to use
Lemma we let (€2, 1) be the probability measure that x is defined on. Construct the set of points

Ap={vesrl|Aive cone(A)} and the function set

H={hy=(v,)|veEAr}
Since Ax C SP~! and x is isotropic, it is easy to verify that E[h2] = Ex..,[(X,v)?] = 1, Ihvllly, <
i for every hy € H, and ||hv, — hy,|l,, < El[vi — val|2 forany Ay, , by, € H. Further, if we let
B =% and mn > 4dcicaitw?(Apx) £ Cri*w?(Ap), using (S7), (S8) and (S9), we have

iy (o, ) < erfre (Aas |- ) < ereai®u (An) < BVmn
By LemmalC} with probability at least 1 — exp(—co82mn /&%) 2 1 — exp(—Comn /&%),

L Q- 20 2 ~ e 1
sup |— h*(x]) —E[R°]|= sup |— » v X;X;v—1| <<
heH; | TN ;; 0 7] vEAp mn; 2

1 rors
— SN VIXIXv =D, Wvedrn,



Now we replace A~ 3y by w and use the definition of A4 to obtain

* Amin (E%E%E%> -wlAw, Vw € cone(A)

Awmin (3%2713%) Nmin (A), YweA

—  wilw> % Aumin (E%z—ls%) Amin (A), VweA

Finally we need to bound the Gaussian width w(.AA ). Note that the proof of Lemma [I| implies

that |22 ul|? - A = E[XTuu”X] = I, for any u € SP~1. Therefore it is not difficult to see that
Aa = Ar,. Using Lemma|T|and d] we have

wlAn) = wldr,) < Croy (15 () +3) = CW oSl () +3)

which completes the proof. ]

2.8 Proof of Corollary2]

Statement of Corollary 2} Suppose' y = X0* +n € R™, where X is described in Lemmal6] and
2 2
n ~ N(0,1). With probability at least 1 — exp (—%) — Cyexp (7%2(3)) — exp (fC’gm//%‘l),

0y, satisfies

A * ~ /\maX(E))‘maX(A> ‘1’(9*)'11)(5)
|60 2““'\/ V@A) m (539

Proof: Settingn =1and ¥ = X, =Ifor Lemma@ we have

|XTE""n||, = [|[XTn||, < ciyvm fimax - w(B) = ciiy/m - Amax(E) Amax(A) - w(B) ,

with probability 1 —exp (—2t) — C, exp(—%). By Lemma@ we have o =

with probability at least 1 — exp(—C3m/&*). Therefore, it follows from Lemma 2] that

M-Amin (2) Amin (A)
2 9

3 * N - Amax (B)Amax (A)  W(8%) - w(B)
O, — 0%||2 <2¥(0")- - < Ck- .
16 = 07lla = 20007 = O \/ @A) v
which completes the proof. ]
3 Proofs for Section[3.2]
3.1 Proof of Theorem 2|
Statement of Theorem 2k
4 Emax * 4 4 AxilaX(E*)leax 2 -
Ifn 2 C*m - max 4(K0+H m”g —9H2> , K (m) and Xi is sub-
Gaussian, with probability at least 1 — 2 exp(—Cym), 3 given by @2) satisfies
1 A _1 2//[1111 b'e 2
] 2 7)) < 2,2 _~max g% _ .
Amax (2* )3p N ) < 1+ Cby/mfn+ e 0 - o)) (S.35)
Auin (2;%22;%) > 1- C2k2y/m/n (S.36)

Proof: By introducing the true parameter 6%, 3 can be rewritten as

n

£ =23 0+ X07 - 0)) (i + X,(07 — 0))"

=1

10



And note that
Yo 2 E[X] = X, + Ag, where Ag =E [X(6" —0)(0" —0)"X"].

The 2-norm of E;% (n+ X(O* - 0)) satisﬁes

_1
[ e x o e
_1
=|||ﬁ|||¢2+ sup |[[(0* — 0)TrArLi XS 2uH
ueSm—1 P2
1 Tt o2
< ko+ sup rgu(e*—a)H ‘Hv I.2X E*Qu‘
vesr—! 2 P2
ues™ !
<Ko+ K sup u 2||6'*—9||2

uesm—!

Hmax *
< —||0* -0
S Kot R )\min (2*) H HZ

1 _1 _1
where Ty = EXTE, uu” 2, * X], and |[Tsu 13 < pmax|| 2 * ul|3 < 52255 by the definition

of sub-Gaussian X. kg is the ¢9-norm of standard Gaussian random vector. By Theorem 5.39

4
and Remark 5.40 in [6], if n > Cidm (KO Sy ey 9\|2) , with probability at least

2
<02 _ Mmaxyge m $.37
<G8 (ot [T o 0,) 2 s3

1
2

Amas (B850 = |50 i S
2
Nmax * m /Jmax 2
<1 2 —— 0" -0 —+——— 0" -0
<1403 (mo+m [T 0 - 0,) | Lot — o
(a) Jm 202K 2 /m i 2
< 1+2C? ZY07 Pmax g+ _ g oy Mmax g g
+ OK/O n + )\min (E*) H HQ n + )\min (2*) || ||2
<1 202 2 l@ Hmin Hmax 0* _9 2
o * OKJO n + )\max (2*) + )\min (2*) || ”2

2IU/max 2
<1403 [ g g
— +C Ko n + )\min (2*) ” ||2

Min (Z2E502) 2 14 i (327 (8- 20) £28) + e (577 20557

1 — 2exp(—Cym), we have

o (3

Hence we have

§1+H2:% (2—29)2*‘%
2

+ Hz:éAez;%
2 2

(S.38)

>1— Hzﬁ (ﬁ:fzg) SONE

Hmin * 2
——— 0" -0
9 + Amax (E*) || ||2

2
>1—(C2 &g*_g m &9*_92
> 1= G (o w5 07— 0l ) [ e e - ol
(b) m  202k%u 5 Im Hmi 2
> 1-—20C? A= - ZZ0T FmAx g — 0 \/ = — = _||le* -6
OK/O n Amm (2*) || ||2 n + )\max (2*) || ||2

21,()2”(2”/@
n

(S5.39)
2
where C? = 2C2, and in both (a) and (b), we use the assumption n > C4mx? (%) =
2
4C¢mrt ( W) . This completes the proof. m

11



4 Proofs for Section

4.1 Proof of Lemmal7|

Statement of Lemma [7; If 3 is given as @2) and the condition in Theorem |2| holds, then the
inequality below holds with probability at least 1 — 2 exp(—Cyim),

e(2) se (1420w (2) v2, Tl —0l,) )

Proof:  Based on the definition of £(+), we have

6(2 ) \/Tr (ﬁ:flz*ﬁ:fl) _ 1 | (B1)  Tr (2—12*2_1)
Tr (2,1) Tr (221 Ty (2,1)

Nl
Nl

Amax (z; )>) >

Amin (2*_

)
)5 )
(S.41)

N
N

*

where the inequality follows from von Neumann’s trace inequality. Now we can bound 5(5]) b
invoking Theorem 2]

2 2ftmax * 2
£(8) ce(my. | OVt 1077 Ol
- 1—02n(2)
202k%, /™ + f“‘“g -3
=£(8,) 4|1+ 1—c§m(\f
(5.42)
1
V2Cro ()" + /x5 107 = 6l

<e®)- |1+

1-C%3\ /T

m i max *
<§(E*)-<1+2Cm) (H) +2 )\'“7(2)“0 _9|2)

-0 ! > 4C*mk}
||2 = mky.
n

where the last inequality follows from n > 4C*m - (no + K /ﬁ‘%

4.2 Proof of Theorem[3

Statement of Theorem .
C 1
Let ey = Cyp. [Epe €EIVOWB) (o 142 ro (%)

B V7 ey ey
4 2 2
C1 [ Amin(Zx) ¥(0")w(B) 4 ( Amax (s ) Pmax 2C1 Kpimax | §(Z:) ¥ (0" )w(B)
max {4 (KO * C?V Aax(Z4) m » Amin () fmin ’ C? fimin \/mv\min(z*)

12

Ifn > C*m




and also satisfies the condition in Theorem |I| with high probability, the iterate Or returned by
Algorithm ] satisfies

oo

’él —o| -
2

T—1
Hmax
g = €min (2eorc Amin (2*)> ( emm) (S 43)

2 . .
Proof: Since n > C*mr? <W) and X is initialized as 3¢ = I,,,xm, by applying

Theorem to él, we have

_ Fnas ¢ (55, 2O) wB) ([ $(67) - w(B)
Jor =], < cum s -e (30) === =t T
< o [Fm W(67) - w(B) Amin (3 fimin
s Ok . .
M?nin v m C?%y/m - K% Amax (E*) Hmax
Cy Amin (24 U(6*%) - w(B)

T C? K (,) Vimax m

It follows that
4

n>C%m -4 (Ho + = Cr [ Amin (2-) @(0*)11;(8)) =

O\ X (32)
~ 4
oo,

n>C*%m- 4</~£0+/€ Mmax

mm

By applying Lemma [7]and Theorem [I]to the second iteration,

Hore* <y - <1+2C/€0 +2,/ “m“ Halfe* > —
HéQ -6 — €min < 2601‘0 ﬂ ( ‘01 0* 6min) .
2 o )\mm (

Sincen > Cm - ( 2445 . thmax. §(E) V(6 )w(B)
Hmin \/Wl')\xnin(z*)

<o

2
for @ and so on. By repeatedly applying Lemmal 7| and Theoreml we have the following inequality
for every ¢t > 0,

, we have 2eq,. Emax _ < ] which indicates
/\min (2*)

that H02 — 0* . Therefore the condition in Lemma|7|on sample size n also holds

Hét-l—l _O*H — €min S 26orc & (Het 0*
2 )\mm(

- emm) (S.44)

By combining (S.44) for every t, we obtain

m T-1 R
min < 2 orc = . (He -6 - min)
° a ( “ )\min (2*)> ! 2 ¢

which completes the proof. ]

HéT _or|| -
2

References

[1] A.Maurer, M. Pontil, and B. Romera-Paredes. An Inequality with Applications to Structured
Sparsity and Multitask Dictionary Learning. In Conference on Learning Theory (COLT), 2014.

[2] S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Reconstruction and subGaussian operators
in asymptotic geometric analysis. Geometric and Functional Analysis, 17:1248-1282, 2007.

[3] M. Talagrand. A simple proof of the majorizing measure theorem. Geometric & Functional
Analysis GAFA, 2(1):118-125, 1992.

13



[4] M. Talagrand. The Generic Chaining. Springer, 2005.
[5] M. Talagrand. Upper and Lower Bounds for Stochastic Processes. Springer, 2014.

[6] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and
G. Kutyniok, editors, Compressed Sensing, chapter 5, pages 210-268. Cambridge University
Press, 2012.

14



	Preliminaries
	Sub-Gaussian Random Variable/Vector
	Generic Chaining and Gaussian Width
	Proof of Lemma 1

	Proofs for Section 3.1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Corollary 1
	Proof of Lemma 5
	Proof of Theorem 1
	Proof of Lemma 6
	Proof of Corollary 2

	Proofs for Section 3.2
	Proof of Theorem 2

	Proofs for Section 3.3
	Proof of Lemma 7
	Proof of Theorem 3


