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A Gibbs Samplers for the EPM

A.1 Model Description

The full description of the generative model for the EPM [1] is described as follows:

xi,j = I(mi,j,· ≥ 1), mi,j,· |U ,V ,λ ∼ Poisson

(
K∑

k=1

Ui,kVj,kλk

)
,

Ui,k ∼ Gamma(a1, b1), Vj,k ∼ Gamma(a2, b2), λk ∼ Gamma(γ0/T, c0). (9)

A.2 Closed-form Gibbs Samplers

Posterior inference for all parameters and hyperparameters of the EPM can be performed
using Gibbs sampler.

Sampling m: From Eq. (9), as mi,j,· = 0 if and only if xi,j = 0, posterior sampling of m
is required only for non-zero entries (xi,j = 1), and can be performed using zero-truncated
Poisson (ZTP) distribution [2] as follows:

mi,j,· |U ,λ,V ∼

{
δ(0) if xi,j = 0,

ZTP(
∑T
k=1 Ui,kλkVj,k) if xi,j = 1.

(10)

Then, latent count mi,j,k related to the k-th atom can be obtained by partitioning mi,j,·

into T atoms as

{mi,j,k}Tk=1 |mi,j,·,U ,λ,V ∼ Multinomial


mi,j,·;

{
Ui,kλkVj,k∑T

k′=1 Ui,k′λk′Vj,k′

}T

k=1


 . (11)

Sampling U ,V ,λ: As the generative model for mi,j,k can be given as mi,j,k |U ,V ,λ ∼
Poisson(Ui,kVj,kλk), according to the additive property of the Poisson distributions, gener-
ative models for aggregated counts also can be expressed as follows:

mi,·,k = (
∑

j
mi,j,k) |U ,V ,λ ∼ Poisson(Ui,k(

∑
j
Vj,k)λk), (12)

m·,j,k = (
∑

i
mi,j,k) |U ,V ,λ ∼ Poisson((

∑
i
Ui,k)Vj,kλk), (13)

m·,·,k = (
∑

i

∑
j
mi,j,k) |U ,V ,λ ∼ Poisson((

∑
i
Ui,k)(

∑
j
Vj,k)λk). (14)

Therefore, thanks to the conjugacy between Poisson and gamma distributions, posterior
samplers for U , V , and λ are straightforwardly derived as follows:

Ui,k | − ∼ Gamma(a1 +mi,·,k, b1 + (
∑

j
Vj,k)λk), (15)

Vj,k | − ∼ Gamma(a2 +m·,j,k, b2 + (
∑

i
Ui,k)λk), (16)

λk | − ∼ Gamma(γ0/T +m·,·,k, c0 + (
∑

i
Ui,k)(

∑
j
Vj,k)). (17)
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A.3 Sampling Hyperparameters

Sampling b1, b2, c0: Thanks to the conjugacy between gamma distributions, posterior
samplers for b1, b2, and c0 are straightforwardly performed as follows:

b1 | − ∼ Gamma(e0 + ITa1, f0 +
∑

i

∑
k
φi,k), (18)

b2 | − ∼ Gamma(e0 + JTa2, f0 +
∑

j

∑
k
ψj,k), (19)

c0 | − ∼ Gamma(e0 + γ0, f0 +
∑

k
λk). (20)

For the remaining hyperparameters (i.e., a1, a2, and γ0), we can construct closed-form
Gibbs samplers using data augmentation techniques [3, 1, 4, 5], that consider an expanded
probability over target and some auxiliary variables. The key strategy is the use of the
following expansions:

Γ(u)

Γ(u+ n)
=
B(u, n)

Γ(n)
= Γ(n)−1

∫ 1

0

vu−1(1 − v)n−1dv, (21)

Γ(u+ n)

Γ(u)
=

n∑

w=0

S(n,w)uw, (22)

where B(·, ·) is the beta function and S(·, ·) is the Stirling number of the first kind.

Sampling a1, a2: For shape parameter a1, marginalizing U from Eq. (12), we have a
partially marginalized likelihood related to target variable a1 as:

P ({mi,·,k}i,k |V ,λ) ∝

T∏

k=1





(
b1

b1 + (
∑

j
Vj,k)λk

)Ia1 I∏

i=1

Γ(a1 +mi,·,k)

Γ(a1)



 . (23)

Therefore, expanding Eq. (23) using Eq. (22) and assuming gamma prior as a1 ∼
Gamma(e0, f0), posterior sampling for a1 can be performed as follows:

wi,k | − ∼ Antoniak(mi,·,k, a1), (24)

a1 | − ∼ Gamma

(
e0 +

∑
i

∑
k
wi,k, f0 − I ×

∑
k

ln
b1

b1 + (
∑

j
Vj,k)

)
, (25)

where Antoniak(mi,·,k, a1) is an Antoniak distribution [6]. This is the distribution of the
number of occupied tables if mi,·,k customers are assigned to one of an infinite number of
tables using the Chinese restaurant process (CRP) [7, 8] with concentration parameter a1,

and is sampled as wi,k =
∑mi,·,k

p=1 wi,k,p, wi,k,p ∼ Bernoulli
(

a1

a1+p−1

)
. Similarly, posterior

sampler for a2 can be derived from Eqs. (13) and (22) (omitted for brevity).

Sampling γ0: Similar to the samplers for a1 and a2, according to Eqs. (14) and (22), γ0

can be updated as follows:

wk | − ∼ Antoniak(m·,·,k, γ0/T ), (26)

γ0 | − ∼ Gamma

(
e0 +

∑
k
wk, f0 −

1

T

∑
k

ln
c0

c0 + (
∑

i
Ui,k)(

∑
j
Vj,k)

)
. (27)

B Gibbs Samplers for the CEPM

Posterior inference for the CEPM can be performed using Gibbs sampler as same as that for
the EPM. However, only a1 and a2 do not have closed-form sampler because of introduced
constraints b1 = C1×a1 and b2 = C2×a2. Therefore, instead of sampling from true posterior,
we use the grid Gibbs sampler [9] to sample from a discrete probability distribution

P (a1 | −) ∝ Eq (23) × P (a1) (28)

over a grid of points 1
1+a1

= 0.01, 0.02, . . . , 0.99. Note that a2 can be sampled in a same

way as a1 (omitted for brevity).
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C Gibbs Samplers for the DEPM

C.1 Closed-form Gibbs Samplers

Sampling φ,ψ: Given m·,·,k =
∑
i

∑
jmi,j,k, generative process for latent count mi,·,k

can be expressed as

{mi,·,k}Ii=1 |m·,·,k,φ,ψ,λ ∼ Multinomial
(
m·,·,k; {φi,k}Ii=1

)
. (29)

Thanks to conjugacy between Eq. (29) and Dirichlet prior in Eq. (4), posterior sampling for
φ can be performed as

{φi,k}Ii=1 | − ∼ Dirichlet({α1 +mi,·,k}Ii=1). (30)

Similarly, ψ can be updated as

{ψj,k}Jj=1 | − ∼ Dirichlet({α2 +m·,j,k}Jj=1). (31)

Sampling m,λ: Posterior samplers for remaining latent variables m and λ are straight-
forwardly given from Eqs. (10), (11), and (17) by replacing U and V with φ and ψ, respec-
tively.

C.2 Sampling Hyperparameters

Sampling α1, α2: Similar to Appendix A.3, marginalizing φ out from Eq. (4) and ex-
panding the marginal likelihood using Eqs. (21) and (22), posterior sampling for α1 can be
derived as follows:

v1,k | − ∼ Beta(Iα1,m·,·,k), (32)

w1,i,k | − ∼ Antoniak(mi,·,k, α1), (33)

α1 | − ∼ Gamma(e0 +
∑

i

∑
k
w1,i,k, f0 − I ×

∑
k

ln v1,k). (34)

Note that the posterior sampler for α2 can be derived in same way (omitted for brevity).

Sampling γ0, c0: The remaining hyperparameters (i.e., γ0 and c0) can be updated as
same as in the EPM. Similar to the sampler for the EPM, c0 can be updated using Eq. (20).
Finally, posterior sampler for γ0 can be derived as

wk | − ∼ Antoniak(m·,·,k, γ0/T ), (35)

γ0 | − ∼ Gamma

(
e0 +

∑
k
wk, f0 − ln

c0

c0 + 1

)
. (36)

D Proof of Theorem 4

Considering a joint distribution for mi,j,· customers and their assignments zi,j =
{zi,j,s}

mi,j,·

s=1 ∈ {1, · · · , T}mi,j,· to T tables, we have following lemma for the truncated
DEPM:

Lemma 1. The joint distribution over m and z for the DEPM is expressed by a fully
factorized form as

P (m,z |φ,ψ,λ) =

I∏

i=1

J∏

j=1

1

mi,j,·!
×

I∏

i=1

T∏

k=1

φ
mi,·,k

i,k ×

J∏

j=1

T∏

k=1

ψ
m·,j,k

j,k ×

T∏

k=1

λ
m·,·,k

k e−λk . (37)

Proof. As the likelihood functions P (mi,j,· |φ,ψ,λ) and P (zi,j,s |mi,j,·,φ,ψ,λ) are given
as

P (mi,j,· |φ,ψ,λ) =
1

mi,j,·!

(
T∑

k=1

φi,kψj,kλk

)mi,j,·

e−
∑

T

k=1
φi,kψj,kλk , (38)

P (zi,j,s = k∗ |mi,j,·,φ,ψ,λ) =
φi,k∗ψj,k∗λk∗

∑T

k′=1 φi,k′ψj,k′λk′

, (39)
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respectively, we obtain the joint likelihood function for m and z as follows:

P (m,z |φ,ψ,λ)

=

I∏

i=1

J∏

j=1

{
P (mi,j,· |φ,ψ,λ)

mi,j,·∏

s=1

P (zi,j,s |mi,j,·,φ,ψ,λ)

}

=

I∏

i=1

J∏

j=1

1

mi,j,·!
×

I∏

i=1

T∏

k=1

φ
mi,·,k

i,k ×

J∏

j=1

T∏

k=1

ψ
m·,j,k

j,k ×

T∏

k=1

λ
m·,·,k

k e
−λk(

∑
i
φi,k)(

∑
j
ψj,k)

.

(40)

Thanks to the l1-constraints for φ and ψ we introduced in Eq. (3), substituting
∑

i
φi,k =∑

j
ψj,k = 1 for Eq. (40), we obtain Eq. (37) in Lemma 1.

Thanks to the conjugacy between Eq. (37) in Lemma 1 and prior construction in Eq. (4),
marginalizing φ, ψ, and λ out, we obtain the following marginal likelihood for the DEPM:

P (m,z) =
I∏

i=1

J∏

j=1

1

mi,j,·!
×

T∏

k=1

Γ(Iα1)

Γ(Iα1 +m·,·,k)

I∏

i=1

Γ(α1 +mi,·,k)

Γ(α1)

×

T∏

k=1

Γ(Jα2)

Γ(Jα2 +m·,·,k)

J∏

j=1

Γ(α2 +m·,j,k)

Γ(α2)
×

T∏

k=1

Γ
(
γ0

T
+m·,·,k

)
c

γ0
T

0

Γ
(
γ0

T

)
(c0 + 1)

γ0
T

+m·,·,k

. (41)

Considering a partition [z] instead of the assignments z as same as in [10], the marginal
likelihood function P (m, [z]) for a partition of the truncated DEPM can be expressed as

P (m, [z]) =
T !

(T −K+)!
P (m,z)

=

I∏

i=1

J∏

j=1

1

mi,j,·!
×

K+∏

k=1

Γ(Iα1)

Γ(Iα1 +m·,·,k)

I∏

i=1

Γ(α1 +mi,·,k)

Γ(α1)

×

K+∏

k=1

Γ(Jα2)

Γ(Jα2 +m·,·,k)

J∏

j=1

Γ(α2 +m·,j,k)

Γ(α2)

×
T !

(T −K+)!TK+
× γ

K+

0

(
c0

c0 + 1

)γ0 K+∏

k=1

∏m·,·,k−1
l=1 (l + γ0/T )

(c0 + 1)m·,·,k
. (42)

Therefore, taking T → ∞ in Eq. (42), we obtain the marginal likelihood function for the
truly infinite DEPM (i.e., IDEPM) as in Eq. (5) of Theorem 4.

E Sampling Hyperparameters for the IDEPM

Sampling α1, α2: Posterior samplers for α1 and α2 of the IDEPM are equivalent to those
of the truncated DEPM as in Appendix C.2.

Sampling γ0: From Eq. (5), we straightforwardly obtain the posterior sampler for γ0 as

γ0 | − ∼ Gamma

(
e0 +K+, f0 − ln

c0

c0 + 1

)
. (43)

Note that γ0 in Eq. (5) can be marginalized out assuming gamma prior. However, we
explicitly sample γ0 for simplicity in this paper.

Sampling c0: As derived in Sec. 4.3 of main article, c0 is updated as

λk | − ∼ Gamma(m·,·,k, c0 + 1) k ∈ {1, . . . ,K+}, (44)

λγ0
| − ∼ Gamma(γ0, c0 + 1), (45)

c0 | − ∼ Gamma(e0 + γ0, f0 + λγ0
+
∑

K+

k=1
λk). (46)
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