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1. Contents

This document includes the following supporting materials, which we hope to later aggregate
into a self-contained journal version:

• Section 2 - Notation

• Section 3 - The Dynamics of SBL Iterations: This includes the quantification of
trajectory time-scale differences, adaptations to correlated dictionaries, and a demon-
stration of the potential value of data-dependent schedules for coordinating inner- and
outer-loops.

• Section 4 - Clockwork Networks and Fixed Inner-Loop Iterations: We de-
scribe the intimate relationship between clockwork recurrent neural networks (RNN)
and the typical manual tuning of inner-loop iterations during classical optimization.

• Section 5 - Modeling and Training Details

• Section 6 - Experimental Details for Direction-of-Arrival (DOA) Estima-
tion

• Section 7 - Experimental Details for 3D Geometry Recovery via Photo-
metric Stereo

• Section 8 - Additional Experiments and Self-Comparisons

• Section 9 - Technical Proofs
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2. Notation

All equation numbers referencing back to the main paper will be prefixed with an ‘M’ to
avoid confusion, i.e, (M.#) will refer to equation (#) from the main text. Similar notation
differentiates sections, tables, and figures, e.g., Section M.#, etc.

3. The Dynamics of SBL Iterations

This section empirically examines the trajectories of SBL iterations produced via the rules
derived in Section M.2.3.

3.1 Large Timescale Differences

Here we present a synthetic experiment that highlights the different time scales upon which
SBL latent variables may fluctuate over the course of a typical optimization trajectory. The
experimental design is as follows: First we generate a dictionary Φ via

Φ = Φ̃BD, (1)

where Φ̃ ∈ R50×100 has iid elements drawn from N (0, 1); B ∈ R100×100 is a block-diagonal
matrix with 20, 5 × 5 blocks, each with unit diagonals and off-diagonals set to 0.9; and
D ∈ R100×100 is a fully diagonal matrix that re-scales each column of the final Φ to have
unit `2 norm, and finally multiplies by a random sign pattern. This process ensures that Φ
will encompass 20 clusters of 5 adjacent columns each, with strong correlations introduced
via B. We then generate a sparse random vector x∗ ∈ R100 such that ‖x∗‖0 = 10, where the
nonzero positions are randomly aligned with 10 different clusters, and the nonzero values
have unit magnitude. We next compute y = Φx∗ and apply the revised SBL iterations from
Section M.2.3 with λ = 0.01 (or a rather arbitrary small value), α(γ) = 1, and β(γ) = 0.

Figure 1 displays the trajectories of both w(t) (left subplot) and x(t) (right subplot)
for t = 1, . . . , 100 during execution of (M.8)−(M.11) in the main text. As mentioned
previously, the weights w(t) serve to incrementally focus a sequence of `1 minimization
problems towards likely nonzero elements of x∗ via the process defined by (M.7). Unlike
other existing iterative reweighted `1 approaches, with SBL these weights quickly (within
just a few iterations) partition into two groups, one with smaller values near 1.0, the other
with larger values in the 8-10 range (see left subplot).

Moreover, upon closer examination we found that the index i of all weights w
(t)
i with a

value near 1.0 correspond with dictionary columns φi in a cluster where some x∗j 6= 0. In
contrast, all weights with a large value are associated with dictionary columns in clusters
where all x∗j = 0. Consequently, these weights reflect in some sense the correct support
at the cluster level, and introduce a more severe penalty to coefficients associated with
what should ideally be inactive clusters. This then allows subsequent `1 iterations to more
narrowly learn the correct support pattern within these favored clusters, providing empirical
support to the arguments made in Section M.2.2 for the efficacy of SBL in dealing with
correlated dictionary structure.

However, the secondary learning of final coefficient values within the correct clusters
occurs at a radically different time scale as shown in the right subplot of Figure 1. Here we
observe that even after 50 iterations it is still not clear to which final value each coefficient
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Figure 1: Illustration of the different time scales upon which SBL latent variables operate
under a multi-resolution, clustered dictionary model. Left : Trajectories of the
weights w(t) across 100 iterations (each colored line represents a different ele-

ment w
(t)
i ). Within just a few iterations, these values have completely converged

and accurately reflect the true cluster-level support pattern, namely, high values
in the 8-10 range represent weights associated with false clusters (hence a high
penalty/weight), while low values around 1.0 indicate weights associated with cor-
rect clusters. Right : Corresponding trajectories of

∣∣x(t)
∣∣ (a different colored line

indicates a different element |x(t)
i |). Here we observe that even after 50 iterations,

it is not entirely clear to what value each element will finally converge to. From
these plots it is readily apparent that after 5 iterations, it is no longer necessary
to update w(t), provided the network is capable of memorizing the stored value
from prior iterations, while x(t) must be updated even beyond 100 iterations for
full convergence.

magnitude x
(t)
i will converge too, for example, 0.0 or 1.0. Therefore we may conclude that,

although the weights w(t) may rather quickly proceed to values that reflect the correla-
tion structure of the dictionary, the final coefficient estimates take much longer to resolve.
Moreover, during this time, to be effective the iterations must ‘remember’ the correct value
of w(t), even if continued updates are not necessary after rapid initial convergence.

3.2 The Potential Value of an Adaptive Updating Schedule

Although the previous experiment served to expose the differing scales of subsets of latent
variables, it did not provide any indication of how these different scales may actually impact
final estimation accuracy. For example, suppose we were able to speed up the convergence
of x for any fixed value of w, would this improve the overall performance? The present
simulation directly addresses this issue.

We begin with a similar experimental design as used in Section 3.1, although we reduce
the dimensions for visualization purposes. In brief, we choose Φ ∈ R10×20, formed from 10
clusters of size 2 each, and ‖x∗‖0 = 3. Figure 2(a) displays the optimal support pattern,
whereby a ‘1’ indicates the location of a true nonzero, and a zero otherwise. Without loss of
generality, we have also reordered the dictionary columns such that the first three columns
serve as nonzero locations.
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Figure 2: Estimated support patterns obtained under varying numbers of inner-loop iter-
ations K. A blue bar indicates that the corresponding index is associated with
a nonzero element of x̂. We observe that when K ∈ {1, 10, 1000}, the estimated
support pattern is incorrect; see plots (b), (c), and (e). In contrast, K = 100
produces the correct result; see plot (d). Hence adaptively terminating these
inner-loop iterations in a data-dependent fashion can potentially improve the
final result.

We display recovery results using a modified version of the SBL implementation from
Section M.2.3, whereby the gate and cell update steps, which are associated with the
weighted `1 norm problem from (M.6), are applied in a varying number K of inner-loop
iterations. More specifically, with α(γ) = 1, and β(γ) = 0 and w(t) fixed, these additional,
reduced inner-loop iterations consist of simply computing

ν(t,k) ← x(t+1,k) + µΦ>
(
y −Φx(t+1,k)

)
σ

(t,k)
in ←

[∣∣∣ν(t,k)
∣∣∣− 2λw(t)

]
+

x̄(t+1,k) ← sign
[
ν(t,k)

]
(2)

x(t+1,k+1) ← σ
(t,k)
in � x̄(t+1,k),

from k = 1, . . . ,K, where x(t+1,1) , u(t). For any fixed w(t), these iterations are guaranteed
to converge to a minimum of (M.6), and in light of the experiment from Section 3.1, can be
viewed as a direct way of constricting or shrinking the x-axis of Figure 1(right). Indeed, for
sufficiently large K, once w has converged, x will immediately follow. But is this necessarily
a desirable course of action?

Suplots (b)−(e) of Figure 2 show the support patterns of the x̂ estimate obtained via this
procedure using K ∈ {1, 10, 100, 1000}. Only the K = 100 case produces a perfect recovery
with matching support. It therefore follows that inner-loop iterations, when interpreted as
a tunable sequence, have the potential to improve performance. Of course in advance we
have no way of knowing what the best K might be. But at least we do know that the K = 1
case which emerges from the original LSTM template need not be optimal.

4. Clockwork Networks and Fixed Inner-Loop Iterations

In the context of sequence prediction, the clockwork recurrent neural network (CW-RNN)
has been proposed to cope with temporal dependencies engaged across multiple scales [8].
In its most basic form, the CW-RNN begins with input, hidden, and output layers which,
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just like a regular RNN, are defined by

h(t+1) = fH

(
WH · h(t) +W I · z(t)

)
(3)

v(t+1) = fO

(
WO · h(t+1)

)
, (4)

where z(t) is an input vector at time t, h(t) represents hidden layer activations, v(t+1) the
output, and {W I ,WH ,WO} are input, hidden, and output weight matrices respectively.
Likewise, fH and fO are the corresponding nonlinear activation functions. What differen-
tiates the CW-RNN from this vanilla structure, is that W I and WH are each partitioned
into g different temporarlly-varying block-rows1 as

W I =


W

(t)
I1

...

W
(t)
Ig

 , WH =


W

(t)
H1
...

W
(t)
Hg

 , (5)

which naturally defines a corresponding segmentation of the hidden variables as

h(t) =

 h
(t)
1
...

h
(t)
g

 (6)

such that, assuming separable nonlinearities,

h
(t+1)
i = fH

(
W

(t)
Hi
· h(t) +W

(t)
Ii
· z(t)

)
, ∀i = 1, . . . , g. (7)

Additionally, each block is assigned and ‘update period’ Ti that governs the structure across
each time step t via

W
(t)
Ii

=

{
W̃ Ii for (t mod Ti) = 0

[01, . . . ,0g] otherwise
(8)

and

W
(t)
Hi

=

{
W̃Hi for (t mod Ti) = 0

[01, . . . ,0i−1, I,0i+1, . . . ,0g] otherwise.
(9)

In brief, these weight expressions ensure that for all i we have

h
(t+1)
i =

{
fH

(
W̃Hi · h(t) + W̃ Ii · z(t)

)
for (t mod Ti) = 0

h
(t)
i otherwise.

(10)

This formulation allows the CW-RNN to handle different temporal features by assigned
different Ti to different blocks. For example, a block designed to model high-frequency

1. A column-wise block structure may also be assumed if desired; however, this is not required for what
follows herein.
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dynamics may assume Ti = 1, while slowly-varying components can be captured using

Ti � 1. The latter implies that for most iterations, the block hidden state h
(t)
i is not

updated allowing for hard-coded long-term memory of such low-frequency dynamics.

This prescription exactly reflects the basic anatomy of an algorithm with g nested loops,

each loop being characterized by its own set of latent variables h
(t)
i . As a simple example,

consider the SBL updates equipped with an inner-loop as in Section 3.2. If we define

h
(t)
1 = x(t), h

(t)
2 = w(t), z(t) = y, adopt T1 = 1 and T2 = K, and relabel the iteration

numbers via a single consistent index (i.e., we collapse k and t into a single index), then
w(t) will only be updated once every T2 time-steps, while x(t) will be updated at all t,
and the basic scheduling is identical. The only difference is that the layer-wise filters and
nonlinearities are somewhat more specialized for the SBL context.

5. Modeling and Training Details

In this section we first describe the basic gated feedback RNN structure, followed by our
particular model architecture including extensions to handle complex data. We conclude
with training details and experimental settings.

5.1 Gated Feedback RNN Structure

The gated feedback RNN cell [3] is a key component of our model. Detailed computing flows
for a gated feedback LSTM cell (GFLSTM), which represents one particular specialization
that is used in all our experiments, follow as

c
(t)
j = f

(t)
j � c

(t−1)
j + i

(t)
j � c̃

(t)
j

h
(t)
j = o

(t)
j � Tanh(c

(t)
j )

i
(t)
j = σ(W ija

(t)
j +U ijh

(t−1)
j )

f
(t)
j = σ(W f ja

(t)
j +U f jh

(t−1)
j )

o
(t)
j = σ(W oja

(t)
j +U ojh

(t−1)
j )

g
(t)
i→j = σ(W gja

(t)
j +U gi→jH

(t−1))

c̃
(t)
j = Tanh(W cj−1→jh

(t)
j−1 +

r∑
i=1

g
(t)
i→j �U ci→jh

(t−1)
i ),

(11)

where r is the number of stacked LSTM cells, subscript j is the LSTM cell index in the

stack, while superscript (t) indicates the time point. Therefore h
(t)
j and c

(t)
j denote the

hidden state and memory cell of j-th LSTM unit in the stack at time t. And we denote

a
(t)
j as the input of the j-th LSTM cell, such that a

(t)
j = h

(t)
j−1 (∀j > 1) and a

(t)
1 = y.

Besides conventional designs like an input gate i
(t)
j , forget gate f

(t)
j , and output gate, o

(t)
j ,

the stack of GFLSTM cell also includes an extra global gate computed from input a
(t)
j and

H(t−1) = [h
(t−1)
1 , ..,h

(t−1)
r ], the concatenation of all the hidden states from the previous

time step t − 1. Each g
(t)
i→j controls the flow from h

(t−1)
i to h

(t)
j , that is, the cross-layer
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feedback. To make it concise, we can denote the whole computing flow of these r LSTM
cells using the function fGFLSTM as

fGFLSTM (H(t−1),y;θGFLSTM ) = [q(t),H(t)]

θGFLSTM = [W ij ,W f j ,W oj ,U ij ,U f j ,U oj ,W gj ,U gi→j ,W cj−1→j ,U ci→j ]

q(t) = h(t)
r .

(12)

5.2 Proposed Model Architecture and Extensions

Basic Model: Although our model consists of RNN cells, once we fix the number of
unfolding steps, it essentially becomes a feed-forward network. As shown in Figure 3, during
the forward stage, the input is broadcast to the lowest RNN cell at each unrolled step. After
the model generates its outputs at each unrolled step, they will be concatenated and fed into
a fully connected layer to produce the final prediction. Since we opt to predict the support
pattern supp[x∗] = {i : x∗i 6= 0}, we view the problem as an multi-label classification task
and append a softmax layer on top of the fully connected layer. We formalize this process
as

[q(t),H(t)] = frnn(H(t−1),y;θrnn)

p = fpred([q
(1), q(2), .., q(T )];θpred)

fpred(q
(all),θpred) = softmax(W predq

(all) + bpred)

q(all) = [q(1), q(2), .., q(T )],

(13)

where θrnn,θpred = [W pred, bpred] are the parameters of the RNN units and the fully con-

nected layer respectively. q(t), h(t) denote the output of the RNN units and hidden state
at each time step t. In practice, we simply take the RNN’s top layer hidden states as its
output q(t). frnn represents the forward process of the RNN, which is defined by the exact
structure of the RNN-cell.

Complex Value Extension: In many real applications of sparse recovery, the format
of the inputs may vary. For example, the inputs to the DOA problem of interest are
complex numbers. We propose to deal with complex-value inputs by what we call model
complexification. Specifically, RNN units consist of matrix multiplication and non-linear
activations, both of which have their complex value counterparts. Thus we propose to
use complex-value operations in the RNN units before finally concatenating the real and
imaginary part of the outputs as the feature for the final prediction. This method is inspired
by SBL, which handles real and complex value inputs with the same operator. We argue
that this method is better than simply concatenating the real and imaginary parts of the
input and using a regular real-valued RNN (of double the size) for prediction, since in
this way the links between real and imaginary parts of a complex number are broken and
therefore the RNN may potentially have to learn these links by itself, which can be viewed
as an unnecessary distraction.
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Figure 3: Proposed model architecture using gated feedback LSTM cells

5.3 Training Details

We apply a unified training framework for all different approaches. In our experiments,
models are implemented using Torch7 and experiments are run on a single NVIDIA Tesla
K40M GPU card.

Training Hyperparameters: To provide consistency with the concept of epoch from
[14], our models are trained via 600000/250 = 2400 batches with batch size equal to 250.
Typically, with 400 epochs (or 800 epochs in some extreme cases) of RMSprop optimization,
we converge to a satisfactory performance level, with a default initial learning rate of 0.002,
factored by 0.25 every 50 epochs after the first 250 epochs of training.

Model Hyperparameters: As for model architecture, there exists the following hy-
perparameters: the number of RNN hidden units h, the number of stacked RNN layers r,
and the number of RNN-cell unfolding steps T . In most of our experiments, we control
model capacity mainly by the size of hidden states with a fixed number of layers r = 2 and
unfolding steps T = 11. In section 8.2 though, we provide more detailed ablation studies on
how the number of RNN layers, unrolling steps and hidden units affects the performance.

A Useful Training Heuristic: When training with a fixed-sized dataset, as existing
learning approaches to sparse estimation do [4, 10, 14], there is always the risk of overfitting.
The gap between the error on training and validation sets with a fixed dataset is shown via
the blue curves in Figure 4(a)) on a representative learning problem. However, since we are
free to generate online as much training data as we want in the sparse estimation context
(and other related problems), at every epoch we can always use a new, unseen batch. This
simple strategy completely closes the gap (the red curves) with negligible computational
overhead. Figure 4(b) displays the resulting improvement on performance, as measured by
the percentage of trials whereby the entire support pattern is correctly estimated (i.e. strict
accuracy).
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Figure 4: Demonstration of online training heuristic benefits

6. Experimental Details for Direction-of-Arrival (DOA) Estimation

This section contains DOA background information, followed by experimental design and
training details related to this application.

6.1 Background

Direction-of-arrival (DOA) estimation for sonar and radar application can be formulated
by the observation model

y(t) =
d∑

k=1

sk(t)f(θ∗k) + ε(t), (14)

where y(t) ∈ Cn is the measured sonor/radar signal at time t, f : R→ Cn, and d is number
of source waveforms whose magnitudes are s(t) = [s1(t), ..., sd(t)]

> ∈ Cd and angular loca-
tions are θ∗ = [θ∗1, ..θ

∗
d]
> [9]. Although the location space Θ might be continuous, we may

approximate it by a fixed sampling grid θ = [θ1, .., θm]. Then the problem can be rewritten
as the alternative observation model

y(t) =

m∑
i=1

xi(t)φi + ε(t) = Φx(t) + ε(t), (15)

where Φ = [φ1, ..,φm], φi , f(θi), and x(t) = [x1(t), ..., xm(t)]>. With sufficient resolution
provided, we assume every θ∗k is contained in θ such that s(t) becomes a collection of
d non-zero entries in x(t). Finally, the DOA estimation problem boils down to solving
minx ‖y−Φx‖22 +λ‖x‖0, whereby nonzero elements in x∗ will (approximately) correspond
with locations i whereby θi ≈ θ∗k for some k.

6.2 Experimental Design

We make some natural assumptions in our experiment. First we consider the narrowband,
far-field case which implies that incoming waves are approximately planar and each source
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emanates from a single point. Furthermore, we assume our sensors are arranged having
a linear, uniformly spaced array geometry, i.e., uniform linear array(ULA), and a known
propagation medium. Then the measurement vector y(t) obtained by the sensors at time t
is given by (14), where the non-linear function f is

f(θ) =
[
eiω0∆1(θ), .., eiω0∆n(θ)

]>
with

ω0∆j(θ) = 2π(j − 1)
Dcos(θ)

λ0
,∀j = 1, .., n,

(16)

and ω0, λ0 are the central temporal frequency and the wavelength of signals respectively.
Also, ∆j(θ) is the array-geometry-dependent time delay between the first sensor and the
j-th sensor for a given angle θ ∈ [0, π], while D is the distance between two nearby sensors
in the ULA.

Settings: In our experiments, we set m = 180 allowing an angular resolution of 1◦ over
the half circle, and n = 10 sensors with D = 0.5λ0. The dictionary Φ is constructed via (14)
and (16) such that the i-th column represents the sensor array output from a hypothetical
source of unit strength at angular location θi. The number of different sources d is set to 4,
which represents a quite challenging problem with only 10 sensors; most sparse estimation
algorithms will fail in this regime. Then we randomly pick four different source directions
with magnitudes {±1 ± i}. Finally, a measurement vector y = Φx + ε is calculated with
complex Gaussian noise added to maintain a given signal noise ratio (SNR).

Metric: We apply the symmetric Chamfer distance [1] to evaluate the estimation qual-
ity with respect to the ground truth source directions. This distance between ground truth
θ∗ = {θ∗1, ..θ∗d} and predictions θ̂ = {θ̂1, ..θ̂d} is given by

dist(θ∗, θ̂) =
∑
θ1∈θ

∗

min
θ2∈ˆθ

|θ1 − θ2|+
∑
θ2∈ˆθ

min
θ1∈θ

∗
|θ1 − θ2|. (17)

Training Details: For DOA experiments, our model has LSTM cells with 200 hidden
units and is trained 400 epoches following our default settings. For training data generation,
we tried using noise levels in the intervals [15dB, 30dB], [20dB, 40dB], [30dB, 60dB], and
[60dB, 80dB], and then chose the best results.

7. Experimental Details for 3D Geometry Recovery via Photometric
Stereo

This section describes our photometric stereo experiments in more detail, including error
surface visualizations.

7.1 Background

Photometric stereo represents a useful method for recovering high-resolution surface normals
from a 3D scene using 2D images taken under r different lighting conditions. One proposed
model for the observation process at a single pixel is

o = ρLn+ e, (18)
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where the r measurments are denoted o ∈ Rr, n ∈ R3 denotes the true 3D surface normal,
rows of L ∈ Rr×3 define lighting directions, ρ is the diffuse albedo, acting here as a scalar
multiplier, and e represents an aggregations of shadows, specular highlights, or other cor-
rupting influences [6, 13]. If e were not present, then the surface normals can be uniquely
determined using a simple least-squares fit. However, a more robust alternative involves
solving

min
ñ,e
‖e‖0 s.t. o = Lñ+ e, (19)

where ñ is the surface normal rescaled by ρ, which is equivalent to computing [6]

min
e
‖e‖0 s.t. Projnull[L>](o) = Projnull[L>](e). (20)

It can be shown that this formulation has the exact same structure as (M.2) in the limit λ→
0, if we assume that y , Projnull[L>](o) and Φ is defined such that Φe = Projnull[L>](e).

7.2 Experiment Design

We test algorithms separately on two objects, ‘Bunny’ and ‘Caesar’ from [7]. First lighting
conditions are generated whose directions are randomly selected from a hemisphere with the
object placed at the center. Then 32-bit HDR gray-scale images of the object are rendered
with foreground masks and a randomly chosen ρ, 0.64 for Bunny and 0.8 for Caesar. The
resulting image resolution for Bunny is (256×256) while for Caesar it is (300×400). Given
L, we apply a singular value decomposition to get Φ = Projnull[L>] and the ground truth
error vector e∗ = o− ρLn.

For training, we have to synthesize candidate sparse errors e since there is no photometric
stereo database for this purpose. We adopt the basic pipeline from [14] to accomplish
this, which amounts to a form of weakly supervised learning. First we draw a support
pattern for e uniformly at random with cardinality d sampled from the range [d1, d2].
Nonzero values of e are assigned iid random values fromN (µe, σe). Finally, we can naturally
compute observations y = Φe which serve as network inputs. Although d1,d1,µe, and σe
are all tunable, beyond this, no attempt is made to match the true outlier distributions
encountered in applications of photometric stereo. After training on synthetic data (weak
supervision), we directly apply the resulting model to the gray-scale images without any
additional application-specific tuning. During the testing stage, for each surface point, we
use our model to approximately solve (20). Since the network outputs a probability map
for the outlier support set, we choose k indices with the least probability as inliers and use
them to compute n via least squares.

Hyperparameters: We conduct experiments under three situations using r = 10, 20, 40
images corresponding to r different lighting conditions. As for model capacity, we set the
size of hidden states of LSTM cells equal to 2r. Other training settings remain default as
in Section 5.3.

Visual Results: See Figure 5.

8. Additional Experiments and Self-Comparisons

We first more provide more evaluation details for generic sparse recovery problems, followed
by a number of ablation studies.
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Figure 5: Photometric stereo reconstruction error maps with different numbers (r) of gray-
scale images. These correspond with Table (M.1) results.
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Table 1: Attributes of our models used in producing Figure M.3(c) results.

model Hidden Unit Size #Parameters Training Time(sec./epoch) S-Acc

GRU-small 320 1296740 98.314 0.1588
LSTM-small 272 1213220 119.605 0.3017

GFGRU-small 220 1285340 170.282 0.4651
GFLSTM-small 200 1209300 172.013 0.4691

GRU-big 680 4958660 234.024 0.3069
LSTM-big 600 5037700 312.642 0.2637

GFGRU-big 455 4903635 318.690 0.6028
GFLSTM-big 425 4864650 310.447 0.6087

8.1 Further Details for Sparse Vector Recovery Evaluation

Table 1 lists all the important attributes of our self-comparison models from Figure M.3(c)
in the main paper. In terms of evaluation on generic problems, we define strict accuracy(s-
acc) and loose accuracy(l-acc) via

Sgt = {j : x∗j 6= 0}, Spred(d) = {j : pj is one of the d largest outputs} (21)

s-acc = 1
N

∑N
i=1 I

[
Sigt = Sipred(d)

]
, l-acc = 1

N

∑N
i=1
|Sigt∩Sipred(n)|

d , (22)

where N is the number of samples.

8.2 Ablation Study for Generic Sparse Estimation Problem

In Table 2, we list an ablation results of GFLSTM models with different hyperparameters
for the d

n = 0.4 case. Enlarging capacity generally benefits the performance especially
when the capacity is relatively small. However, the effectiveness and efficiency of changing
hidden size, LSTM layers, or number of unrolling steps varies. Stacking too many LSTM
layers is the least efficient way the enlarge the model capacity considering the trade-off
between training time and performance improvement. As for unrolling, insufficient steps
(for example, under 10) can impair model performance while excessive unrolling is a waste
of computation. And hidden layer size is a quite effective way to control the model capacity.

9. Technical Proofs

Here we present proofs of our technical propositions.

Proof of Proposition M.1

It has been demonstrated in [11] that using

w
(t+1)
i =

[
φ>i

(
λI + ΦΓ(t)Φ>

)−1
φi

]1
2

(23)
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Table 2: Results from models with different capacities. There are three main capacity
control factors: number of hidden units, number of LSTM stacked layers, and
number of LSTM unrolling steps. For various capacities settings, the total number
of parameters, training time per epoch (sec.), and strict-accuracy result are listed.

#Hidden #Layers #Unroll #Parameters Time S-Acc

200 2 5 1089300 99.333 0.0524
200 2 8 1149300 131.723 0.2211
200 2 11 1209300 172.013 0.4691
200 2 14 1269300 206.084 0.4707
200 2 17 1329300 240.847 0.5060
200 3 5 2497700 160.404 0.1455
200 3 8 2557700 234.113 0.4146
200 3 11 2617700 309.859 0.4776
200 3 14 2677700 383.898 0.5319
200 3 17 2737700 446.197 0.6011
200 4 5 4787300 254.694 0.2561
200 4 8 4847300 380.841 0.5619
200 4 11 4907300 517.010 0.5802
200 4 14 4967300 631.771 0.6046
200 4 17 5027300 764.149 0.6156
425 2 5 4609650 173.272 0.0976
425 2 8 4737150 235.728 0.4334
425 2 11 4864650 312.642 0.6087
425 2 14 4992150 378.839 0.6595
425 2 17 5119650 442.985 0.6697
425 3 5 10949375 316.927 0.2598
425 3 8 11076875 470.105 0.6043
425 3 11 11204375 616.227 0.6584
425 3 14 11331875 763.941 0.6359
425 3 17 11459375 927.643 0.6427
425 4 5 21265400 540.034 0.3653
425 4 8 21392900 821.973 0.6376
425 4 11 21520400 1096.844 0.6372
425 4 14 21647900 1389.964 0.6569
425 4 17 21775400 1655.417 0.6618
600 2 11 9387700 461.414 0.6494
600 2 14 9567700 568.918 0.6795
600 2 17 9747700 698.721 0.6682
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will satisfy the stated conditions of Proposition M.1. Now assume that Γ(t) is full rank or

invertible, i.e., γ
(t)
j > 0 for all j. Using the matrix inversion lemma, we have

φ>i

(
λI + ΦΓ(t)Φ>

)−1
φi = 1

λφ
>
i

(
I − 1

λΦ

[(
Γ(t)

)−1
+ 1

λΦ>Φ

]−1

Φ>

)
φi. (24)

Given that the matrix inverse is a convex function, and that additive translations preserve

convexity, it follows that 1
λ2
φ>i Φ

[(
Γ(t)

)−1
+ 1

λΦ>Φ

]−1

Φ>φi is a convex function of(
Γ(t)

)−1
. Therefore the negation of this term is concave, and so overall (24) is a concave

function of
(
Γ(t)

)−1
. This then implies that we can express (24) as a minimization of

upper-bounding hyperplanes via

φ>i

(
λI + ΦΓ(t)Φ>

)−1
φi = min

z
g(z) +

m∑
j=1

f(zj)

γi
(25)

for some functions f and g and variational parameters z = [z1, . . . , zm]>. Such a decompo-
sition is not unique; however, using linear algebraic manipulations, it can be easily verified
that

φ>i

(
λI + ΦΓ(t)Φ>

)−1
φi = min

z

1

λ
‖φi −Φz‖22 +

m∑
j=1

z2
j

γ
(t)
j

(26)

is one such viable representation.

To handle the more general case where some γ
(t)
j = 0, we use Φ̄ to denote the columns

φj such that j ∈ supp[γ], and likewise Γ̄
(t)

and z̄ the corresponding submatrix of Γ(t) and
elements of z respectively. It then naturally follows that

φ>i

(
λI + ΦΓ(t)Φ>

)−1
φi = φ>i

(
λI + Φ̄Γ̄

(t)
Φ̄
>
)−1

φi

= min
z̄

1

λ
‖φi − Φ̄z̄‖22 +

‖γ(t)‖
0∑

j=1

z̄2
j

γ̄
(t)
j

(27)

= min
z:supp[z]⊆supp[γ(t)]

1

λ
‖φi −Φz‖22 +

∑
j∈supp[γ(t)]

z2
j

γ
(t)
j

.

Proof of Proposition M.3

The original SBL objective is given by

L(γ) = y>
(
ΦΓΦ> + λI

)−1
y + log

∣∣∣ΦΓΦ> + λI
∣∣∣ , (28)

where the first term is convex in γ while the second is concave, ultimately resulting in a
non-convex function. For optimization purposes, it is convenient to decouple elements of
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γ via a series of upper bounds, the iterative minimization of which leads to LSTM-like
updates given judicious choices for these bounds.

To begin, we have the linear upper bound

h(γ) , log
∣∣∣ΦΓΦ> + λI

∣∣∣ ≤ h(γ̃) + (γ − γ̃)>∇h(γ̃), (29)

which is always realizable for any γ̃ ∈ Rm+ given the concavity of h(γ) [2]. This bound
decouples individual elements of γ into a linear summation that facilitates convenient,
separable optimization. Analogously, for the data-dependent term we have

y>
(
ΦΓΦ> + λI

)−1
y ≤ 1

λ‖y −Φu‖22 + u>Γ−1u. (30)

This bound holds for all u ∈ Rm, with equality when u = ΓΦ>
(
λI + ΦΓΦ>

)−1
y [12].2

Although the r.h.s. of (30) has effectively decoupled γ (given that Γ is diagonal, u>Γ−1u
is separable), it has introduced new auxiliary variables u which are inter-mixed via a Φ-
dependent norm. However, we can further bound this term using

f(u) , 1
λ‖y −Φu‖22 ≤ f(ũ) + (u− ũ)>∇f (ũ) + 1

2µ ‖u− ũ‖
2
2 , (31)

for any ũ ∈ Rm provided that µ ∈
(
0, λ/

∥∥Φ>Φ
∥∥]. This occurs because ∇f(u) is Lipschitz

continuous with Lipschitz constant 1
λ

∥∥Φ>Φ
∥∥, in which case a quadratic upper bound can

always be constructed as in (31).
Combining terms, we arrive at the auxiliary objective function

L(γ, γ̃,u, ũ) , h(γ̃)+(γ − γ̃)>∇h(γ̃)+u>Γ−1u+f(ũ)+(u− ũ)>∇f (ũ)+ 1
2µ ‖u− ũ‖

2
2 ,

(32)
where γ̃, u, and ũ can be viewed in this context as additional latent variables, sometimes
referred to as variational paramters. And by design, for any γ we have that

L(γ) = min
γ̃,u,ũ

L(γ, γ̃,u, ũ) ≤ L(γ, γ̃,u, ũ). (33)

Additionally, this minimization can be accomplished exactly using the stated updates from
Section M.2.3. The details are as follows.

Assume that we would like to reduce L(γ) starting from some arbitrary point γ(t). If
we choose

γ̃(t) = γ(t), u(t) = Γ(t)Φ>
(
λI + ΦΓ(t)Φ>

)−1
y, ũ(t) = u(t), (34)

then L
(
γ(t)

)
= L

(
γ(t), γ̃(t),u(t), ũ(t)

)
by construction, i.e., these values simultaneously

optimize L(γ(t), γ̃,u, ũ) ≥ L
(
γ(t)

)
per our structuring of the respective bounds. Our

strategy will now be to solve

min
γ,u
L
(
γ, γ̃(t),u, ũ(t)

)
(35)

2. Additionally, if some γj = 0 while uj 6= 0, we simply define this bound to be infinity. All subsequent
update rules are well-defined regardless.
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in closed form in order to obtain a new γ(t+1) that reduces to the original objective function
L(γ). For this purpose we define w(t) such that(

w(t)
)2

= ∇h
(
γ̃(t)

)
= diag

[
Φ>

(
λI + ΦΓ(t)Φ>

)−1
Φ

]
, (36)

where the squaring operator is applied element-wise and the gradient is calculated using
standard formulae. Note that this representation is always possible given that ∇h(γ̃) must
have non-negative elements since h is a non-decreasing, concave function.

By excluding irrelevant terms, taking derivatives, and equating to zero, it follows that(
w(t)

)−1
�|u| = arg min

γ
L
(
γ, γ̃(t),u, ũ(t)

)
≡ arg min

γ

∑
i

[(
w

(t)
i

)2
γ

(t)
i +

u2i

γ
(t)
i

]
. (37)

Plugging this value into the γ-dependent terms from L
(
γ, γ̃(t),u, ũ(t)

)
, we find that

γ>∇h(γ̃) + u>Γ−1u ≡ 2w(t) � |u|. (38)

Therefore, a conditionally optimal version of u can be achieved by solving

(u∗)(t) , arg min
u
L
([
w(t)

]−1
� |u|, γ̃(t),u, ũ(t)

)
≡ arg min

u
2w(t) � |u|+ u>∇f

(
ũ(t)

)
+ 1

2µ

∥∥∥u− ũ(t)
∥∥∥2

2

≡ arg min
u

2w(t) � |u|+ 1
2µ

∥∥∥u− [ũ(t) − µ∇f
(
ũ(t)

)]∥∥∥2

2
. (39)

This expression can be optimized independently across each ui, leading to

(u∗i )
(t) = S

2λw
(t)
i

(
ũ

(t)
i − µ

[
∇f

(
ũ(t)

)]
i

)
= S

2λw
(t)
i

(
ũ

(t)
i + µ

[
Φ>

(
y −Φũ(t)

)]
i

)
(40)

where Sω is a soft threshold operator. Moreover, based on (37), it follows that

γ(t+1) =
(
w(t)

)−1
�
∣∣∣(u∗)(t)

∣∣∣ (41)

will be such that

L
(
γ(t+1)

)
≤ L

(
γ(t+1), γ̃(t), (u∗)(t) , ũ(t)

)
≤ L

(
γ(t), γ̃(t),u(t), ũ(t)

)
= L

(
γ(t)

)
. (42)

Therefore, by following the above process, L(γ) will be reduced (or left unchanged). One
attractive feature of this formulation is that γ can be optimized jointly with at least one set
of variational parameters (in this case u), as opposed to most majorization-minimization
strategies [5] that fix the upper bound before minimizing the original variables (in this case
γ).

If we choose α(γ) = 1 and β(γ) = 0, then these steps exactly mirror the revised SBL

iterations from Section M.2.3 once we define x(t+1) , (u∗)(t) and note that σ
(t+1)
in � x̄(t+1)
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is tantamount to soft-thresholding. Demonstrating the more general case involves a few
additional manipulations.

Following the updates described above, we have

L
(
γ(t)

)
= L

(
γ(t), γ̃(t),u(t), ũ(t)

)
= h

(
γ̃(t)

)
+
(
u(t)

)> (
Γ(t)

)−1
u(t) + 1

λ

∥∥∥y −Φu(t)
∥∥∥2

2

≥ h
(
γ̃(t)

)
−
(
γ̃(t)

)>
∇h
(
γ̃(t)

)
+ 2w(t) �

∣∣∣u(t)
∣∣∣+ 1

λ

∥∥∥y −Φu(t)
∥∥∥2

2

= h
(
γ̃(t)

)
−
(
γ̃(t)

)>
∇h
(
γ̃(t)

)
+ 2w(t) �

∣∣∣u(t)
∣∣∣+ f

(
ũ(t)

)
+
(
u(t) − ũ(t)

)>
∇f

(
ũ(t)

)
+ 1

2µ

∥∥∥u(t) − ũ(t)
∥∥∥2

2
(43)

given that presently u(t) = ũ(t). Previously we optimized this expression with respect to u
and obtained the soft-threshold estimator (u∗)(t). However, suppose we instead evaluate at

an alternative point (u′)(t) defined recursively such that(
u′
)(t) ≡ x(t+1) = β

(
γ(t)

)
� x(t) +α

(
γ(t)

)
� (u∗)(t) . (44)

Then finally we have

L
(
γ(t)

)
≥ h

(
γ̃(t)

)
−
(
γ̃(t)

)>
∇h
(
γ̃(t)

)
+ 2w(t) �

∣∣∣u(t)
∣∣∣+ 1

λ

∥∥∥y −Φu(t)
∥∥∥2

2

≥ h
(
γ̃(t)

)
−
(
γ̃(t)

)>
∇h
(
γ̃(t)

)
+ 2w(t) �

∣∣∣(u′)(t)∣∣∣+ 1
λ

∥∥∥y −Φ
(
u′
)(t)∥∥∥2

2

= h
(
γ̃(t)

)
+
(
γ(t+1) − γ̃(t)

)>
∇h
(
γ̃(t)

)
+
(
x(t+1)

)> (
Γ(t+1)

)−1
x(t+1)

+ 1
λ

∥∥∥y −Φx(t+1)
∥∥∥2

2
(45)

≥ L
(
γ(t+1)

)
,

where now γ(t+1) =
(
w(t)

)−1 �
∣∣∣(u′)(t)

∣∣∣. The first inequality follows from (43), the second

from the monotone cell update property, and the third via the original construction of the
majorization-minimization algorithm. This process then exactly mirrors the iterations from
Section M.2.3, with guaranteed cost function descent.
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