Supplementary Material:
A simple neural network module
for relational reasoning

Here we provide additional details on related work, CLEVR from pixels, CLEVR from state descrip-
tions, Sort-of-CLEVR, bAbI, and Dynamic physical system reasoning. For each task, we provide
additional information on the dataset, model architecture, training and results where necessary.

1 Related Work

Since the RN is highly versatile, it can be used for visual, text-based, and state-based tasks. As such,
it touches upon a broad range of areas in machine learning, computer vision, and natural language
understanding. Here, we provide a brief overview of some of the most relevant related work.

1.1 Relational reasoning

Relational reasoning is implicit in many symbolic approaches [9} 25] and has been explicitly pursued
using neural networks as well [4]. There is recent work applying neural networks to graphs, which
are a natural structure for formalising relations [[10} (14} 26} 29} 19, 2]]. Perhaps a crucial difference
between this work and our work here is that RNs require minimal oversight to produce their input
(a set of objects), and can be applied successfully to tasks even when provided with relatively
unstructured inputs coming from CNNs and LSTMs. There has also been some recent work on
reasoning about sets, although this work does not explicitly reason about the relations of elements
within sets [38]].

1.2 Grounding spatial relations

Although grounding language in spatial percepts has a long-standing tradition, the majority of
previous research has focused on either rule-based spatial representations or hand-engineered spatial
features [[7, 8} [15} [16 (18} 22} [30, 31]]. Although there are some attempts to learn spatial relations
using spatial templates [21 [23]], these approaches are less versatile than ours.

1.3 Visual question answering

Visual question answering is a recently introduced task that measures a machine understanding of the
scene through questions [1}122]]. Related to our work, we are mostly interested in the newly introduced
CLEVR dataset [12] that distills core challenges of the task, namely relational and multi-modal
reasoning. The majority of approaches to question answering share the same pipeline [6l 24} 28]. First,
questions are encoded with recurrent neural networks, and images are encoded with convolutional
neural networks. Next, both representations are combined, and the answers are either predicted or
generated. Most successful methods also use an attention mechanism that locate important image
regions [5} 135,136} 137]. In our work, we follow a similar pipeline, but we use Relation Networks as a
powerful reasoning module.

Parallel to our work, two architectures have shown impressive results on the CLEVR dataset [[11} [13]].
Both approaches hinge on compositionality principles, and have shown they are capable of some
relational reasoning. However, both require either designing modules, or require direct access to
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ground-truth programs. The RN module, on the other hand, is conceptually simpler, can readily be
combined with basic neural components such as CNNs or LSTMs, can be broadly applied to various
tasks, and achieves significantly better results on CLEVR [12] than [11], and on par with strongly
supervised system of [[13]].

1.4 Text-based question answering

Answering text-based questions has long been an active research area in the NLP community
[3L117120,139]. Recently, in addition to traditional symbolic-based question answering architectures,
we observe a growing interest in neural-based approaches to text based question answering [27,133L[34]].
While these architectures rely on ‘memories’, we empirically show that the RN module has similar
capabilities, reaching very competitive results on the bAbI dataset [32] — a dataset that test reasoning
capabilities of text-based question answering models.

2 CLEVR from pixels

Our model (described in Section 4 of the main text) was trained on 70,000 scenes from the CLEVR
dataset and a total of 699,989 questions. Images were first down-sampled to size 128 x 128, then
pre-processed with padding to size 136 x 136, followed by random cropping back to size 128 x 128
and slight random rotations between —0.05 and 0.05 rads. We used 10 distributed workers that
synchronously updated a central parameter server. Each worker learned with mini-batches of size 64,
using the Adam optimizer and a learning rate of 2.5¢~*. Dropout of 50% was used on the penultimate
layer of the RN. In our best performing model each convolutional layer used 24 kernels of size
3 x 3 and stride 2, batch normalization, and rectified linear units. The model stopped improving
in performance after approximately 1.4 million iterations, at which point training was concluded.
The model achieved 96.8% accuracy on the validation set. In general, we found that smaller models
performed best. For example, 128 hidden unit LSTMs performed better than 256 or 512, and CNNs
with 24 kernels were better than CNNs with more kernels, such as 32, 64, or more.

2.1 Results: failure cases

Although our model gets most answers correct, a closer examination of the failure cases help us to
identify limitations of our architecture. In Table|l|(supplementary material), we show some examples
of CLEVR questions that our model fails to answer correctly, along with the ground-truth answers.
Based on our observations, we hypothesize that our architecture fails especially when objects are
heavily occluded, or whenever a high precision object position representation is required. We also
observe that many failure cases for our model are also challenging for humans.

3 CLEVR from state descriptions

The model that we train on the state description version of CLEVR is similar to the model trained on
the pixel version of CLEVR, but without the vision processing module. We used a 256 unit LSTM
for question processing and word-lookup embeddings of size 32. For the RN we used a four-layer
MLP with 512 units per layer, with ReLU non-linearities for gg. A three-layer MLP consisting of
512, 1024 (with 2% dropout) and 29 units with ReLU non-linearities was used for fy. To train the
model we used 10 distributed workers that synchronously updated a central parameter server. Each
worker learned with mini-batches of size 64, using the Adam optimizer and a learning rate of le~*.

4 Sort-of-CLEVR

The Sort-of-CLEVR dataset contains 10,000 images of size 75 x 75, of which 200 were withheld for
validation. There were 20 questions generated per image (10 relational and 10 non-relational).

Non-relational questions are split into three categories: (i) query shape, e.g. “What is the shape
of the red object?”; (ii) query horizontal position, e.g. “Is the red object on the left or right of the
image?’; (iii) query vertical position, e.g. “Is the red object on the top or bottom of the image?”.
These questions are non-relational because one can answer them by reasoning about the attributes
(e.g. position, shape) of a single entity which is identified by its unique color (e.g. red).



Relational questions are split into three categories: (i) closest-to, e.g. “What is the shape of the object
that is closest to the green object?”’; (ii) furthest-from, e.g. “What is the shape of the object that is
furthest from the green object?”’; (iii) count, e.g. “How many objects have the shape of the green
object?”. We consider these relational because answering them requires reasoning about the attributes
of one or more objects that are defined relative to the attributes of a reference object. This reference
object is uniquely identified by its color.

Questions were encoded as binary strings of length 11, where the first 6 bits identified the color of the
object to which the question referred, as a one-hot vector, and the last 5 bits identified the question
type and subtype.

In this task our model used: four convolutional layers with 32, 64, 128 and 256 kernels, ReLU
non-linearities, and batch normalization; the questions, which were encoded as fixed-length binary
strings, were treated as question embeddings and passed directly to the RN alongside the object pairs;
a four-layer MLP consisting of 2000 units per layer with ReLU non-linearities was used for gg; and a
four-layer MLP consisting of 2000, 1000, 500, and 100 units with ReLU non-linearities used for fg.
An additional final linear layer produced logits for a softmax over the possible answers. The softmax
output was optimized with a cross-entropy loss function using the Adam optimizer with a learning
rate of 1e~* and mini-batches of size 64.

We also trained a comparable MLP based model (CNN+MLP model) on the Sort-of-CLEVR task, to
explore the extent to which a standard model can learn to answer relational questions. We used the
same CNN and LSTM, trained end-to-end, as described above. However, this time we replaced the
RN with an MLP with the same number of layers and number of units per layer. Note that there are
more parameters in this model because the input layer of the MLP connects to the full CNN image
embedding.

5 bADI model for language understanding

For the bADbI task, each of the 20 sentences in the support set was processed through a 32 unit LSTM
to produce an object. For the RN, gg was a four-layer MLP consisting of 256 units per layer. For
fe, we used a three-layer MLP consisting of 256, 512, and 159 units, where the final layer was a
linear layer that produced logits for a softmax over the answer vocabulary. A separate LSTM with 32
units was used to process the question. The softmax output was optimized with a cross-entropy loss
function using the Adam optimizer with a learning rate of 2e~*.

6 Dynamic physical system reasoning

For the connection inference task the targets were binary vectors representing the existence (or
non-existence) of a connection between each ball pair. For a total of 10 objects, the targets were 102
length vectors. For the counting task, the targets were one-hot vectors (of length 10) indicating the
number of systems of connected balls. It is important to point out that in the first task the supervision
signal provided by the targets explicitly informs about the relations that need to be computed. In the
second task, the supervision signal (counts of systems) do not provide explicit information about the
kind of relations that need to be computed. Therefore, the models that solve the counting task must
successfully infer the relations implicitly.

Inputs to the RN were state descriptions. Each row of a state description matrix provided information
about a particular object (i.e. ball), including its coordinate position and color. Since the system was
dynamic, and hence evolved through time, each row contained object property descriptions for 16
consecutive time-frames. For example, a row could be comprised of 33 floats: 16 for the object’s =
coordinate position across 16 frames, 16 for the object’s y coordinate position across 16 frames, and
1 for the object’s color. The RN treated each row in this state description matrix as an object. Thus, it
had to infer an object description contained information of the object’s properties evolving through
time.

For the connection inference task, the RN’s gg was a four-layer MLP consisting of three layers
with 1000 units and one layer with 500 units. For f4, we used a three-layer MLP consisting of 500,
100, and 100 units, where the final layer was a linear layer that produced logits corresponding to
the existence/absence of a connection between each ball pair. The output was optimized with a
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Figure 1: “Sort-of-CLEVR” task: examples and results. The Sort-of-CLEVR example here
consists of an image of six objects and two questions — a relational question, and a non-relational
question — along with the corresponding answers. The fraction of correctly answered relational
questions (inset bar plot) for our model (CNN+RN) is much larger than the comparable MLP
based model (CNN+MLP), whereas both models have similar performance levels for non-relational

questions.

cross-entropy loss function using the Adam optimizer with a learning rate of 1e~* and a batch size
of 50. The same model was used for the counting task, but this time the output layer of the RN
was a linear layer with 10 units. For baseline comparisons we replaced the RNs with MLPs with
comparable number of parameters.

Please see the supplementary videos.




‘What shape is the small object
that is in front of the yellow matte

thing and behind the gray sphere?

‘What number of things are either tiny What number of objects are blocks

green rubber objects or shiny things that are in front of the large

that are behind the big metal block? red cube or green balls?

RN: cylinder

1

GT: cube

2

Is the shape of the small red object
the same as the large matte object

that is right of the small rubber ball?

How many gray objects are in front ‘What number of objects are big

of the tiny green shiny ball and right red matte cubes or things on the right

of the big blue matte thing? side of the large red matte block?

RN: no

0

GT: yes

1

There is a brown ball;

what number of things are left of it?

How many objects are big purple How many things are rubber

rubber blocks or red blocks in front cylinders in front of the tiny yellow
of the tiny yellow rubber thing? block or blocks that are to the right

of the small brown rubber thing?

‘What number of objects are either

big things that are left

of the cylinder or cylinders?

Are there the same number of small ‘What number of other things

blue objects that are to the right of are there of the same

the blue cube and blue metal cubes? material as the green cube?

RN: 2

no 6

GT: 3

yes 5

Table 1: Failures on CLEVR; RN — predicted answers, GT — ground-truth answer.

5



References

[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence
Zitnick, and Devi Parikh. Vqa: Visual question answering. In ICCV, 2015.

[2] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. In NIPS, 2016.

[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In EMNLP, 2013.

[4] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural networks. arXiv:1607.01426,2016.

[5] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus
Rohrbach. Multimodal compact bilinear pooling for visual question answering and visual
grounding. arXiv:1606.01847,2016.

[6] Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu. Are you talking
to a machine? dataset and methods for multilingual image question answering. In NIPS, 2015.

[7] Dave Golland, Percy Liang, and Dan Klein. A game-theoretic approach to generating spatial
descriptions. In EMNLP, 2010.

[8] Sergio Guadarrama, Lorenzo Riano, Dave Golland, Daniel Gouhring, Yangqing Jia, Dan Klein,
Pieter Abbeel, and Trevor Darrell. Grounding spatial relations for human-robot interaction. In
IROS, 2013.

[9] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-
3):335-346, 1990.

[10] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv:1506.05163, 2015.

[11] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. arXiv:1704.05526, 2017.

[12] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In CVPR, 2017.

[13] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei,

C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual rea-
soning. arXiv:1705.03633,2017.

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv:1609.02907, 2016.

[15] Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and perceive: Connecting
natural language to the physical world. TACL, 2013.

[16] Geert-Jan M Kruijff, Hendrik Zender, Patric Jensfelt, and Henrik I Christensen. Situated
dialogue and spatial organization: What, where... and why. IJARS, 2007.

[17] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. Inducing
probabilistic ccg grammars from logical form with higher-order unification. In EMNLP, 2010.

[18] Tian Lan, Weilong Yang, Yang Wang, and Greg Mori. Image retrieval with structured object
queries using latent ranking svm. In ECCV, 2012.

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. ICLR, 2016.

[20] Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based compositional
semantics. Computational Linguistics, 2013.



[21] Gordon D Logan and Daniel D Sadler. A computational analysis of the apprehension of spatial
relations. 1996.

[22] Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering about
real-world scenes based on uncertain input. In NIPS, 2014.

[23] Mateusz Malinowski and Mario Fritz. A pooling approach to modelling spatial relations for
image retrieval and annotation. arXiv:1411.5190, 2014.

[24] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A deep learning
approach to visual question answering. arXiv:1605.02697, 2016.

[25] Allen Newell. Physical symbol systems. Cognitive science, 4(2):135-183, 1980.

[26] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In ICML, 2016.

[27] Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne,
Alex Graves, and Tim Lillicrap. Scaling memory-augmented neural networks with sparse reads
and writes. In NIPS, 2016.

[28] Mengye Ren, Ryan Kiros, and Richard Zemel. Image question answering: A visual semantic
embedding model and a new dataset. In NIPS, 2015.

[29] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 2009.

[30] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter, Ashis Gopal Banerjee,
Seth J Teller, and Nicholas Roy. Understanding natural language commands for robotic
navigation and mobile manipulation. In AAAL 2011.

[31] Stefanie Tellex, Thomas Kollar, George Shaw, Nicholas Roy, and Deb Roy. Grounding spatial
language for video search. In /CMI, 2010.

[32] Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete
question answering: A set of prerequisite toy tasks. arXiv:1502.05698, 2015.

[33] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In ICLR, 2015.

[34] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual
and textual question answering. In ICML, 2016.

[35] Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-guided spatial
attention for visual question answering. In ECCV, 2016.

[36] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,
Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In ICML, 2015.

[37] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks
for image question answering. In CVPR, 2016.

[38] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Péczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. arXiv:1703.06114,2017.

[39] John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive logic
programming. In AAAI, 1996.



	Related Work
	Relational reasoning
	Grounding spatial relations
	Visual question answering
	Text-based question answering

	CLEVR from pixels
	Results: failure cases

	CLEVR from state descriptions
	Sort-of-CLEVR
	bAbI model for language understanding
	Dynamic physical system reasoning

