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Abstract

PAC maximum selection (maxing) and ranking of n elements via random pairwise
comparisons have diverse applications and have been studied under many models
and assumptions. With just one simple natural assumption: strong stochastic tran-
sitivity, we show that maxing can be performed with linearly many comparisons
yet ranking requires quadratically many. With no assumptions at all, we show that
for the Borda-score metric, maximum selection can be performed with linearly
many comparisons and ranking can be performed withO(n logn) comparisons.

1 Introduction

1.1 Motivation

Maximum selection (maxing) and sorting using pairwise comparisons are among the most practical
and fundamental algorithmic problems in computer science. As is well-known, maxing requires
n − 1 comparisons, while sorting takes Θ(n logn) comparisons.

The probabilistic version of this problem, where comparison outcomes are random, is of significant
theoretical interest as well, and it too arises in many applications and diverse disciplines. In sports,
pairwise games with random outcomes are used to determine the best, or the order, of teams or
players. Similarly Trueskill [1] matches video gamers to create their ranking. It is also used for a
variety of online applications such as to learn consumer preferences with the popular A/B tests, in
recommender systems [2], for ranking documents from user clickthrough data [3, 4], and more. The
popular crowd sourcing website GIFGIF [5] shows how pairwise comparisons can help associate
emotions with many animated GIF images. Visitors are presented with two images and asked to
select the one that better corresponds to a given emotion. For these reasons, and because of its
intrinsic theoretical interest, the problem received a fair amount of attention.

1.2 Terminology and previous results

One of the first studies in the area, [6] assumed n totally-ordered elements, where each comparison
errs with the same, known, probability α < 1

2
. It presented a maxing algorithm that usesO( n

α2 log 1
δ
)

comparisons to output the maximum with probability ≥ 1 − δ, and a ranking algorithm that uses
O( n

α2 log n
δ
) comparisons to output the ranking with probability ≥ 1 − δ.

These results have been and continue to be of great interest. Yet this model has two shortcomings.
It assumes that there is only one random comparison probability, α, and that its value is known. In
practice, comparisons have different, and arbitrary, probabilities, and they are not known in advance.
To address more realistic scenarios, researchers considered more general probabilistic models.

Consider a set of n elements, without loss of generality [n]
def
= {1,2, . . . , n}. A probabilistic model,

or model for short, is an assignment of a preference probability pi,j ∈ [0,1] for every i ≠ j ∈

[n], reflecting the probability that i is preferred when compared with j. We assume that repeated
comparisons are independent and that there are no “draws”, hence pj,i = 1 − pi,j .
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If pi,j ≥ 1
2

, we say that i is preferable to j and write i ≥ j. Element i is maximal in a model if i ≥ j
for all j ≠ i. And a permutation `1, . . . ,`n is a ranking if `i ≥ `j for all i ≤ j. Observe that the
first element of any ranking is always maximal. For example, for n = 3, p1,2 = 1/2, p1,3 = 1/3, and
p2,3 = 2/3, we have 1 ≥ 2, 2 ≥ 1, 3 ≥ 1, and 2 ≥ 3. Hence 2 is the unique maximum, and 2,3,1 is
the unique ranking. We seek algorithms that without knowing the underlying model, use pairwise
comparisons to find a maximal element and a ranking.

Two concerns spring to mind. First, there may be two elements i, j with pi,j arbitrarily close to
half, requiring arbitrarily many comparisons just to determine which is preferable to the other. This
concern has a common remedy, that we also adopt. The PAC paradigm, e.g. [7, 8], that requires the
algorithm’s output to be only Probably Approximately Correct.

Let p̃i,j
def
= pi,j −

1
2

be the centered preference probability. Note that p̃i,j ≥ 0 iff i is preferable to
j. If p̃i,j ≥ −ε we say that i is ε-preferable to j. For 0 < ε < 1/2, an element i ∈ [n] is ε-maximum
if it is ε-preferable to all other elements, namely, p̃i,j ≥ −ε ∀j ≠ i. Given ε > 0, 1

2
≥ δ > 0, a

PAC maxing algorithm must output an ε-maxima with probability ≥ 1 − δ, henceforth abbreviated
with high probability (WHP). Similarly, a permutation `1, . . . ,`n of {1, . . . ,n} is an ε-ranking if `i
is ε-preferable to `j for all i ≤ j, and a PAC ranking algorithm must output an ε-ranking WHP. Note
that in this paper, we consider δ ≤ 1

2
, the more practical regime. For larger values of δ, one can use

our algorithms with δ = 1
2

.

The second concern is that not all models have a ranking, or even a maximal element. For example,
for p1,2 = p2,3 = p3,1 = 1, or the more opaque yet interesting non-transitive coins [9], each element
is preferable to the cyclically next, hence there is no maximal element and no ranking.

A standard approach, that again we too will adopt, to address this concern is to consider structured
models. The simplest may be parametric models, of which one of the more common is Placket
Luce (PL) [10, 11], where each element i is associated with an unknown positive number ai and
pi,j =

ai
ai+aj

. [12] derived a PAC maxing algorithm that uses O( n
ε2

log n
εδ
) comparisons and a PAC

ranking algorithm that uses O( n
ε2

logn log n
εδ
) comparisons for any PL model. Related results for

the Mallows model under a non-PAC paradigm were derived by [13].

But significantly more general, and more realistic, non-parametric, models may also have max-
ima and rankings. A model is strongly stochastically transitive (SST), if i ≥ j and j ≥ k imply
pi,k ≥ max(pi,j , pj,k). By simple induction, every SST model has a maximum element and a rank-
ing. And one additional property, that is perhaps more difficult to justify, has proved helpful in
constructing maxing and sorting PAC algorithms. A tournament satisfies the stochastic triangle
inequality if i ≥ j and j ≥ k imply that p̃i,k ≤ p̃i,j + p̃j,k.

In Section 4 we show that if a model has a ranking, then an ε-ranking can be found WHP via
O(n

2

ε2
log n

δ
) comparisons. For all models that satisfy both SST and triangle inequality, [7] derived

a PAC maxing algorithm that uses O( n
ε2

log n
εδ
) comparisons. [14] eliminated the log n

ε
factor and

showed that O( n
ε2

log 1
δ
) comparisons suffice and are optimal, and constructed a nearly-optimal

PAC ranking algorithm that uses O(
n logn(log logn)3

ε2
) comparisons for all δ ≥ 1

n
, off by a factor

of O((log logn)3) from optimum. Lower-bounds follow from an analogy to [15, 6]. Observe
that since the PL model satisfies both SST and triangle inequality, these results also improve the
corresponding PL results.

Finally, we consider models that are not SST, or perhaps don’t have maximal elements, rankings,
or even their ε-equivalents. In all these cases, one can apply a weaker order relation. The Borda
score s(i) def

= 1
n ∑j pi,j is the probability that i is preferable to another, randomly selected, element.

Element i is Borda maximal if s(i) = maxj s(j), and ε-Borda maximal if s(i) ≥ maxj s(j) − ε. A
PAC Borda-maxing algorithm outputs an ε-Borda maximal element WHP (with probability ≥ 1− δ).
Similarly, a Borda ranking is a permutation i1, . . . ,in such that for all 1 ≤ j ≤ n−1, s(ij) ≥ s(ij+1).
An ε-Borda ranking is a permutation where for all 1 ≤ j ≤ k ≤ n, s(ij) ≥ s(ik) − ε. A PAC
Borda-ranking algorithm outputs an ε-Borda ranking WHP.

Recall that Borda scores apply to all models. As noted in [16, 17, 8, 18] considering elements with
nearly identical Borda scores shows that exact Borda-maxing and ranking requires arbitrarily many
comparisons. [8] derived a PAC Borda ranking, and therefore also maxing, algorithms that use

2



O(n
2

ε2
) comparisons. [19] derived a O(

n logn
ε2

log(n
δ
)) PAC Borda ranking algorithm for restricted

setting. However note that several simple models, including p1,2 = p2,3 = p3,1 = 1 do not belong to
this model.

[20, 21, 22] considered deterministic adversarial versions of this problem that has applications
in [23]. Finally, we note that all our algorithms are adaptive, where each comparison is cho-
sen based on the outcome of previous comparisons. Non-adaptive algorithms were discussed
in [24, 25, 26, 27].

2 Results and Outline

Our goal is to find the minimal assumptions that enable efficient algorithms for these problems. In
particular, we would like to see if we can eliminate the somewhat less-natural triangle inequality.
With two algorithmic problems: maxing and ranking, and one property–SST and one special metric–
Borda scores, the puzzle consists of four main questions.

1) With just SST (and no triangle inequality) are there: a) PAC maxing algorithms with O(n) com-
parisons? b) PAC ranking algorithms with near O(n logn) comparisons? 2) With no assumptions
at all, but for the Borda-score metric, are there: a) PAC Borda-maxing algorithms with O(n) com-
parisons? b) PAC Borda-ranking algorithms with near O(n logn) comparisons?

We essentially resolve all four questions. 1a) Yes. In Section 3, Theorem 6, we use SST alone to
derive a O( n

ε2
log 1

δ
) comparisons PAC maxing algorithm. Note that this is the same complexity

as with triangle inequality, and it matches the lower bound. 1b) No. In Section 4, Theorem 7, we
show that there are SST models where any PAC ranking algorithm with ε ≤ 1/4 requires Ω(n2)
comparisons. This is significantly higher than the roughly O(n logn) comparisons needed with
triangle inequality, and is close to the O(n2 logn) comparisons required without any assumptions.
2a) Yes. In Section 5, Theorem 8, we derive a PAC Borda maxing algorithm that without any model
assumptions requires O( n

ε2
log 1

δ
) comparisons which is order optimal. 2b) Yes. In Section 5,

Theorem 9, we derive a PAC Borda ranking algorithm that without any model assumptions requires
O( n

ε2
log n

δ
) comparisons.

Beyond the theoretical results sections, in Section 6, we provide experiments on simulated data. In
Section 7, we discuss the results.

3 Maxing

3.1 SEQ-ELIMINATE

Our main building block is a simple, though sub-optimal, algorithm SEQ-ELIMINATE that sequen-
tially eliminates one element from input set to find an ε-maximum under SST.

SEQ-ELIMINATE usesO( n
ε2

log n
δ
) comparisons and w.p.≥ 1−δ, finds an ε-maximum. Even for sim-

pler models [15] we know that an algorithm needs Ω( n
ε2

log 1
δ
) comparisons to find an ε-maximum

w.p.≥ 1− δ. Hence the number of comparisons used by SEQ-ELIMINATE is optimal up to a constant
factor when δ ≤ 1

n
but can be logn times the lower bound for δ = 1

2
.

By SST, any element that is ε-preferable to absolute maximum element of S is an ε-maximum of
S. Therefore if we can reduce S to a subset S′ of sizeO( n

logn
) that contains an absolute maximum

of S using O( n
ε2

log 1
δ
) comparisons, we can then use SEQ-ELIMINATE to find an ε-maximum of

S′ and the number of comparisons is optimal up to constants. We provide one such reduction in
subsection 3.2.

Sequential elimination techniques have been used before [13] to find an absolute maximum. In
such approaches, a running element is maintained, and is compared and replaced with a competing
element in S if the latter is found to be better with confidence ≥ 1 − δ/n. Note that if the running
and competing elements are close to each other, this technique can take an arbitrarily long time to
declare the winner. But since we are interested in finding only an ε-maximum, SEQ-ELIMINATE
circumvents this issue. We later show that SEQ-ELIMINATE needs to update the running element
r with the competing element c if p̃c,r ≥ ε and retain r if p̃c,r ≤ 0. If 0 < p̃c,r < ε, replacing or
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retaining r doesn’t affect the performance of SEQ-ELIMINATE significantly. Thus, in other words
we’ve reduced the problem to testing whether p̃c,r ≤ 0 or p̃c,r ≥ ε.

Assuming that testing problem always returns the right answer, since SEQ-ELIMINATE never re-
places the running element with a worse element, either the output is the absolute maximum b∗ or b∗
is never the running element. If b∗ is eliminated against running element r then p̃b∗,r ≤ ε and hence
r is an ε-maximum and since the running element only gets better, the output is an ε-maximum.

We first present a testing procedure COMPARE that we use to update the running element in SEQ-
ELIMINATE.

3.1.1 COMPARE

COMPARE(i, j, εl, εu, δ) takes two elements i and j, and two biases εu > εl, and with confidence
≥ 1 − δ, determines whether p̃i,j is ≤ εl or ≥ εu.

For this, COMPARE compares the two elements 2/(εu − εl)
2 log(2/δ) times. Let p̂i,j be the fraction

of times i beats j, and let ˆ̃pi,j
def
= p̂i,j −

1
2

. If ˆ̃pi,j < (εl + εu)/2, COMPARE declares p̃i,j ≤ εl (returns
1), and otherwise it declares p̃i,j ≥ εu (returns 2).

Due to lack of space, we present the algorithm COMPARE in Appendix A.1 along with certain
improvements for better performance in practice .

In the Lemma below, we bound the number of comparisons used by COMPARE and prove its cor-
rectness. Proof is in A.2.

Lemma 1. For εu > εl, COMPARE(i, j, εl, εu, δ) uses ≤ 2
(εu−εl)2

log 2
δ

comparisons and if p̃i,j ≤ εl,
then w.p.≥ 1 − δ, it returns 1, else if p̃i,j ≥ εu, w.p.≥ 1 − δ, it returns 2.

Now we present SEQ-ELIMINATE that uses the testing subroutine COMPARE and finds an ε-
maximum.

3.1.2 SEQ-ELIMINATE Algorithm

SEQ-ELIMINATE takes a variable set S, selects a random running element r ∈ S and repeatedly
uses COMPARE(c, r,0, ε, δ/n) to compare r to a random competing element c ∈ S ∖ r. If COMPARE
returns 1 i.e., deems p̃c,r ≤ 0, it retains r as the running element and eliminates c from S, but if
COMPARE returns 2 i.e., deems p̃c,r ≥ ε, it eliminates r from S and updates c as the new running
element.

Algorithm 1 SEQ-ELIMINATE

1: inputs
2: Set S, bias ε, confidence δ
3: n← ∣S∣
4: r ← a random c ∈ S, S = S ∖ {r}
5: while S ≠ ∅ do
6: Pick a random c ∈ S, S = S ∖ {c}.
7: if COMPARE(c, r,0, ε, δ

n
) = 2 then

8: r ← c
9: end if

10: end while
11: return r

We now bound the number of comparisons used by SEQ-ELIMINATE(S, ε, δ) and prove its correct-
ness. Proof is in A.3.

Theorem 2. SEQ-ELIMINATE(S, ε, δ) uses O(
∣S∣
ε2

log ∣S∣
δ
) comparisons, and w.p.≥ 1− δ outputs an

ε-maximum.
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3.2 Reduction

Recall that, for δ ≤ 1
n

, SEQ-ELIMINATE is order-wise optimal. For δ ≥ 1
n

, here we present a
reduction procedure that uses O( n

ε2
log 1

δ
) comparisons and w.p.≥ 1 − δ, outputs a subset S′ of size

O(
√
n logn) and an element a such that either a is a 2ε/3-maximum or S′ contains an absolute

maximum of S. Combining the reduction with SEQ-ELIMINATE results in an order-wise optimal
algorithm.

We form the reduced subset S′ by pruning S. We compare each element e ∈ S with an anchor
element a, test whether p̃e,a ≤ 0 or p̃e,a ≥ 2ε/3 using COMPARE, and retain all elements e for which
COMPARE returns the second hypothesis. For S′ to be of size O(

√
n logn) we’d like to pick an

anchor element that is among the top O(
√
n logn) elements. But this can be computationally hard

and we show that it suffices to pick an anchor that is not ε/3-preferable to at most O(
√
n logn)

elements in S.

An element a is called an (ε, n′)-good anchor if a is not ε-preferable to at most n′ elements, i.e.,
∣{e ∶ e ∈ S and p̃e,a > ε}∣ ≤ n′.

We now present the subroutine PICK-ANCHOR that finds a good anchor element.

3.2.1 Picking Anchor Element

PICK-ANCHOR(S,n′, ε, δ) uses O( n
n′ε2 log 1

δ
log n

n′δ ) comparisons and w.p.≥ 1 − δ, outputs an
(ε, n′)-good anchor element. PICK-ANCHOR first picks randomly a set Q of n

n′ log 2
δ

elements
from S without replacement. This ensures that w.p.≥ 1 − δ, Q contains at least one of the top n′
elements. We then use SEQ-ELIMINATE to find an ε-maximum of Q.

Let the absolute maximum element of Q be denoted as q∗. Now an ε-maximum of Q is ε-preferable
to q∗. Further, if Q contains an element in the top n′ elements, there exists n − n′ elements worse
than q∗ in S. Thus by SST, the ε-maximum of Q is also ε-preferable to these n − n′ elements and
hence the output of PICK-ANCHOR is an (ε, n′)-good anchor element. PICK-ANCHOR is shown in
appendix A.4

We now bound the number of comparisons used by PICK-ANCHOR and prove its correctness. Proof
is in A.5.
Lemma 3. PICK-ANCHOR(S,n′, ε, δ) uses O( n

n′ε2 log 1
δ

log n
n′δ ) comparisons and w.p.≥ 1 − δ,

outputs an (ε, n′)-good anchor element.

Remark 4. Note that PICK-ANCHOR(S, cn, ε, δ) usesOc( 1
ε2
(log 1

δ
)
2
) comparisons where the con-

stant depends only on c but not on n. Hence it is advantageous to use this method to pick near-
maximum element when n is large.

We now present PRUNE that takes an anchor element as input and prunes the set S using the anchor.

3.2.2 Pruning

Given an (εl, n
′)-good anchor element a, w.p.≥ 1 − δ/2, PRUNE(S, a, n′, εl, εu, δ) outputs a subset

S′ of size ≤ 2n′. Further, any element e that is at least εu-better than a i.e., p̃e,a ≥ εu is in S′
w.p.≥ 1 − δ/2.

PRUNE prunes S in multiple rounds. In each round t, for every element e in S, PRUNE tests whether
p̃e,a ≤ εl or p̃e,a ≥ εu using COMPARE(e, a, εl, εu, δ/2

t+1) and eliminates e if the first hypothesis i.e.,
p̃e,a ≤ εl is returned. By Lemma 1, an element e that is εu better than a i.e., p̃e,a ≥ εu passes the
tth round of pruning w.p.≥ 1 − δ/2t+1. Thus by union bound, the probability that such an element
is not present in the pruned set is ≤ ∑∞

t=1 δ/2
t+1 ≤ δ/2.

Now for element e that is not εl-better than a i.e., p̃e,a ≤ εl, by Lemma 1, the first hypothesis
is returned w.p.≥ 1 − δ/4. Hence w.h.p., the number of such elements (not εl-better elements) is
reduced by a factor of δ after each round. Since a is an (εl, n

′)-good anchor element, there are at
most n′ elements atleast εl-better than a. Thus the number of elements left in the pruned set after
round t is at most n′ + nδt. Thus PRUNE succeeds eventually in reducing the size to ≤ 2n′ (in
≤ log1/δ

n
n′ rounds).
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Algorithm 2 PRUNE

1: inputs
2: Set S, element a, size n′, lower bias εl, upper bias εu, confidence δ.
3: t← 1
4: S1 ← S
5: while ∣St∣ > 2n′ and t < log2 n do
6: Initialize: Qt ← ∅

7: for e in St do
8: if COMPARE(e, a, εl, εu, δ/2

t+1) = 1 then
9: Qt ← Qt⋃{e}

10: end if
11: end for
12: St+1 ← St ∖Qt
13: t← t + 1
14: end while
15: return St.

We now bound the number of comparisons used by PRUNE and prove its correctness. Proof is in
A.6.
Lemma 5. If n′ ≥

√
6n logn, δ ≥ 1

n
and a is an (εl, n

′)-good anchor element, then w.p.≥ 1 − δ
2

,

PRUNE(S, a, n′, εl, εu, δ) uses O( n
(εu−εl)2

log 1
δ
) comparisons and outputs a set of size less than

2n′. Further if a is not an εu-maximum of S then w.p.≥ 1 − δ
2

, the output set contains an absolute
maximum element of S.

3.3 Full Algorithm

We now present the main algorithm, OPT-MAXIMIZE that w.p.≥ 1−δ, usesO( n
ε2

log 1
δ
) comparisons

and outputs an ε-maximum. For δ ≤ 1
n

, SEQ-ELIMINATE uses O( n
ε2

log 1
δ
) comparisons and hence

we directly use SEQ-ELIMINATE. Below we assume δ > 1
n

.

Here OPT-MAXIMIZE first finds an (ε/3,
√

6n logn)-good anchor element a using
PICK-ANCHOR(S,

√
6n logn, ε/3, δ

4
). Then using PRUNE(S, a,

√
6n logn, ε/3,2ε/3, δ

4
) with

a, OPT-MAXIMIZE prunes S to a subset S′ of size ≤ 2
√

6n logn such that if a is not a 2ε/3
maximum i.e. p̃b∗,a > 2ε/3, S′ contains the absolute maximum b∗ w.p.≥ 1 − δ/2. OPT-MAXIMIZE
then checks if a is a 2ε/3 maximum by using COMPARE(e, a,2ε/3, ε, δ/(4n)) for every element
e ∈ S′. If COMPARE returns first hypothesis for every e ∈ S′ then OPT-MAXIMIZE outputs a or else
OPT-MAXIMIZE outputs SEQ-ELIMINATE(S′, ε, δ

4
).

Note that only one of these three cases is possible: (1) a is a 2ε/3-maximum, (2) a is not an ε-
maximum and (3) a is an ε-maximum but not a 2ε/3-maximum. In case (1), since a is a 2ε/3-
maximum, by Lemma 1, w.p.≥ 1 − δ/4, COMPARE returns the first hypothesis for every e ∈ S′ and
OPT-MAXIMIZE outputs a. In both cases (2) and (3), as stated above, w.p.≥ 1 − δ/2, S′ contains
the absolute maximum b∗. Now in case (2) since a is not an ε-maximum, by Lemma 1, w.p.≥
1− δ/(4n), COMPARE(b∗, a,2ε/3, ε, δ/(4n)) returns the second hypothesis. Thus OPT-MAXIMIZE
outputs SEQ-ELIMINATE(S′, ε, δ/4), which w.p.≥ 1 − δ/4, returns an ε-maximum of S′ (recall that
an ε-maximum of S′ is an ε-maximum of S if S′ contains b∗). Finally in case (3), OPT-MAXIMIZE
either outputs a or SEQ-ELIMINATE(S′, ε, δ/4) and either output is an ε-maximum w.p.≥ 1 − δ.
In the below Theorem, we bound comparisons used by OPT-MAXIMIZE and prove its correctness.
Proof is in A.7.
Theorem 6. W.p.≥ 1 − δ, OPT-MAXIMIZE(S, ε, δ) uses O( n

ε2
log 1

δ
) comparisons and outputs an

ε-maximum.

4 Ranking
Recall that [14] considered a model with both SST and stochastic triangle inequality and derived
an ε-ranking with O(

n logn(log logn)3

ε2
) comparisons for δ = 1

n
. By constrast, we consider a more
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Algorithm 3 OPT-MAXIMIZE

1: inputs
2: Set S, bias ε, confidence δ.
3: if δ ≤ 1

n
then

4: return SEQ-ELIMINATE(S, ε, δ)
5: end if
6: a← PICK-ANCHOR(S,

√
6n logn, ε/3, δ

4
)

7: S′ ← PRUNE(S, a,
√

6n logn, ε/3,2ε/3, δ
4
)

8: for element e in S′ do
9: if COMPARE(e, a, 2ε

3
, ε, δ

4n
) = 2 then

10: return SEQ-ELIMINATE(S′, ε, δ
4
)

11: end if
12: end for
13: return a

general model without stochastic triangle inequality and show that even a 1/4-ranking with just SST
takes Ω(n2) comparisons for δ ≤ 1

8
.

To establish the lower bound, we reduce the problem of finding 1/4-ranking to finding a coin with
bias 1 among n(n−1)

2
−1 other fair coins. For this, we consider the following model with n elements

{a1, a2, ..., an}: p̃a1,an = 1
2

, p̃ai,aj = µ(0 < µ < 1/n10), when i < j and (i, j) ≠ (1, n). Note that
this model satisfies SST but not stochastic triangle inequality. Also note that any ranking where a1
precedes an is an 1/4-ranking and thus the algorithm only needs to order a1 and an correctly. Now
the output of a comparison between any two elements other than a1 and an is essentially a fair coin
toss (since µ is very small). Thus if we output a ranking without querying comparison between a1
and an, then the ranking is correct w.p.≈ 1

2
since a1 and an must necessarily be ordered correctly.

Now if an algorithm uses only n2/20 comparisons then the probability that the algorithm queried at
least one comparison between a1 and an is less than 1

2
and hence cannot achieve a confidence of 7

8
.

Proof sketch in B.1.

Theorem 7. There exists a model that satisfies SST for which any algorithm requires Ω(n2) com-
parisons to find a 1/4-ranking with probability ≥ 7/8.

We also present a trivial ε-ranking algorithm in Appendix B.2 that for any stochastic model with
ranking (Weak Stochastic Transitivity), uses O(n

2

ε2
log n

δ
) comparisons and outputs an ε-ranking

w.p.≥ 1 − δ.

5 Borda Scores

We show that for general models, usingO( n
ε2

log 1
δ
) comparisons w.p.≥ 1−δ, we can find an ε-Borda

maximum and using O( n
ε2

log n
δ
) comparisons w.p.≥ 1 − δ, we can find an ε-Borda ranking.

Recall that Borda score s(e) of an element e is the probability that e is preferable to an element
picked randomly from S i.e., s(e) = 1

n ∑f∈S p̃e,f . We first make a connection between Borda
scores of elements and the traditional multi armed bandit setting. In the Bernoulli multi armed
setting, every arm a is associated with a parameter q(a) and pulling that arm results in a reward
B(q(a)), a Bernoulli random variable with parameter q(a). Observe that we can simulate our
pairwise comparisons setting as a traditional bandit arms setting by comparing an element with a
random element where in our setting, for every element e, the associated parameter is s(e). Thus
PAC optimal algorithms derived under traditional bandit setting work for PAC Borda score setting
too. [28] and several others derived a PAC maximum arm selection algorithms that useO( n

ε2
log 1

δ
)

comparisons and find an arm with parameter at most ε less than the highest. This implies an ε-Borda
maxing algorithm with the same complexity. Proof follows from reduction to Bernoulli multi-armed
bandit setting.

Theorem 8. There exists an algorithm that uses O( n
ε2

log 1
δ
) comparisons and w.p.≥ 1 − δ, outputs

an ε-Borda maximum.
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For ε-Borda ranking, we note that if we compare an element e with 2
ε2

log 2n
δ

random elements, w.p.
≥ 1 − δ/n, the fraction of times e wins approximates the Borda score of e to an additive error of
ε
2

. Ranking based on these approximate scores results in an ε-Borda ranking. We present BORDA-
RANKING in C.1 that uses 2n

ε2
log 2n

δ
comparisons and w.p.≥ 1−δ outputs an ε-Borda ranking. Proof

in C.1.
Theorem 9. BORDA-RANKING(S, ε, δ) uses 2n

ε2
log 2n

δ
comparisons and w.p.≥ 1 − δ outputs an

ε-Borda ranking.

6 Experiments

In this section we validate the performance of our algorithms using simulated data. Since we es-
sentially derived a negative result for ε-ranking, we consider only our ε-maxing algorithms - SEQ-
ELIMINATE and OPT-MAXIMIZE for experiments. All results are averaged over 100 runs.
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Figure 1: Comparison of SEQ-ELIMINATE and OPT-MAXIMIZE

Similar to [14, 7], we consider the stochastic model pi,j = 0.6 ∀i < j. We use maxing algorithms to
find 0.05-maximum with error probability δ = 0.1. Note that i = 1 is the unique 0.05-maximum un-
der this model. In Figure 1, we compare the performance of SEQ-ELIMINATE and OPT-MAXIMIZE
over different ranges of n. Figures 1(a), 1(b) show that for small n i.e., n ≤ 1300 SEQ-ELIMINATE
performs well and for large n i.e., n ≥ 1300, OPT-MAXIMIZE performs well. Since we are using
δ = 0.1, the experiment suggests that for δ ⪆ 1

n1/3 , OPT-MAXIMIZE uses fewer comparisons as com-
pared to SEQ-ELIMINATE. Hence it would be beneficial to use SEQ-ELIMINATE for δ ≤ 1

n1/3 and
OPT-MAXIMIZE for higher values of δ. In further experiments, we use δ = 0.1 and n < 1000 so we
use SEQ-ELIMINATE for better performance.

We compare SEQ-ELIMINATE with BTM-PAC [7], KNOCKOUT [14], MallowsMPI [13], and
AR [16] . KNOCKOUT and BTM-PAC are PAC maxing algorithms for models with SST and
stochastic triangle inequality requirements. AR finds an element with maximum Borda score. Mal-
lows finds the absolute best element under Weak Stochastic Transitivity.

We again consider the model: pi,j = 0.6∀i < j and try to find a 0.05-maximum with error probability
δ = 0.1. Note that this model satisfies both SST and stochastic triangle inequality and under this
model all these algorithms can find an ε-maximum. From Figure 2(a), we can see that BTM-PAC
performs worse for even small values of n and from Figure 2(b), we can see that AR performs worse
for higher values of n. One possible reason is that BTM-PAC is tailored for reducing regret in the
bandit setting and in the case of AR, Borda scores of elements become approximately the same with
increasing number of elements, leading to more comparisons. For this reason, we drop BTM-PAC
and AR for further experiments.

We also tried PLPAC [12] but it fails to achieve required accuracy of 1 − δ since it is designed
primarily for Plackett-Luce. For example, we considered the previous setting pi,j = 0.6 ∀i < j with
n = 100 and tried to find a 0.09-maximum with δ = 0.1. Even though PLPAC used almost same
number of comparisons (57237) as SEQ-ELIMINATE (56683), PLPAC failed to find 0.09-maxima
20 out of 100 runs whereas SEQ-ELIMINATE found the maximum in all 100 runs.

In figure 3, we compare algorithms SEQ-ELIMINATE, KNOCKOUT [14] and MallowsMPI [13]
for models that do not satisfy stochastic triangle inequality. In Figure 3(a), we consider the stochastic
model p1,j = 1

2
+ q̃ ∀j ≤ n/2, p1,j = 1 ∀j > n/2 and pi,j = 1

2
+ q̃ ∀1 < i < j where q̃ ≤ 0.05 and

we pick n = 10. Observe that this model satisfies SST but not stochastic triangle inequality. Here
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Figure 2: Comparison of Maxing Algorithms with Stochastic Triangle Inequality

again, we try to find a 0.05-maximum with δ = 0.1. Note that any i ≤ n/2 is a 0.05 maximum. From
Figure 3(a), we can see that MallowsMPI uses more comparisons as q̃ decreases since MallowsMPI
is not a PAC algorithm and tries to find the absolute maximum. Even though KNOCKOUT performs
better than MallowsMPI, it fails to output a 0.05 maximum with probability 0.12 for q̃ = 0.001
and 0.26 for q̃ = 0.0001. Thus KNOCKOUT can fail when the model doesn’t satisfy stochastic
triangle inequality. We give an explanation for this behavior in Appendix D. By constrast, even
for q̃ = 0.0001, SEQ-ELIMINATE outputted a 0.05 maximum in all runs and outputted the abosulte
maximum in 76% of trials. We can also see that SEQ-ELIMINATE uses much fewer comparisons
compared to the other two algorithms.

In Figure 3(b), we compare SEQ-ELIMINATE and MallowsMPI on the Mallows model, a model
which doesn’t satisfy stochastic triangle inequality. Mallows model can be specified with one pa-
rameter φ. We consider n = 10 elements and find a 0.05-maximum with error probablility δ = 0.05.
From Figure 3(b) we can see that the performance of MallowsMPI gets worse as φ approaches 1,
since comparison probabilities get close to 1

2
whereas SEQ-ELIMINATE is not affected.
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Figure 3: Comparison of SEQ-ELIMINATE and MALLOWSMPI over Mallows Model

One more experiment is presented in Appendix E.

7 Conclusion

We extended the study of PAC maxing and ranking to general models which satisfy SST but not
stochastic triangle inequality. For PAC maxing, we derived an algorithm with linear complexity.
For PAC ranking, we showed a negative result that any algorithm needs Ω(n2) comparisons. We
thus showed that removal of stochastic triangle inequality constraint does not affect PAC maxing
but affects PAC ranking. We also ran experiments over simulated data and showed that our PAC
maximum selection algorithms are better than other maximum selection algorithms.

For unconstrained models, we derived algorithms for PAC Borda maxing and PAC Borda ranking
by making connections with traditional multi-armed bandit setting.
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plackett-luce: A dueling bandits approach. In NIPS, pages 604–612, 2015. 1.2, 6
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A Maxing

A.1 COMPARE Algorithm

Motivated by a related algorithm in [14], we describe an adaptive version of COMPARE that stops when it is
confident about the result, even if the number of comparisons is less than that specified in subsection 3.1.1. If
p̃i,j is far outside (εl, εu), this adaptive algorithm will terminate much sooner.

To do so, COMPARE maintains a varying confidence interval ĉ such that w.p. ≥ 1 − δ, ∣ ˆ̃pi,j − p̃i,j ∣ < ĉ after any
number of comparisons. If at any time before the above number of comparisons, ∣ ˆ̃pi,j − εl+εu

2
∣ > ĉ, COMPARE

simply returns the result based on the current ˆ̃pi,j .

Algorithm 4 COMPARE

1: inputs
2: element i, element j, bias lower limit εl ≥ 0, bias upper limit εu > εl, confidence δ
3: initialize
4: εm = (εl + εu)/2, ˆ̃pi,j ← 0, ĉ← 1

2
, t← 0, w ← 0

5: while ∣ ˆ̃pi,j − εm∣ ≤ ĉ and t ≤ 2
(εu−εl)2

log 2
δ

do
6: Compare i and j
7: if i wins then
8: w ← w + 1
9: end if

10: t← t + 1

11: ˆ̃pi,j ←
w
t
− 1

2
, ĉ←

√
1
2t

log 4t2

δ

12: end while
13: if ˆ̃pi,j ≤ εm then
14: return 1
15: end if
16: return 2

A.2 Proof of Lemma 1

We prove Lemma by dividing it into smaller parts. We first bound the comparisons used by COMPARE.
Lemma 10. For εu > εl ≥ 0, COMPARE(i, j, εl, εu, δ) uses ≤ 2

(εu−εl)
2 log 2

δ
comparisons.

Proof. Notice that COMPARE(i, j, εl, εu, δ) compares elements i and j for at most m = 2
(εu−εl)

2 log 2
δ

times
and hence the Lemma follows.

We show that under the first hypothesis namely p̃i,j ≤ εl, w.p.≥ 1 − δ, COMPARE(i, j, εl, εu, δ) returns 1.
Lemma 11. For εu > εl ≥ 0, if p̃i,j ≤ εl, then w.p.≥ 1 − δ, COMPARE(i, j, εl, εu, δ) outputs 1.

Proof. Let p̂ti,j and ĉt denote p̂i,j and ĉ respectively after t comparisons between i and j during
COMPARE(i, j, εl, εu, δ). COMPARE(i, j, εl, εu, δ) outputs 2 only if p̂ti,j > 1

2
+ εl+εu

2
+ ĉt for any t < m =

2
(εl−εu)

2 log 2
δ

or if p̂mi,j > 1
2
+ εl+εu

2
. We bound the probability of either of these events by δ

2
and the result

follows from the union bound.

By Hoeffding’s inequality,

Pr(p̂ti,j >
1

2
+ εl + εu

2
+ ĉt) ≤ Pr(p̂ti,j >

1

2
+ εl + ĉt) ≤ e−2t(ĉ

t
)
2

= e−log
4t2

δ = δ

4t2
.

By the union bound, Pr(∃t s.t. p̂ti,j > 1
2
+ εl+εu

2
+ ĉt) ≤ ∑t δ

4t2
≤ δ

2
.

Similarly, by Hoeffding’s inequality,

Pr(p̂mi,j >
1

2
+ εl + εu

2
) ≤ e−2m((εu−εl)/2)

2

= e− log 2
δ = δ

2
.

We now show that under the second hypothesis namely p̃i,j ≥ εu, w.p.≥ 1− δ, COMPARE(i, j, εl, εu, δ) returns
2.
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Lemma 12. For εu > εl ≥ 0, if p̃i,j ≥ εu, then w.p.≥ 1 − δ, COMPARE(i, j, εl, εu, δ) outputs 2.

Proof. Let p̂ti,j and ĉt denote p̂i,j and ĉ respectively after t comparisons between i and j during
COMPARE(i, j, εl, εu, δ). COMPARE(i, j, εl, εu, δ) outputs 1 only if p̂ti,j < 1

2
+ εl+εu

2
− ĉt for any t < m =

2
(εu−εl)

2 log 2
δ

or if p̂mi,j ≤ 1
2
+ εl+εu

2
. We bound the probability of either of these events by δ

2
and the result

follows from the union bound.

By Hoeffding’s inequality,

Pr(p̂ti,j <
1

2
+ εl + εu

2
− ĉt) ≤ Pr(p̂ti,j <

1

2
+ εu − ĉt) ≤ e−2t(ĉ

t
)
2

= e−log
4t2

δ = δ

4t2
.

By the union bound, Pr(∃t s.t. p̂ti,j < 1
2
+ εl+εu

2
− ĉt) ≤ ∑t δ

4t2
≤ δ

2
.

Similarly, by Hoeffding’s inequality,

Pr(p̂mi,j ≤
1

2
+ εl + εu

2
) ≤ e−2m((εu−εl)/2)

2

= e− log 2
δ = δ

2
.

Thus proof of Lemma 1 follows from Lemmas 10, 11 and 12.

A.3 Proof of Theorem 2

Proof. We first bound the total number of comparisons. Before each call of COMPARE (step 7), SEQ-
ELIMINATE eliminates an element in step 6, hence COMPARE is called for exactly n−1 times. Further observe
that COMPARE(i, j,0, ε, δ/n) always uses less than 2

ε2
log 2n

δ
comparisons. Hence the total comparisons used

by SEQ-ELIMINATE(S, ε, δ) is

≤
n−1

∑
k=1

2

ε2
log

2n

δ
= O( n

ε2
log

n

δ
).

We now show that w.p.≥ 1− δ, SEQ-ELIMINATE(S, ε, δ) outputs an ε-maximum. Let rt, ct denote the running
and competing elements respectively before tth run of COMPARE. Then by Lemmas 11 and 12, for any t, w.p.
≥ 1 − δ

n
,

p̃rt+1,rt ≥ 0, (1)

p̃rt+1,ct > −ε. (2)

Further, by the union bound the probability that Equations 1 and 2 do not hold for some 1 ≤ t ≤ n is ≤ δ. Now
let b∗ be the absolute maximum element i.e., p̃b∗,e ≥ 0 ∀e ∈ S. Then, either b∗ is set as the running element
before the first run of COMPARE i.e., r1 = b∗ or b∗ is the competing element at the tth run of COMPARE for
some 1 ≤ t ≤ n i.e., ct = b∗. We show that in both cases, the output is an ε-maximum.

If r1 = b∗, then by equation 1, future running elements are either b∗ or better than b∗. Since b∗ is the absolute
maximum, future running elements must be b∗ and hence b∗ is the output.

If for some t, ct = b∗, then by equation 2, p̃rt+1,b∗ > −ε. Further, by equation 1, p̃rl,rt+1 ≥ 0 ∀l ≥ t + 1.
Hence by strong stochastic transitivity, p̃rn,b∗ > −ε. Again, by strong stochastic transitivity, p̃rn,e > −ε ∀e ∈ S.
Hence, the output is ε-maximum.

A.4 PICK-ANCHOR algorithm

Algorithm 5 PICK-ANCHOR

1: inputs
2: Set S of size n, size n′, bias ε, confidence δ.
3: Form a set Q by selecting min ( n

n′ log 2
δ
, n) random elements from S without replacement.

4: return SEQ-ELIMINATE(Q, ε, δ
2
)
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A.5 Proof of Lemma 3

Proof. We first bound the number of comparisons used by PICK-ANCHOR(S,n′, ε, δ). Since ∣Q∣ ≤ n
n′ log

2
δ
=

O( n
n′ log

1
δ
), Theorem 2 implies that the number of comparisons used by PICK-ANCHOR is

= 2∣Q∣
ε2

log
2∣Q∣
δ

= O(
n
n′ log

1
δ

ε2
log

n
n′ log

1
δ

δ
)

= O( n

n′ε2
log

1

δ
(log n

n′δ
+ log log

1

δ
))

= O( n

n′ε2
log

1

δ
log

n

n′δ
).

We show that w.p.≥ 1 − δ, the output element is an (ε, n′)-good anchor element. We first show that Q contains
atleast one of the top n′ elements. We then show that the output element defeats one of the top n′ elements with
probability ≥ 1

2
− ε. Hence by strong stochastic transitivity, the output element defeats every element outside

the top n′ elements with probability ≥ 1
2
− ε.

The probability that Q does not contain an element in top n′ elements is ≤ (1 − n′
n
)
n
n′ log

2
δ ≤ δ

2
. Note that the

above statement is true even when size of Q is n. Let the best element in Q be denoted as q∗. By Theorem 2,
w.p.≥ 1−δ/2, the output element o of SEQ-ELIMINATE(Q, ε, δ

2
) is an ε-maximum ofQ. Hencew.p. ≥ 1−δ/2,

p̃q∗,o ≤ ε and therefore by strong stochastic transitivity, for element e worse than q∗, p̃e,o ≤ p̃q∗,o ≤ ε. Since,
w.p.≥ 1− δ/2, the number of elements that are better than q∗ is less than n′, by the union bound, w.p.≥ 1− δ, o
is an (ε, n′)-good anchor element.

A.6 Proof of Lemma 5

We prove the Lemma by dividing it into three parts. We first show that an element e that is εu better than anchor
a i.e., p̃e,a ≥ εu, is part of PRUNE(S, a, n′, εl, εu) w.p.≥ 1 − δ/2.

Lemma 13. If p̃e,a ≥ εu, then w.p.≥ 1 − δ/2, the output set of PRUNE(S, a, n′, εl, εu, δ) contains e.

Proof. e is not part of output set only if e ∈ Qt for some t. Qt will contain e only if St con-
tains e and COMPARE(e, a, εl, εu, δ

2t+1 ) returns 1. By Lemma 12, since p̃e,a ≥ εu, probability that
COMPARE(e, a, εl, εu, δ

2t+1 ) returns 1 is ≤ δ
2t+1 . Hence the probability that Qt contains e is ≤ δ

2t+1 and
therefore by the union bound the probability that output set does not contain e is ≤ ∑∞

t=1
δ

2t+1 ≤ δ
2

.

For 1
n
≤ δ ≤ n′

n
, and if a is a good anchor element, we show that first round of pruning itself will reduce the set

size to 2n′ and hence bound the number of comparisons used by PRUNE.

Lemma 14. If n′ ≥ 8 log2 n, 1
n
≤ δ ≤ n′

n
and a is an (εl, n′)-good anchor element then w.p.≥ 1 − δ/2,

PRUNE(S, a, n′, εl, εu, δ) uses O( n
(εu−εl)

2 log 1
δ
) comparisons and outputs a set of size at most 2n′.

Proof. If n′ ≥ n
2

, the lemma is trivial. So let n′ < n
2

. Let the elements that defeat a with probability ≥ 1
2
+ εl

i.e., elements in set {e∣p̃e,a ≥ εl} be called good elements and the remaining elements be bad elements. Note
that the number of bad elements in S1 is ≥ n − n′. We show that the number of bad elements in S2 is ≤ n′.
An element e is part of S2 only if COMPARE(e, a, εl, εu, δ/4) returns 2. By Lemma 11, each bad element in
S1 appears in S2 w.p.≤ δ/4. Therefore by the Chernoff bound, the probability that there are more than n′ bad
elements in S2 is

≤ e−(n−n
′
)D( n′

n−n′ ∣∣δ/4) ≤ e−
n
2
D(n

′
n
∣∣δ/4) ≤ e−

n
2
n′
2n = e−n

′
/4 ≤ 1

n2
≤ δ
2
.

Since the number of good elements in S1 is ≤ n′, their size in S2 is also ≤ n′. Hence w.p.≥ 1 − δ/2,
∣S2∣ ≤ 2n′ and therefore PRUNE stops after first iteration. Noting that PRUNE ran only for one iteration t = 1,
COMPARE(e, a, εl, εu, δ/4) uses O( 1

(εu−εl)
2 log 1

δ
) comparisons.

We now bound the number of comparisons used by PRUNE for higher values of δ by showing that after each
round, the number of elements reduces roughly by a factor of δ.

Lemma 15. If n′ >
√
6n logn, δ ≥ n′

n
and a is an (εl, n′)-good anchor element, then w.p.≥ 1 − δ

2
,

PRUNE(S, a, n′, εl, εu, δ) uses O( n
(εu−εl)

2 log 1
δ
) comparisons and outputs a set of size less than 2n′.
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Proof. As before let the elements that defeat a with probability ≥ 1
2
+ εl i.e., elements in set {e∣p̃e,a ≥ εl} be

called good elements and the remaining elements be bad elements. The number of good elements in S1 is ≤ n′
and number of bad elements in S1 is ≥ n − n′. We first show that in each iteration the number of bad elements
decreases by atleast a factor of δ until it falls below n′. We then bound the number of rounds it takes for number
of bad elements to fall below n′. Using this bound on number of rounds, we separately bound the number of
comparisons used over bad and good elements.

Note that for every bad element e, COMPARE(e, a, εl, εu, δ′) outputs 2 with probability ≤ δ′ ≤ δ/4. Hence, if
at the beginning of the round, the number of bad elements is more than n′, the probability that number of bad
elements does not reduce by at least a factor of δ is

≤ e−n
′D(δ∣∣δ/4) ≤ e−n

′δ/2 ≤ e−
(n′)2
2n ≤ 1

n3

where the last inequality follows from n′ ≥
√
6n logn.

Now if the number of bad elements reduces by δ after each round, then the number of bad elements falls below
n′ in t = 2 log 1

δ

n
n′ ≤ n rounds. Thus by the union bound, w.p.≥ 1− 1

n2 , the number of bad elements reduces by
δ until the size becomes less than n′. Henceforth we assume this and bound the number of comparisons used.

We first bound the number of comparisons taken by PRUNE over bad elements. Number of bad elements in St
is ≤ nδt−1. Since COMPARE(e, a, εl, εu, δ′) uses 2

(εu−εl)
2 log 1

δ′ , the number of comparisons used by PRUNE

over bad elements is

≤
2 log1/δ n

n′
∑
t=1

2nδt−1

(εu − εl)2
log

2t+1

δ

≤ 2n

(εu − εl)2

2 log1/δ n
n′

∑
t=1

(δt−1 log 1

δ
+ (t + 1)(δ)t−1 log 2)

= O( n

(εu − εl)2
log

1

δ
).

The last equality follows from the fact that if δ ≤ 1/2 (if δ > 1/2, we can choose δ = 1/2) then ∑t δt−1 and
∑t(t + 1)δt−1 are bounded.

Now we bound the number of comparisons used by PRUNE over good elements. The number of comparisons
used by PRUNE over good elements is

≤
2 log1/δ n

n′
∑
t=1

n′

(εu − εl)2
log

2t+1

δ

≤ n′

(εu − εl)2

2 log1/δ n
n′

∑
t=1

(log 1

δ
+ (t + 1) log 2)

≤ n′

(εu − εl)2
((2 log1/δ

n

n′
) log 1

δ
+ (2 log1/δ

n

n′
)
2

)

= O( n

(εu − εl)2
log

1

δ
).

Proof of Lemma 5 follows from Lemmas 13, 14 and 15.

A.7 Proof of Theorem 6

We prove the theorem by breaking it into parts. We first show that if anchor element a, the output of PICK-
ANCHOR is a 2ε/3-maximum then w.p.≥ 1 − δ/4, OPT-MAXIMIZE outputs a.

Lemma 16. If a, the output of step 6 in OPT-MAXIMIZE(S, ε, δ) is a 2ε
3

-maximum of S, then w.p.≥ 1 − δ
4

,
OPT-MAXIMIZE(S, ε, δ) outputs a.

Proof. a is not returned only if COMPARE in step 9 of OPT-MAXIMIZE returns 2. Since a is 2ε
3

-maximum of
S, p̃e,a ≤ 2ε

3
, ∀e ∈ S. Then by Lemma 11, the probability that a single call of COMPARE(e, a,2ε/3, ε, δ

4n
)

returns 2 is ≤ δ
4n

. Hence by the union bound, the probability that COMPARE returns 1 for all calls in step 9 of
OPT-MAXIMIZE is ≥ 1 − δ/4. Therefore the Lemma follows.
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We now bound the number of comparisons used by OPT-MAXIMIZE in steps 1-6 and also prove some properties
of PRUNE ’s output set and anchor element.

Lemma 17. For δ ≥ 1
n

, w.p.≥ 1 − δ/2, steps 1-6 in OPT-MAXIMIZE(S, ε, δ) uses O( n
ε2

log 1
δ
) comparisons,

outputs a set S′ of size at most
√
24n logn and either a is a 2ε/3-maximum element or S′ contains the absolute

maximum element.

Proof. By Lemma 3, w.p.≥ 1 − δ/4, PICK-ANCHOR(S,
√
6n logn, ε

3
, δ
4
) uses O(

√

n logn

ε2
log 1

δ
) compar-

isons and outputs an (ε/3,
√
6n logn)-good anchor element. From now we assume that a, the output of

PICK-ANCHOR(S,
√
6n logn, ε

3
, δ
4
) is an (ε/3,

√
6n logn)-good achor element.

By Lemma 5, w.p.≥ 1 − δ/4, PRUNE(S, a,
√
6n logn, ε/3,2ε/3, δ/4) uses O( n

ε2
log 1

δ
) comparisons, outputs

a set of size at most
√
24n logn and if a is not an 2ε/3-maximum, then S′ contains the absolute maximum.

And the Lemma follows by using the union bound.

We now bound the number of comparisons used by OPT-MAXIMIZE during steps 8-13 assuming that either
anchor element a is 2ε/3-maximum or S′ contains the absolute maximum of S.

Lemma 18. For δ ≥ 1
n

, if a, the output of step 6 and S′, the output of step 7 are such that either a is 2ε/3-
maximum of S or S′ contains the absolute maximum element of S, then steps 8-13 of OPT-MAXIMIZE(S, ε, δ)
uses O( ∣S

′
∣

ε2
log n

δ
) comparisons and w.p.≥ 1 − δ/2, outputs an ε-maximum.

Proof. We first bound the number of comparisons. Each COMPARE(e, a,2ε/3, ε, δ
4n
) uses O( 1

ε2
log n

δ
) com-

parisons and hence over all elements of S′, COMPARE uses at most O( ∣S
′
∣

ε2
log n

δ
) comparisons. Further

SEQ-ELIMINATE(S′, ε, δ/4) uses O( ∣S
′
∣

ε2
log n

δ
) comparisons by Theorem 2.

If a is a 2ε
3

-maximum, then the result follows by Lemma 16.

Let a not be an 2ε
3

-maximum. Then S′ contains the absolute maximum denoted here by b∗. Notice that
by strong stochastic transitivity, an ε-maximum of S′ is an ε-maximum of S since b∗ ∈ S′. By Theorem 2,
w.p.≥ 1 − δ

4
, SEQ-ELIMINATE(S′, ε, δ/4) outputs an ε-maximum. Now if p̃b∗,a > ε, then w.p.≥ 1 − δ

4n
,

COMPARE(b∗, a,2ε/3, ε, δ
4n
) returns 2 and hence a is not returned but SEQ-ELIMINATE(S′, ε, δ/4) is returned.

If p̃b∗,a ≤ ε, then a is an ε-maximum and hence returning a also results in an ε-maximum output. Lemma then
follows by the union bound.

Theorem 6 then follows from Theorem 2 and Lemmas 17 and 18.

B Ranking

B.1 Proof sketch for Theorem 7

Proof sketch. Consider the model where p̃a1,an = 1/2, p̃ai,aj = (0 <)µ(≪ 1/n10), when i < j and (i, j) ≠
(n,1). This model has an order: a1 > a2 > ⋯ > an−1 > an i.e., p̃ai,aj > 0 ∀i < j. Further this model satisfies
strong stochastic transitivity since p̃ai,ak ≥max(p̃ai,aj , p̃aj ,ak) ∀i < j < k.

We prove the Lemma by reducing the above model to the model where µ is replaced by 0. Note that new model
does not satisfy strong stochastic transitivity but helps us in proving the Lemma.

Note that µ is so small that if we consider a model where we replace µ with 0, the comparisons behave es-
sentially similarly. More formally, let model Mµ be the model we consider and M0 be the model when µ
is replaced with 0. Let S denote a sequence of comparisons where each element of the sequence includes the
elements compared and its outcome. Further, for each sequence S, let Pµ(S) and P0(S) denote the probability
of sequence S under models Mµ and M0 respectively. Now consider a sequence S of comparisons of length
≤ n2/20. Then

P0(S)
Pµ(S)

≥ ( 1/2
1/2 + µ

)
n2
/20

≥ e−n
2
/(10n10

) ≥ 6

7

Thus the probability of any sequence of length ≤ n2

20
is approximately same under both models. Hence if there is

an algorithm that uses n2

20
comparisons and w.p.≥ 7/8 produces an 1/4-ranking under Mµ model then applying

same algorithm over M0 model produces an 1/4-ranking w.p.≥ 7
8
⋅ 6
7
= 3

4
.
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We now show that there exists no algorithm that uses n2

20
comparisons and w.p.≥ 3

4
generates a 1/4-ranking un-

derM0, thus proving the Lemma. It is easy to see that any ordering outputted without querying the comparison
between a1 and an is a 1/4-ranking w.p. exactly 1/2 since no order between a1 and an can be deduced. Since
the pair (a1, an) is one random pair among (n

2
) pairs, the probability that the algorithm asks a comparison

between this pair with n2/20 comparisons is < 1
2

. So the probability that the output order contains a1 and an
in the right order is < 1

2
+ 1

2
⋅ 1
2
= 3

4
.

B.2 Ranking Algorithm

We present STRONG-TRANSITIVITY-RANKING that uses O(n
2

ε2
log n

δ
) comparisons and w.p.≥ 1 − δ outputs

an ε-ranking. STRONG-TRANSITIVITY-RANKING achieves this by approximating each p̃i,j with p̂i,j to an
additive error of ε

2
. We first argue that there is an element e such that p̂e,j ≥ 1

2
− ε/2 ∀j ∈ S and such

an element is an ε-maximum. Observe that if there is any element e such that p̂e,j ≥ 1
2
− ε/2 ∀j ∈ S then

pe,j ≥ 1
2
− ε ∀j ∈ S and hence e is an ε-maximum of S. Further recall that for the absolute maximum a∗,

p̃a∗,j ≥ 1
2
∀j ∈ S and hence p̂a∗,j ≥ 1

2
− ε/2 ∀j ∈ S. Therefore there will be at least one element e s.t.

p̂e,j ≥ 1
2
− ε/2 and such an element will be an ε-maximum of S. We find one such element, delete it from S and

add it to the end of the ordered output set. We continue this process until we run out of elements in S. Since
at every step we are adding an ε-maximum of the remaining set, the ordered output set will be an ε-ranking.
We first present a subroutine ESTIMATE-PROBABILITY that compares two elements a and b for 1

2ε2
log 2

δ
and

w.p.≥ 1 − δ approximates p(i, j) to an additive error of ε.

Algorithm 6 ESTIMATE-PROBABILITY

1: inputs
2: element i, element j, bias ε, confidence δ.
3: Compare i and j for 1

2ε2
log 2

δ
times.

4: return Fraction of times i won

Lemma 19. ESTIMATE-PROBABILITY(i, j, ε, δ) uses 1
2ε2

log 2
δ

comparisons and w.p.≥ 1 − δ approximates
pi,j to an additive error of ε.

Proof. Proof follows from Hoeffding’s inequality.

Algorithm 7 STRONG-TRANSITIVITY-RANKING

1: inputs
2: Set S, bias ε, confidence δ
3: for every pair {i, j} such that i, j ∈ S do
4: p̂i,j ← ESTIMATE-PROBABILITY(i, j, ε/2, δ/n2)
5: p̂j,i ← 1 − p(i, j)
6: end for
7: ordered set T ← ∅

8: while ∣S∣ > 0 do
9: if ∃e s.t. p̂e,f ≥ 1

2
− ε ∀f ∈ S then

10: Add e at the end of T
11: S = S ∖ {e}
12: else
13: Add S at the end of T
14: return T
15: end if
16: end while
17: return T

Lemma 20. STRONG-TRANSITIVITY-RANKING(S, ε, δ) uses O(n
2

ε2
log n

δ
) comparisons and w.p.≥ 1 − δ

returns an ε-ranking.

Proof. STRONG-TRANSITIVITY-RANKING calls ESTIMATE-PROBABILITY for O(n2) times, once for each
pair and each EP (i, j, ε/2, δ/n2) uses O( 1

ε2
log n

δ
) comparisons and hence bound on comparisons follow.
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W.p.≥ 1 − δ/n2, ESTIMATE-PROBABILITY(i, j, ε/2, δ/n2) approximates pi,j with p̂i,j such that ∣pi,j − p̂i,j ∣ ≤
ε
2

. By the union bound, w.p.≥ 1 − δ, ∣pi,j − p̂i,j ∣ ≤ ε
2
∀i, j, ∈ S. From here we assume that ∣pi,j − p̂i,j ∣ ≤ ε

2

∀i, j, ∈ S and show that the output is an ε-ranking. Let St denote the set of remaining elements in S after
t elements are removed from S. We first show that for 0 ≤ t ≤ n − 1, there is one element e such that
p̂e,j ≥ 1

2
− ε ∀j ∈ St and such an element is an ε-maximum of St. Observe that if there is an element e such

that p̂e,j ≥ 1
2
− ε/2 ∀j ∈ St then pe,j ≥ 1

2
− ε ∀j ∈ St and hence e is an ε-maximum of St. Further recall

that for the absolute maximum at∗ of St, pat∗,j ≥ 1
2
∀j ∈ St and hence p̂at∗,j ≥ 1

2
− ε/2 ∀j ∈ St. Therefore

there will be at least one element e s.t. p̂e,j ≥ 1
2
− ε/2 and such an element will be an ε-maximum of St.

STRONG-TRANSITIVITY-RANKING deletes one such element from St and adds it to the end of the ordered
output set. Since for every t, STRONG-TRANSITIVITY-RANKING adds an ε-maximum of St to the output set,
the Lemma follows.

C Borda Scores

C.1 Ranking Algorithm for Borda Scores

Algorithm 8 ESTIMATE-BORDA-SCORE

1: inputs
2: set S, element e, bias ε, confidence δ.
3: Initialize: w ← 0, ŝ← 1

2
, m← 1

2ε2
log 2

δ
.

4: for k = 1 to k =m do
5: Compare e with random element ∈ S
6: if e wins then
7: w ← w + 1
8: end if
9: ŝ = w

k
10: end for
11: return ŝ

Lemma 21. ESTIMATE-BORDA-SCORE(S, a, ε, δ) uses 1
2ε2

log 2
δ

comparisons and w.p.≥ 1− δ approximates
s(a) to an additive error of ε.

Proof. Proof follows from properties of ESTIMATE-BORDA-SCORE and Hoeffding’s inequlity.

Algorithm 9 BORDA-RANKING

1: inputs
2: set S, bias ε, confidence δ.
3: Initialize: be ← 1

2
for all e ∈ S

4: for element e in S do
5: be ← ESTIMATE-BORDA-SCORE(S, e, ε

2
, δ
n
)

6: end for
7: Rank S according to be.
8: return S.

Theorem 22. BORDA-RANKING(S, ε, δ) uses 2n
ε2

log 2n
δ

comparisons and w.p.≥ 1 − δ outputs an ε-Borda
ranking.

Proof. BORDA-RANKING calls ESTIMATE-BORDA-SCORE for exactly n times and each call of
ESTIMATE-BORDA-SCORE(S, e, ε/2, δ/n) uses 2

ε2
log 2n

δ
comparisons and hence the bound on comparisons

follows.

Note that w.p.≥ 1 − δ/n, ESTIMATE-BORDA-SCORE(S, e, ε/2, δ/n) approximates the Borda score of e to an
additive error of ε/2. Let the approximate Borda score of element e be be. By the union bound, w.p.≥ 1 − δ,
BORDA-RANKING(S, ε, δ) approximates all Borda scores to an additive error of ε/2. From here, we assume
that ∣be − s(e)∣ ≤ ε

2
and show that ranking based on approximate Borda scores results in an ε-Borda ranking.

If an element e appears before element f in the output ranking then be ≥ bf . Since ∣be − s(e)∣ ≤ ε
2

and
∣bf − s(f)∣ ≤ ε

2
, s(e) − s(f) = (be − bf) + (s(e) − be) + (bf − s(f)) ≤ ε. Hence the Lemma follows.
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D Why Knockout Fails

We will show that KNOCKOUT proposed in [14] fails under SST model without stochastic triangle inequality
constraint.

Consider the model where p̃a1,aj = µ ∀j < n/2, p̃a1,aj = 1
2
∀j ≥ n/2 and p̃ai,aj = µ ∀1 < i < j for some

0 < µ < 1
n10 . Observe that this model satisfies SST but not stochastic triangle inequality. Under this model, a1

is the absolute maximum and any element in the set {ai∣i < n/2} is a 1/4-maximum. We show that under this
model, w.p.≥ 1/16, KNOCKOUT(S,1/4,1/16) fails to find a 1/4-maximum.

KNOCKOUT pairs elements randomly in each round and compares each pair for a certain number of times
and the winners proceed to the next round until there is only one element left. Observe that in the first round
a1 can get paired with an element from set {ai∣1 < i < n/2} w.p.≈ 1/2 and if that happens a1 can lose
the tie w.p.≈ 1/2. Hence a1 can get eliminated in the first round w.p.≈ 1/4. Once a1 is eliminated, in the
second round, the elements will be approximately half from the first half of the original set and half from the
second half. Since these elements are almost incomparable (comparisons between any two elements is now
approximately a Bernoulli random variable with parameter 1/2), each element is almost equally likely to be
the final output. Therefore w.p.≈ 1/8, the output can be an element from second half of the set and hence not a
1/4-maximum.

E Additional Experiment

To show why PAC maximum algorithms could be preferred to absolute maximum algorithms, once again we
compare SEQ-ELIMINATE, KNOCKOUT and MallowsMPI for comparison probability values close to 1/2.
In Figure 4, we consider the stochastic model, p1,j = 0.6 ∀j > 1 and pi,j = 0.5 + q̃ ∀1 < i < j where
q̃ ≪ 0.05 with n = 15. Again, we find a 0.05-maximum with error probability δ = 0.1. From Figure 4, we
can observe that performance of MallowsMPI gets much worse as q̃ decreases whereas SEQ-ELIMINATE and
KNOCKOUT do not get affected since they are PAC maxing algorithms. Also observe that SEQ-ELIMINATE
performs much better than KNOCKOUT.
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Figure 4: Comparison of Maximum Selection Algorithms for probability values close to 1/2
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