
Clustering with Noisy Queries

Arya Mazumdar and Barna Saha
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA 01003

{arya,barna}@cs.umass.edu

Abstract

In this paper, we provide a rigorous theoretical study of clustering with noisy
queries. Given a set of n elements, our goal is to recover the true clustering by
asking minimum number of pairwise queries to an oracle. Oracle can answer
queries of the form “do elements u and v belong to the same cluster?”-the queries
can be asked interactively (adaptive queries), or non-adaptively up-front, but its
answer can be erroneous with probability p. In this paper, we provide the first
information theoretic lower bound on the number of queries for clustering with
noisy oracle in both situations. We design novel algorithms that closely match
this query complexity lower bound, even when the number of clusters is unknown.
Moreover, we design computationally efficient algorithms both for the adaptive
and non-adaptive settings. The problem captures/generalizes multiple application
scenarios. It is directly motivated by the growing body of work that use crowd-
sourcing for entity resolution, a fundamental and challenging data mining task
aimed to identify all records in a database referring to the same entity. Here crowd
represents the noisy oracle, and the number of queries directly relates to the cost
of crowdsourcing. Another application comes from the problem of sign edge
prediction in social network, where social interactions can be both positive and
negative, and one must identify the sign of all pair-wise interactions by querying
a few pairs. Furthermore, clustering with noisy oracle is intimately connected
to correlation clustering, leading to improvement therein. Finally, it introduces
a new direction of study in the popular stochastic block model where one has an
incomplete stochastic block model matrix to recover the clusters.

1 Introduction

Clustering is one of the most fundamental and popular methods for data classification. In this paper
we initiate a rigorous theoretical study of clustering with the help of a noisy oracle, a model that
captures many application scenarios and has drawn significant attention in recent years.

Suppose we are given a set of n points, that need to be clustered into k clusters where k is unknown
to us. Suppose there is an oracle that can answer pair-wise queries of the form, “do u and v belong to
the same cluster?”. Repeating the same question to the oracle always returns the same answer, but the
answer could be wrong with probability p = 1

2 − λ, λ > 0 (i.e., slightly better than random answer).
We are interested to find the minimum number of queries needed to recover the true clusters with high
probability. Understanding query complexity of the noisy oracle model is a fundamental theoretical
question [25] with many existing works on sorting and selection [7, 8] where queries are erroneous
with probability p, and repeating the same question does not change the answer. Here we study the
basic clustering problem under this setting which also captures several fundamental applications.

Crowdsourced Entity Resolution. Entity resolution (ER) is an important data mining task that
tries to identify all records in a database that refer to the same underlying entity. Starting with the

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

seminal work of Fellegi and Sunter [26], numerous algorithms with variety of techniques have been
developed for ER [24, 28, 40, 19]. Still, due to ambiguity in representation and poor data quality,
accuracy of automated ER techniques has been unsatisfactory. To remedy this, a recent trend in
ER has been to use human in the loop. In this setting, humans are asked simple pair-wise queries
adaptively, “do u and v represent the same entity?”, and these answers are used to improve the
final accuracy [30, 54, 56, 27, 52, 21, 29, 37, 55, 46]. Proliferation of crowdsourcing platforms like
Amazon Mechanical Turk (AMT), CrowdFlower etc. allows for easy implementation. However,
data collected from non-expert workers on crowdsourcing platforms are inevitably noisy. A simple
scheme to reduce errors could be to take a majority vote after asking the same question to multiple
independent crowd workers. However, often that is not sufficient. Our experiments on several real
datasets (see experimentation section for details) with answers collected from AMT [31, 52] show
majority voting could even increase the errors. Interestingly, such an observation has been made
by a recent paper as well [51]. There are more complex querying model [51, 55, 53], and involved
heuristics [31, 52] to handle errors in this scenario. Let p, 0 < p < 1/2, be the probability of error1

of a query answer which might also be the aggregated answer after repeating the query several times.
Therefore, once the answer has been aggregated, it cannot change. In all crowdsourcing works, the
goal is to minimize the number of queries to reduce the cost and time of crowdsourcing, and recover
the entities (clusters). This is exactly clustering with noisy oracle. While several heuristics have been
developed [52, 30, 53], here we provide a rigorous theory with near-optimal algorithms and hardness
bounds.

Another recent work that is conceptually close is by Asthiani et al. [4], where pair-wise queries
are used for clustering. However, the setting is very different. They consider the specific NP-hard
k-means objective with distance matrix which must be a metric and must satisfy a deterministic
separation property.

Signed Edge Prediction. The edge sign prediction problem can be defined as follows. Suppose
we are given a social network with signs on all its edges, but the sign from node u to v, denoted
by s(u, v) ∈ {±1} is hidden. The goal is to recover these signs as best as possible using minimal
amount of information. Social interactions or sentiments can be both positive (“like”, “trust”) and
negative (“dislike”, “distrust”). [41] provides several such examples; e.g., Wikipedia, where one can
vote for or against the nomination of others to adminship [10], or Epinions and Slashdots where users
can express trust or distrust, or can declare others to be friends or foes [9, 39]. Initiated by [11, 34],
many techniques and related models using convex optimization, low-rank approximation and learning
theoretic approaches have been used for this problem [17, 12, 14]. Recently [16, 14, 48] proposed
the following model for edge sign prediction. We can query a pair of nodes (u, v) to test whether
s(u, v) = +1 indicating u and v belong to the same cluster or s(u, v) = −1 indicating they are not.
However, the query fails to return the correct answer with probability 0 < p < 1/2, and we want to
query the minimal possible pairs. This is exactly the case of clustering with noisy oracle. Our result
significantly improves, and generalizes over [16, 14, 48].

Correlation Clustering. In fact, when all pair-wise queries are given, and the goal is to recover the
maximum likelihood (ML) clustering, then our problem is equivalent to noisy correlation clustering
[6, 44]. Introduced by [6], correlation clustering is an extremely well-studied model of clustering. We
are given a graph G = (V,E) with each edge e ∈ E labelled either +1 or −1, the goal of correlation
clustering is to either (a) minimize the number of disagreements, that is the number of intra-cluster
−1 edges and inter-cluster +1 edges, or (b) maximize the number of agreements that is the number
of intra-cluster +1 edges and inter-cluster −1 edges. Correlation clustering is NP-hard, but can be
approximated well with provable guarantees [6]. In a random noise model, also introduced by [6] and
studied further by [44], we start with a ground truth clustering, and then each edge label is flipped
with probability p. This is exactly the graph we observe if we make all possible pair-wise queries, and
the ML decoding coincides with correlation clustering. The proposed algorithm of [6] can recover in
this case all clusters of size ω(

√
|V | log |V |), and if “all” the clusters have size Ω(

√
|V |), then they

can be recovered by [44]. Using our proposed algorithms for clustering with noisy oracle, we can
also recover significantly smaller sized clusters given the number of clusters are not too many. Such a
result is possible to obtain using the repeated-peeling technique of [3]. However, our running time is
significantly better. E.g. for k ≤ n1/6, we have a running time of O(n log n), whereas for [3], it is
dominated by the time to solve a convex optimization over n-vertex graph which is at least O(n3).

1An approximation of p can often be estimated manually from a small sample of crowd answers.

2

Stochastic Block Model (SBM). The clustering with faulty oracle is intimately connected with the
planted partition model, also known as the stochastic block model [36, 23, 22, 2, 1, 32, 18, 49]. The
stochastic block model is an extremely well-studied model of random graphs where two vertices within
the same community share an edge with probability p′, and two vertices in different communities
share an edge with probability q′. It is often assumed that k, the number of communities, is a constant
(e.g. k = 2 is known as the planted bisection model and is studied extensively [1, 49, 23] or a
slowly growing function of n (e.g. k = o(log n)). There are extensive literature on characterizing the
threshold phenomenon in SBM in terms of the gap between p′ and q′2 (e.g. see [2] and therein for
many references) for exact and approximate recovery of clusters of nearly equal size. If we allow
for different probability of errors for pairs of elements based on whether they belong to the same
cluster or not, then the resultant faulty oracle model is an intriguing generalization of SBM. Consider
the probability of error for a query on (u, v) is 1 − p′ if u and v belong to the same cluster and q′
otherwise; but now, we can only learn a subset of the entries of an SBM matrix by querying adaptively.
Understanding how the threshold of recovery changes for such an “incomplete” or “space-efficient”
SBM will be a fascinating direction to pursue. In fact, our lower bound results extend to asymmetric
probability values, while designing efficient algorithms and sharp thresholds are ongoing works. In
[15], a locality model where measurements can only be obtained for nearby nodes is studied for two
clusters with non-adaptive querying and allowing repetitions. It would also be interesting to extend
our work with such locality constraints.

In a companion paper, we have studied a related problem where the queries are not noisy and certain
similarity values between each pair of elements are available [47]. Most of the results of the two
papers are available online in a more extensive version [45].

Contributions. Formally the clustering with a noisy oracle is defined as follows.
Problem (Query-Cluster). Consider a set of points V ≡ [n] containing k latent clusters Vi,
i = 1, . . . , k, Vi ∩ Vj = ∅, where k and the subsets Vi ⊆ [n] are unknown. There is an oracle
Op,q : V × V → {±1}, with two error parameters p, q : 0 < p < q < 1. The oracle takes as
input a pair of vertices u, v ∈ V × V , and if u, v belong to the same cluster then Op,q(u, v) = +1
with probability 1 − p and Op,q(u, v) = −1 with probability p. On the other hand, if u, v do not
belong to the same cluster then Op,q(u, v) = +1 with probability 1− q and Op,q(u, v) = −1 with
probability q. Such an oracle is called a binary asymmetric channel. A special case would be when
p = 1− q = 1

2 − λ, λ > 0, the binary symmetric channel, where the error rate is the same p for all
pairs. Except for the lower bound, we focus on the symmetric case in this paper. Note that the oracle
returns the same answer on repetition. Now, given V , find Q ⊆ V × V such that |Q| is minimum,
and from the oracle answers it is possible to recover Vi, i = 1, 2, ..., k with high probability3. Note
that the entries of Q can be chosen adaptively based on the answers of previously chosen queries.
Our contributions are as follows.
• Lower Bound (Section 2). We show that Ω(nk

∆(p‖q)) is the information theoretic lower bound
on the number of adaptive queries required to obtain the correct clustering with high probability
even when the clusters are of similar size (see, Theorem 1). Here ∆(p‖q) is the Jensen-Shannon
divergence between Bernoulli p and q distributions. For the symmetric case, that is when p = 1− q,
∆(p‖1− p) = (1− 2p) log 1−p

p . In particular, if p = 1
2 − λ, our lower bound on query complexity

is Ω(nkλ2) = Ω(nk
(1−2p)2). Developing lower bounds in the interactive setting especially with noisy

answers appears to be significantly challenging as popular techniques based on Fano-type inequalities
for multiple hypothesis testing [13, 42] do not apply, and we believe our technique will be useful in
other noisy interactive learning settings.
• Information-Theoretic Optimal Algorithm (Section 3 and B.1). For the symmetric error case, we
design an algorithm which asks at most O(nk logn

(1−2p)2) queries (Theorem 2) matching the lower bound
within an O(log n) factor, whenever p = 1

2 − λ.
• Computationally Efficient Algorithm (Section 3.2 and B.2). We next design an algorithm that is
computationally efficient and runs in O(nk log n+ k1+2ω) time where ω ≤ 2.373 is the exponent
of fast matrix multiplication and asks at most O(nklog(n) + min (nk2log(n), k5 log2 n)) queries
treating p as a constant4. Note that most prior works in SBM, or works on edge sign detection, only

2Most recent works consider the region of interest as p′ = a logn
n

and q′ = b logn
n

for some a > b > 0.
3 High probability implies with probability 1− on(1), where on(1)→ 0 as n→∞
4For exact dependency on p see the corresponding section.

3

consider the case when k is a constant [2, 32, 18], even just k = 2 [49, 1, 16, 14, 48]. For small
values of k, we get a highly efficient algorithm. We can use this algorithm to recover all clusters of
size at least min (k,

√
n) log n for correlation clustering on noisy graph, improving upon the results

of [6, 44]. As long as k = o(
√
n), this improves upon the running time of O(n3) in [3].

• Nonadaptive Algorithm (Section B.3). When the queries must be done up-front, for k = 2, we
give a simple O(n log n) time algorithm that asks O(n logn

(1−2p)4) queries improving upon [48] where
a polynomial time algorithm (at least with a running time of O(n3)) is shown with number of
queries O(n log n/(1/2− p)

logn
log logn) and over [16, 14] where O(npoly log n) queries are required

under certain conditions on the clusters. Our result generalizes to k > 2, and we show interesting
lower bounds in this setting (Appendix C in the supplementary material). Further, we derive new
lower bounds showing trade-off between queries and threshold of recovery for incomplete SBM in
Appendix C.

2 Lower bound for the faulty-oracle model

Note that we are not allowed to ask the same question multiple times to get the correct answer. In
this case, even for probabilistic recovery, a minimum size bound on cluster size is required. For
example, consider the following two different clusterings. C1 : V = tk−2

i=1 Vi t {v1, v2} t {v3} and
C2 : V = tk−2

i=1 Vi t {v1} t {v2, v3}. Now if one of these two clusterings are given to us uniformly
at random, no matter how many queries we do, we will fail to recover the correct clustering with
positive probability. Therefore, the challenge in proving lower bounds is when clusters all have size
more than a minimum threshold, or when they are all nearly balanced. This removes the constraint on
the algorithm designer on how many times a cluster can be queried with a vertex and the algorithms
can have greater flexibility. Our lower bound holds for a large set of clustering instances. We define
a clustering to be balanced if either of the following two conditions hold 1) the minimum size of a
cluster is ≥ n

20k , 2) the maximum size of a cluster is ≤ 4n
k . For any balanced clustering, we prove a

lower bound on the number of queries required.

Our main lower bound in this section uses the Jensen-Shannon (JS) divergence. The well-known KL
divergence is defined between two probability mass functions f and g: D(f‖g) =

∑
i f(i) log f(i)

g(i) .

Further define the JS divergence as: ∆(f‖g) = 1
2 (D(f‖g) + D(g‖f)). In particular, the KL and

JS divergences between two Bernoulli random variable with parameters p and q are denoted with
D(p‖q) and ∆(p‖q) respectively.

Theorem 1 (Query-Cluster Lower Bound). For any balanced clustering instance, if any (random-
ized) algorithm does not make Ω

(
nk

∆(p‖q)

)
expected number of queries then the recovery will be

incorrect with probability at least 0.29−O(1
k).

Note that the lower bound is more effective when p and q are close. Moreover our actual lower bound
is slightly tighter with the expected number of queries required given by Ω

(
nk

min{D(q‖p),D(p‖q)}

)
.

Proof of Theorem 1. We have V to be the n-element set to be clustered: V = tki=1Vi. To prove
Theorem 1 we first show that, if the number of queries is small, then there exist Ω(k) number of
clusters, that are not being sufficiently queried with. Then we show that, since the size of the clusters
cannot be too large or too small, there exists a decent number of vertices in these clusters.

The main piece of the proof of Theorem 1 is Lemma 1. We provide a sketch of this lemma here, the
full proof, which is inspired by a technique of lower bounding regret in multi-arm bandit problems
(see [5, 38]) is given in Appendix A in the supplementary material.

Lemma 1. Suppose, there are k clusters. There exist at least 4k
5 clusters such that for each element

v from any of these clusters, v will be assigned to a wrong cluster by any randomized algorithm with
probability 0.29− 10/k unless the total number of queries involving v is more than k

10∆(p‖q) .

Proof-sketch of Lemma 1. Let us assume that the k clusters are already formed, and all elements
except for one element v has already been assigned to a cluster. Note that, queries that do not involve
v plays no role in this stage.

4

Now the problem reduces to a hypothesis testing problem where the ith hypothesisHi for i = 1, . . . , k,
denotes that the true cluster for v is Vi. We can also add a null-hypothesis H0 that stands for the
vertex belonging to none of the clusters (hypothetical). Let Pi denote the joint probability distribution
of our observations (the answers to the queries involving vertex v) when Hi is true, i = 1, . . . , k.
That is for any event A we have Pi(A) = Pr(A|Hi).

Suppose T denotes the total number of queries made by an (possibly randomized) algorithm at this
stage before assigning a cluster. Let the random variable Ti denote the number of queries involving
cluster Vi, i = 1, . . . , k. In the second step, we need to identify a set of clusters that are not being
queried with enough by the algorithm.

We must have,
∑k
i=1 E0Ti = T. Let J1 ≡ {i ∈ {1, . . . , k} : E0Ti ≤ 10T

k }. That is J1

contains clusters which were involved in less than 10T
k queries before assignment. Let Ei ≡

{the algorithm outputs cluster Vi} and J2 = {i ∈ {1, . . . , n} : P0(Ei) ≤ 10
k }. The set of clus-

ters, J = J1 ∩ J2 has size, |J | ≥ 2 · 9k
10 − k = 4k

5 .

Now let us assume that we are given an element v ∈ Vj for some j ∈ J to cluster (Hj is the true
hypothesis). The probability of correct clustering is Pj(Ej). In the last step, we give an upper bound
on probability of correct assignment for this element.

We must have, Pj(Ej) = P0(Ej) + Pj(Ej) − P0(Ej) ≤ 10
k + |P0(Ej) − Pj(Ej)| ≤ 10

k + ‖P0 −
Pj‖TV ≤ 10

k +
√

1
2D(P0‖Pj). where ‖P0 − Pj‖TV denotes the total variation distance between

two distributions and and in the last step we have used the relation between total variation and
divergence (Pinsker’s inequality). Since P0 and Pj are the joint distributions of the independent
random variables (answers to queries) that are identical to one of two Bernoulli random variables: Y ,
which is Bernoulli(p), or Z, which is Bernoulli(q), it is possible to show, D(P0‖Pj) ≤ 10T

k D(q‖p).
Now plugging this in,

Pj(Ej) ≤
10

k
+

√
1

2

10T

k
D(q‖p) ≤ 10

k
+

√
1

2
=

10

k
+ 0.707,

if T ≤ k
10D(q‖p) . Had we bounded the total variation distance with D(Pj‖P0) in the Pinsker’s

inequality then we would have D(p‖q) in the denominator.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will show the claim by considering a balanced input. Recall that for a
balanced input either the maximum size of a cluster is ≤ 4n

k or the minimum size of a cluster is
≥ n

20k . We will consider the two cases separately for the proof.

Case 1: the maximum size of a cluster is ≤ 4n
k .

Suppose, the total number of queries is T ′. That means number of vertices involved in the queries is
≤ 2T ′. Note that there are k clusters and n elements. Let U be the set of vertices that are involved in
less than 16T ′

n queries. Clearly, (n− |U |) 16T ′

n ≤ 2T ′, or |U | ≥ 7n
8 .

Now we know from Lemma 1 that there exists 4k
5 clusters such that a vertex v from any one of these

clusters will be assigned to a wrong cluster by any randomized algorithm with probability 1/4 unless
the expected number of queries involving this vertex is more than k

10∆(q‖p) .

We claim that U must have an intersection with at least one of these 4k
5 clusters. If not, then more

than 7n
8 vertices must belong to less than k− 4k

5 = k
5 clusters. Or the maximum size of a cluster will

be 7n·5
8k > 4n

k , which is prohibited according to our assumption.

Now each vertex in the intersection of U and the 4k
5 clusters are going to be assigned to an incorrect

cluster with positive probability if, 16T ′

n ≤ k
10∆(p‖q) . Therefore we must have T ′ ≥ nk

160∆(p‖q) .

Case 2: the minimum size of a cluster is ≥ n
20k .

Let U ′ be the set of clusters that are involved in at most 16T ′

k queries. That means, (k − |U ′|) 16T ′

k ≤
2T ′. This implies, |U ′| ≥ 7k

8 . Now we know from Lemma 1 that there exist 4k
5 clusters (say U∗) such

5

that a vertex v from any one of these clusters will be assigned to a wrong cluster by any randomized
algorithm with probability 1/4 unless the expected number of queries involving this vertex is more
than k

10∆(p‖q) . Quite clearly |U∗ ∩ U | ≥ 7k
8 + 4k

5 − k = 27k
40 .

Consider a cluster Vi such that i ∈ U∗ ∩ U , which is always possible because the intersection is
nonempty. Vi is involved in at most 16T ′

k queries. Let the minimum size of any cluster be t. Now,
at least half of the vertices of Vi must each be involved in at most 32T ′

kt queries. Now each of these
vertices must be involved in at least k

10∆(p‖q) queries (see Lemma 1) to avoid being assigned to a

wrong cluster with positive probability. This means 32T ′

kt ≥
k

10∆(p‖q) or T ′ = Ω
(

nk
∆(p‖q)

)
, since

t ≥ n
20k .

3 Algorithms

Let V = tki=1Vi be the true clustering and V = tki=1V̂i be the maximum likelihood (ML) estimate
of the clustering that can be found when all

(
n
2

)
queries have been made to the faulty oracle. Our first

result obtains a query complexity upper bound within an O(log n) factor of the information theoretic
lower bound. The algorithm runs in quasi-polynomial time, and we show this is the optimal possible
assuming the famous planted clique hardness. Next, we show how the ideas can be extended to make
it computationally efficient. We consider both the adaptive and non-adaptive versions. The missing
proofs and details are provided in Appendix B in the supplementary document.

3.1 Information-Theoretic Optimal Algorithm

In particular, we prove the following theorem.

Theorem 2. There exists an algorithm with query complexity O(nk logn
(1−2p)2) for Query-Cluster that

returns the ML estimate with high probability when query answers are incorrect with probability
p < 1

2 . Moreover, the algorithm returns all true clusters of V of size at least C logn
(1−2p)2 for a suitable

constant C with probability 1− on(1).

Remark 1. Assuming p = 1
2 − λ, as λ → 0, ∆(p‖1 − p) = (1 − 2p) ln 1−p

p = 2λ ln 1/2+λ
1/2−λ =

2λ ln(1 + 2λ
1/2−λ) ≤ 4λ2

1/2−λ = O(λ2) = O((1− 2p)2), matching the query complexity lower bound
within an O(log n) factor.

Algorithm. 1 The algorithm that we propose is completely deterministic and has several phases.

Phase 1: Selecting a small subgraph. Let c = 16
(1−2p)2 .

1. Select c log n vertices arbitrarily from V . Let V ′ be the set of selected vertices. Create a
subgraph G′ = (V ′, E′) by querying for every (u, v) ∈ V ′ × V ′ and assigning a weight of
ω(u, v) = +1 if the query answer is “yes” and ω(u, v) = −1 otherwise .

2. Extract the heaviest weight subgraph S in G′. If |S| ≥ c log n, move to Phase 2.
3. Else we have |S| < c log n. Select a new vertex u, add it to V ′, and query u with every

vertex in V ′ \ {u}. Move to step (2).

Phase 2: Creating an Active List of Clusters. Initialize an empty list called active when Phase 2 is
executed for the first time.

1. Add S to the list active.
2. Update G′ by removing S from V ′ and every edge incident on S. For every vertex z ∈ V ′,

if
∑
u∈S ω(z, u) > 0, include z in S and remove z from G′ with all edges incident to it.

3. Extract the heaviest weight subgraph S in G′. If |S| ≥ c log n, Move to step(1). Else move
to Phase 3.

Phase 3: Growing the Active Clusters. We now have a set of clusters in active.
1. Select an unassigned vertex v not in V ′ (that is previously unexplored), and for every cluster
C ∈ active, pick c log n distinct vertices u1, u2,, ul in the cluster and query v with them.
If the majority of these answers are “yes”, then include v in C.

6

2. Else we have for every C ∈ active the majority answer is “no” for v. Include v ∈ V ′ and
query v with every node in V ′ \ v and update E′ accordingly. Extract the heaviest weight
subgraph S from G′ and if its size is at least c log n move to Phase 2 step (1). Else move to
Phase 3 step (1) by selecting another unexplored vertex.

Phase 4: Maximum Likelihood (ML) Estimate.
1. When there is no new vertex to query in Phase 3, extract the maximum likelihood clustering

of G′ and return them along with the active clusters, where the ML estimation is defined as,

max
S`,`=1,···:V=t`=1S`

∑
`

∑
i,j∈S`,i6=j

ωi,j , (see Appendix B.1) (1)

Analysis. The high level steps of the analysis are as follows. Suppose all
(
n
2

)
queries on V × V

have been made. If the ML estimate of the clustering with these
(
n
2

)
answers is same as the true

clustering of V that is, tki=1Vi ≡ tki=1V̂i then the algorithm for noisy oracle finds the true clustering
with high probability.

Let without loss of generality, |V̂1| ≥ ... ≥ |V̂l| ≥ 6c log n > |V̂l+1| ≥ ... ≥ |V̂k|. We will show that
Phase 1-3 recover V̂1, V̂2...V̂l with probability at least 1− 1

n . The remaining clusters are recovered in
Phase 4.

A subcluster is a subset of nodes in some cluster. Lemma 2 shows that any set S that is included in
active in Phase 2 of the algorithm is a subcluster of V . This establishes that all clusters in active at
any time are subclusters of some original cluster in V .
Lemma 2. Let c′ = 6c = 96

(1−2p)2 . Algorithm 1 in Phase 1 and 3 returns a subcluster of V of size at
least c log n with high probability if G′ contains a subcluster of V of size at least c′ log n. Moreover,
it does not return any set of vertices of size at least c log n if G′ does not contain a subcluster of V of
size at least c log n.

Lemma 2 is proven in three steps. Step 1 shows that if V ′ contains a subcluster of size≥ c′ log n then
S ⊆ Vi for some i ∈ [1, k] will be returned with high probability when G′ is processed. Step 2 shows
that size of S will be at least c log n, and finally step 3 shows that if there is no subcluster of size at
least c log n in V ′, then no subset of size > c log n will be returned by the algorithm when processing
G′, because otherwise that S will span more than one cluster, and the weight of a subcluster contained
in S will be higher than S giving to a contradiction.

From Lemma 2, any S added to active in Phase 2 is a subcluster with high probability, and has size at
least c log n. Moreover, whenever G′ contains a subcluster of V of size at least c′ log n, it is retrieved
by the algorithm and added to active. The next lemma shows that each subcluster added to active is
correctly grown to the true cluster: (1) every vertex added to such a cluster is correct, and (2) no two
clusters in active can be merged. Therefore, clusters obtained from active are the true clusters.
Lemma 3. The list active contains all the true clusters of V of size ≥ c′ log n at the end of the
algorithm with high probability.

Finally, once all the clusters in active are grown, we have a fully queried graph in G′ containing the
small clusters which can be retrieved in Phase 4. This completes the correctness of the algorithm.
With the following lemma, we get Theorem 2.

Lemma 4. The query complexity of the algorithm for faulty oracle is O
(
nk logn
(1−2p)2

)
.

Running time of this algorithm is dominated by finding the heaviest weight subgraph in G′, execution

of each of those calls can be done in time O([k logn
(2p−1)2]

O(logn

(2p−1)2
)
), that is quasi-polynomial in n. We

show that it is unlikely that this running time can be improved by showing a reduction from the famous
planted clique problem for which quasi-polynomial time is the best known (see Appendix B.1).

3.2 Computationally Efficient Algorithm

We now prove the following theorem. We give the algorithm here which is completely deterministic
with known k. The extension to unknown k and a detailed proof of correctness are deferred to
Appendix B.2.

7

Theorem 3. There exists a polynomial time algorithm with query complexity O(nk2

(2p−1)4) for Query-

Cluster with error probability p, which recovers all clusters of size at least Ω(k logn
(2p−1)4).

Algorithm 2. Let N = 64k2 logn
(1−2p)4 . We define two thresholds T (a) = pa + 6

(1−2p)

√
N log n and

θ(a) = 2p(1− p)a+ 2
√
N log n. The algorithm is as follows.

Phase 1-2C: Selecting a Small Subgraph. Initially we have an empty graph G′ = (V ′, E′), and all
vertices in V are unassigned to any cluster.

1. Select X new vertices arbitrarily from the unassigned vertices in V \ V ′ and add them to V ′ such
that the size of V ′ is N . If there are not enough vertices left in V \ V ′, select all of them. Update
G′ = (V ′, E′) by querying for every (u, v) such that u ∈ X and v ∈ V ′ and assigning a weight
of ω(u, v) = +1 if the query answer is “yes” and ω(u, v) = −1 otherwise .

2. Let N+(u) denote all the neighbors of u in G′ connected by +1-weighted edges. We now
cluster G′. Select every u and v such that u 6= v and |N+(u)|, |N+(v)| ≥ T (|V ′|). Then if
|N+(u)\N+(v)|+|N+(v)\N+(u)| ≤ θ(|V ′|) (the symmetric difference of these neighborhoods)
include u and v in the same cluster. Include in active all clusters formed in this step that have size
at least 64k logn

(1−2p)4 . If there is no such cluster, abort. Remove all vertices in such cluster from V ′ and
any edge incident on them from E′.

Phase 3C: Growing the Active Clusters.

1. For every unassigned vertex v ∈ V \ V ′, and for every cluster C ∈ active, pick c log n distinct
vertices u1, u2,, ul in the cluster and query v with them. If the majority of these answers are
“yes”, then include v in C.

2. Output all the clusters in active and move to Phase 1 step (1) to obtain the remaining clusters.

Running time of the algorithm can be shown to be O(nk logn
(1−2p)2 + kNω) where ω ≤ 2.373 is the

exponent of fast matrix multiplication5. Thus for small values of k, we get a highly efficient
algorithm. The query complexity of the algorithm is O(nk

2 logn
(2p−1)4) since each vertex is involved in

at most O(k
2 logn

(2p−1)4) queries within G′ and O(k logn
(2p−1)2) across the active clusters. In fact, in each

iteration, the number of queries within G′ is O(N2) and since there could be at most k rounds, the
overall query complexity is O(nk logn

(2p−1)2 + min (nk
2 logn

(2p−1)4 , kN
2)). Moreover, using the algorithm for

unknown k verbatim, we can obtain a correlation clustering algorithm for random noise model that
recovers all clusters of size Ω(min(k,

√
n) logn

(2p−1)4), improving over [6, 44] for k <
√
n

logn since our ML
estimate on G′ is correlation clustering.

3.3 Non-adaptive Algorithm

Finally for non-adaptive querying that is when querying must be done up front we prove the following.
This shows while for k = 2, nonadaptive algorithms are as powerful as adaptive algorithms, for
k ≥ 3, substantial advantage can be gained by allowing adaptive querying. For details, see Appendix
B.3 in the supplementary material.

Theorem 4. • For k = 2, there exists an O(n log n) time nonadaptive algorithm that recovers the
clusters with high probability with query complexity O(n logn

(1−2p)4). For k ≥ 3, if R is the ratio between
the maximum to minimum cluster size, then there exists a randomized nonadaptive algorithm that
recovers all clusters with high probability with query complexity O(Rnk logn

(1−2p)2). Moreover, there exists

a computationally efficient algorithm for the same with query complexity O(Rnk
2 logn

(1−2p)4).

• For k ≥ 3, if the minimum cluster size is r, then any deterministic nonadaptive algorithm must
make Ω(n

2

r) queries even when query answers are perfect to recover the clusters exactly. This shows
that adaptive algorithms are much more powerful than their nonadaptive counterparts.

5Fast matrix multiplication can be avoided by slightly increasing the dependency on k.

8

4 Experiments

In this section, we report some experimental results on real and synthetic datasets.

Real Datasets. We use the following three real datasets where the answers are generated from
Amazon Mechanical Turk.
• landmarks consists of images of famous landmarks in Paris and Barcelona. Since the images are

of different sides and clicked at different angles, it is difficult for humans to label them correctly. It
consists of 266 nodes, 12 clusters with a total of 35245 edges, out of which 3738 are intra-cluster
edges [31].

• captcha consists of CAPTCHA images, each showing a four-digit number. It consists of 244
nodes, 69 clusters with a total of 29890 edges out of which only 386 are intra-cluster edges [52].

• gym contains images of gymnastics athletes, where it is very difficult to distinguish the face of
the athlete, e.g. when the athlete is upside down on the uneven bars. It consists of 94 nodes, 12
clusters and 4371 edges out of which 449 are intra-cluster edges [52].

Repeating queries vs no repetition. Interestingly, we make the following observations. In
landmarks dataset, when a majority vote is taken after asking each pairwise query 10 times,
we get a total erroneous answers of 3696. However, just using the first crowd answer, the
erroneous answers reduce to 2654. This shows that not only a simple strategy of repeating
each query and taking a majority vote does not help to reduce error, in fact, it can amplify er-
rors due to correlated answers by the crowd members. We observed the same phenomenon
in the gym dataset where 449 answers are incorrect when majority voting is used over five an-
swers for each query, compared to 310 by just using the first crowd user. For captcha, the
error rate slightly decreases when using majority voting from 241 erroneous answers to 201.

Figure 1: Number of Queries vs Accuracy Trade-off

Synthetic Datasets. We also did ex-
periments on the following synthetic
datasets from [27].

• skew and sqrtn contain fictitious
hospital patients data, including
name, phone number, birth date and
address. The errors are generated
synthetically with error probability
p = 0.2. Each of them have 900
nodes, 404550 edges. skew has
8175 intra-cluster edges, whereas
sqrtn contains 13050 intra-cluster
edges.

Number of Queries vs Accuracy.
Figure 1 plots the number of queries
vs accuracy trade-off of our computa-
tionally efficient adaptive algorithm.

Among the vertices that are currently clustered, we count the number of induced edges that are
classified correctly and then divide it by the total number of edges in the dataset to calculate accuracy.
Given the gap between maximum and minimum cluster size is significant in all real datasets, non-
adaptive algorithms do not perform well. Moreover, if we select queries randomly, and look at the
queried edges in each cluster, then even to achieve an intra-cluster minimum degree of two in every
reasonable sized cluster, we waste a huge number queries on inter-cluster edges. While we make only
389 queries in gym to get an accuracy of 90%, the total number of random queries is 1957 considering
only the clusters of size at least nine. For landmark dataset, the number of queries is about 7400
to get an accuracy of 90%, whereas the total number of random queries is 21675 considering the
clusters of size at least seven. This can be easily explained by the huge discrepancy in the number of
intra and inter-cluster edges where random edge querying cannot perform well. Among the edges
that were mislabeled by our adaptive algorithm, 70− 90% of them are inter-cluster with very few
errors in intra-cluster edges, that is the clusters returned are often superset of the original clusters.
Similarly, the querying cost is also dominated by the inter-cluster edge queries. For example, out of
4339 queries issued by skew, 3844 are for inter-cluster edges. By using some side information such
as a similarity matrix, a significant reduction in query complexity may be possible.

9

Acknowledgements: This work is supported in parts by NSF awards CCF 1642658, CCF 1642550,
CCF 1464310, CCF 1652303, a Yahoo ACE Award and a Google Faculty Research Award. The
authors are thankful to an anonymous reviewer whose comments led to many improvements in
the presentation. The authors would also like to thank Sanjay Subramanian for his help with the
experiments.

References
[1] E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic block model. IEEE

Trans. Information Theory, 62(1):471–487, 2016.

[2] E. Abbe and C. Sandon. Community detection in general stochastic block models: Fundamental
limits and efficient algorithms for recovery. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS, pages 670–688, 2015.

[3] N. Ailon, Y. Chen, and H. Xu. Breaking the small cluster barrier of graph clustering. In
Proceedings of the 30th International Conference on Machine Learning, ICML 2013, pages
995–1003, 2013.

[4] H. Ashtiani, S. Kushagra, and S. Ben-David. Clustering with same-cluster queries. NIPS, 2016.

[5] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[6] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1-3):89–113,
2004.

[7] M. Braverman and E. Mossel. Noisy sorting without resampling. In Proceedings of the
nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 268–276. Society for
Industrial and Applied Mathematics, 2008.

[8] M. Braverman and E. Mossel. Sorting from noisy information. CoRR, abs/0910.1191, 2009.

[9] M. J. Brzozowski, T. Hogg, and G. Szabo. Friends and foes: ideological social networking. In
Proceedings of the SIGCHI conference on human factors in computing systems, pages 817–820.
ACM, 2008.

[10] M. Burke and R. Kraut. Mopping up: modeling wikipedia promotion decisions. In Proceedings
of the 2008 ACM conference on Computer supported cooperative work, pages 27–36. ACM,
2008.

[11] D. Cartwright and F. Harary. Structural balance: a generalization of heider’s theory. Psychologi-
cal review, 63(5):277, 1956.

[12] N. Cesa-Bianchi, C. Gentile, F. Vitale, G. Zappella, et al. A correlation clustering approach to
link classification in signed networks. In COLT, pages 34–1, 2012.

[13] K. Chaudhuri, F. C. Graham, and A. Tsiatas. Spectral clustering of graphs with general degrees
in the extended planted partition model. In COLT, pages 35–1, 2012.

[14] Y. Chen, A. Jalali, S. Sanghavi, and H. Xu. Clustering partially observed graphs via convex
optimization. Journal of Machine Learning Research, 15(1):2213–2238, 2014.

[15] Y. Chen, G. Kamath, C. Suh, and D. Tse. Community recovery in graphs with locality. In
Proceedings of The 33rd International Conference on Machine Learning, pages 689–698, 2016.

[16] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs. In Advances in neural information
processing systems, pages 2204–2212, 2012.

[17] K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. S. Dhillon, and A. Tewari. Prediction and clustering
in signed networks: a local to global perspective. Journal of Machine Learning Research,
15(1):1177–1213, 2014.

10

[18] P. Chin, A. Rao, and V. Vu. Stochastic block model and community detection in the sparse
graphs: A spectral algorithm with optimal rate of recovery. arXiv preprint arXiv:1501.05021,
2015.

[19] P. Christen. Data matching: concepts and techniques for record linkage, entity resolution, and
duplicate detection. Springer Science and Business Media, 2012.

[20] T. M. Cover and J. A. Thomas. Elements of information theory, 2nd Ed. John Wiley & Sons,
2012.

[21] N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi. Aggregating crowdsourced binary ratings. In
WWW, pages 285–294, 2013.

[22] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochas-
tic block model for modular networks and its algorithmic applications. Physical Review E,
84(6):066106, 2011.

[23] M. E. Dyer and A. M. Frieze. The solution of some random np-hard problems in polynomial
expected time. Journal of Algorithms, 10(4):451–489, 1989.

[24] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.
IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[25] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM
Journal on Computing, 23(5):1001–1018, 1994.

[26] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

[27] D. Firmani, B. Saha, and D. Srivastava. Online entity resolution using an oracle. PVLDB,
9(5):384–395, 2016.

[28] L. Getoor and A. Machanavajjhala. Entity resolution: theory, practice & open challenges.
PVLDB, 5(12):2018–2019, 2012.

[29] A. Ghosh, S. Kale, and P. McAfee. Who moderates the moderators?: crowdsourcing abuse
detection in user-generated content. In EC, pages 167–176, 2011.

[30] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu. Corleone:
Hands-off crowdsourcing for entity matching. In SIGMOD Conference, pages 601–612, 2014.

[31] A. Gruenheid, B. Nushi, T. Kraska, W. Gatterbauer, and D. Kossmann. Fault-tolerant entity
resolution with the crowd. CoRR, abs/1512.00537, 2015.

[32] B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite
programming: Extensions. IEEE Transactions on Information Theory, 62(10):5918–5937,
2016.

[33] T. S. Han and S. Verdu. Generalizing the fano inequality. IEEE Transactions on Information
Theory, 40(4):1247–1251, 1994.

[34] F. Harary et al. On the notion of balance of a signed graph. The Michigan Mathematical Journal,
2(2):143–146, 1953.

[35] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13–30, 1963.

[36] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
networks, 5(2):109–137, 1983.

[37] D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing systems. In
NIPS, pages 1953–1961, 2011.

[38] R. Kleinberg. Lecture notes in learning, games, and electronic markets, 2007.

11

[39] C. A. Lampe, E. Johnston, and P. Resnick. Follow the reader: filtering comments on slashdot.
In Proceedings of the SIGCHI conference on Human factors in computing systems, pages
1253–1262. ACM, 2007.

[40] M. D. Larsen and D. B. Rubin. Iterative automated record linkage using mixture models.
Journal of the American Statistical Association, 96(453):32–41, 2001.

[41] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online
social networks. In Proceedings of the 19th international conference on World wide web, pages
641–650. ACM, 2010.

[42] S. H. Lim, Y. Chen, and H. Xu. Clustering from labels and time-varying graphs. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 1188–1196. Curran Associates, Inc., 2014.

[43] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Correlation clustering with noisy partial
information. In Proceedings of The 28th Conference on Learning Theory, pages 1321–1342,
2015.

[44] C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pages 712–728, 2010.

[45] A. Mazumdar and B. Saha. Clustering via crowdsourcing. arXiv preprint arXiv:1604.01839,
2016.

[46] A. Mazumdar and B. Saha. A Theoretical Analysis of First Heuristics of Crowdsourced Entity
Resolution. The Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 2017.

[47] A. Mazumdar and B. Saha. Query complexity of clustering with side information. In Advances
in Neural Information Processing Systems (NIPS) 31, 2017.

[48] M. Mitzenmacher and C. E. Tsourakakis. Predicting signed edges with o(n(1+ε)logn) queries.
CoRR, abs/1609.00750, 2016.

[49] E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
69–75. ACM, 2015.

[50] Y. Polyanskiy and S. Verdú. Arimoto channel coding converse and rényi divergence. In
Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on,
pages 1327–1333. IEEE, 2010.

[51] D. Prelec, H. S. Seung, and J. McCoy. A solution to the single-question crowd wisdom problem.
Nature, 541(7638):532–535, 2017.

[52] V. Verroios and H. Garcia-Molina. Entity resolution with crowd errors. In 31st IEEE Interna-
tional Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015,
pages 219–230, 2015.

[53] V. Verroios, H. Garcia-Molina, and Y. Papakonstantinou. Waldo: An adaptive human interface
for crowd entity resolution. In SIGMOD, pages 219–230, 2017.

[54] N. Vesdapunt, K. Bellare, and N. Dalvi. Crowdsourcing algorithms for entity resolution. PVLDB,
7(12):1071–1082, 2014.

[55] R. K. Vinayak and B. Hassibi. Crowdsourced clustering: Querying edges vs triangles. In
Advances in Neural Information Processing Systems, pages 1316–1324, 2016.

[56] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution.
PVLDB, 5(11):1483–1494, 2012.

12

