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1 A Lower Bound on Average-Linkage-Clustering

This section is devoted to proving the following Lemma 3.2, a lower bound on the performance of
average linkage clustering.

Proof (of Lemma 3.2): Our strategy is to trick Average Linkage into collapsing the entire graph
into a star graph, while the optimum hierarchical clustering treats the graph as multiple disjoint star
graphs. As a warm-up, consider the following graph, depicted in Figure 1. The graph has two special
nodes, u and v. There is an edge between u and v of weight wuv = 1 + δ for some small δ > 0.
There are also unit weight edges between u and n

2 − 1 other nodes, and unit weight edges between v
and the remaining n

2 − 1 nodes.

If this is G, then Average Linkage will first merge u and v together, scoring a revenue gain of
(1 + δ)(n − 2) = O(n). After this first merge, all nodes appear identical and it does not matter
what order they are merged into cluster {u, v}. Average Linkage will score an additional revenue
gain of (n − 3) + (n − 4) + · · · + 1 ≤ 1

2n
2. Meanwhile, the optimal clustering may merge

u with its other neighbors first and v with its other neighbors first, scoring a revenue gain of
2 [(n− 2) + (n− 3) + · · ·+ (n/2)] = 3

4n
2 −O(n). Since Average Linkage has a final revenue of

1
2n

2 + O(n) while OPT has a final revenue of 3
4n

2 − O(n), as n grows the approximation ratio
approaches 2

3 from above.

We then improve the ratio to 1
2 considering a clique on k vertices instead of just u and v, and giving

each node a neighborhood of n/k − 1 other vertices. The general graph is depicted in Figure 1.

In the remaining analysis, we treat k as a constant that is hidden by big-O notation. Average Linkage
still greedily merges the clique first, scoring a total revenue gain of:

(1 + δ) [(1)(n− 2) + (2)(n− 3) + · · ·+ (k − 1)(n− k)] ≤ nk
2

2
= O(n)

However, after merging the clique, Average Linkage is in the same situation as before and can only
score 1

2n
2 additional revenue.
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Figure 1: Hard graph for Average Linkage (general k case).

In this modified graph, the optimal hierarchical clustering can merge each clique node with its n
k − 1

neighbors before merging the clique nodes with each other. However, doing so means that:

revG(T ∗) ≥ k
[
(n− 2) + (n− 3) + · · ·+

(
k − 1

k
n

)]
=
k

2

(
2k − 1

k
n− 2

)(n
k
− 1
)

=

(
2k − 1

2k

)
n2 −O(n)

Following the same analysis as the previous example, our approximation will approach 1
2 as k grows

to infinity. This completes the proof.

2 Random Hierarchical Clustering

In this section, we bound the performance of a random divisive algorithm. In each step, the algorithm
is given a cluster and divides the points into two clusters A and B where a point is added in each step
uniformly at random. We show that this algorithm is a 1

3 -approximation to our revenue function and
further this is tight.

Data: Vertices V , weights w : E → R≥0
Initialize clusters C ← {V };
while some cluster C ∈ C has more than one vertex do

Let A,B be a uniformly random 2-partition of C;
Set C ← C ∪ {A,B} \ {C};

end
Algorithm 1: Random Hierarchical Clustering

Theorem 2.1. Consider a graph G = (V,E) with nonnegative edge weights w : E → R≥0. Let
the hierarchical clustering T ∗ be a maximizer of revG(·) and let T be the hierarchical clustering
returned by Algorithm 1. Then:

E[revG(T )] ≥
1

3
revG(T ∗)
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Proof. We begin by pretending that A or B empty is a valid partition of C, and address this detail at
the end of the proof. If so, we can generate A,B with the following random process: for each vertex
v ∈ C, flip a fair coin to decide if it goes into A or into B.

Now, consider an edge (i, j) ∈ E. The algorithm will score a revenue of wij |nonleaves(T [i∨ j])|.
Thus, we need to determine the expected value of |nonleaves(T [i ∨ j])|. How often does one of
the n− 2 other nodes besides i and j become a nonleaf of T [i ∨ j]? Fix all all coin flips made for i
and let k 6= i, j be a point. The point k will become a nonleaf if j matches more coin flips than k
does. The number of matched coin flips is a geometric random variable with parameter 1/2. There is
a 1/2 chance of matching for zero coin flips, a 1/4 chance of matching for one coin flip, and so on.
Hence the probability of equality is 1/4 + 1/16 + 1/64 + · · · = 1/3. By symmetry, the remaining
2/3 probability is split bewteen j matching for more and k matching for more. Hence each of the
other n− 2 nodes k has exactly a 1/3 chance of being a nonleaf. As a result,

E[revG(T )] =
n− 2

3

∑
ij

wij ≥
1

3
revG(T ∗)

since it is impossible to have more than n− 2 nonleaves.

Finally, we address the possibility of A or B being empty. This is equivalent to a node in T having a
single child. In this case, revG(T ) is unchanged if we merge the node with that child, since this does
not change leaves(T [i ∨ j]) for any edge (i, j). Hence if A or B is empty we can safely redraw.
Hence our random process is equivalent to uniformly drawing over all partitions. This completes the
proof.

We now establish that this is tight.
Lemma 2.2. There exists a graph G = (V,E) with nonnegative edge weights w : E → R≥0, such
that if the hierarchical clustering T ∗ is an optimal solution of revG(·) and T is the hierarchical
clustering returned by Algorithm 1,

E[revG(T )] =
1

3
revG(T ∗)

Proof. In the proof of Lemma 2.1, we showed that

E[revG(T )] =
n− 2

3

∑
ij

wij .

This naturally suggests a tight example: any graph where the optimal hierarchical clustering T ∗ can
capture all edges (i, j) ∈ E with non-zero weight using only clusters of size 2. In other words, in any
graph where the edges form a matching, the bound is tight.
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