
Clustering Stable Instances of Euclidean k-means

Abhratanu Dutta∗
Northwestern University

adutta@u.northwestern.edu

Aravindan Vijayaraghavan∗
Northwestern University

aravindv@northwestern.edu

Alex Wang†
Carnegie Mellon University

alexwang@u.northwestern.edu

Abstract

The Euclidean k-means problem is arguably the most widely-studied clustering
problem in machine learning. While the k-means objective is NP-hard in the
worst-case, practitioners have enjoyed remarkable success in applying heuristics
like Lloyd’s algorithm for this problem. To address this disconnect, we study
the following question: what properties of real-world instances will enable us to
design efficient algorithms and prove guarantees for finding the optimal clustering?
We consider a natural notion called additive perturbation stability that we believe
captures many practical instances of Euclidean k-means clustering. Stable instances
have unique optimal k-means solutions that does not change even when each point
is perturbed a little (in Euclidean distance). This captures the property that k-
means optimal solution should be tolerant to measurement errors and uncertainty
in the points. We design efficient algorithms that provably recover the optimal
clustering for instances that are additive perturbation stable. When the instance
has some additional separation, we can design a simple, efficient algorithm with
provable guarantees that is also robust to outliers. We also complement these
results by studying the amount of stability in real datasets, and demonstrating that
our algorithm performs well on these benchmark datasets.

1 Introduction

One of the major challenges in the theory of clustering is to bridge the large disconnect between our
theoretical and practical understanding of the complexity of clustering. While theory tells us that
most common clustering objectives like k-means or k-median clustering problems are intractable in
the worst case, many heuristics like Lloyd’s algorithm or k-means++ seem to be effective in practice.
In fact, this has led to the “CDNM” thesis [11, 9]: “Clustering is difficult only when it does not
matter”.

We try to address the following natural questions in this paper: Why are real-world instances of
clustering easy? Can we identify properties of real-world instances that make them tractable?

We focus on the Euclidean k-means clustering problem where we are given n points X =
{x1, . . . , xn } ⊂ Rd, and we need to find k centers µ1, µ2, . . . , µk ∈ Rd minimizing the objec-
tive

∑
x∈X mini∈[k] ‖x− µi‖

2. The k-means clustering problem is the most well-studied objective
for clustering points in Euclidean space [18, 3]. The problem is NP-hard in the worst-case [14] even
for k = 2, and a constant factor hardness of approximation is known for larger k [5].
∗Supported by the National Science Foundation (NSF) under Grant No. CCF-1637585.
†Part of the work was done while the author was at Northwestern University.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

One way to model real-world instances of clustering problems is through instance stability, which
is an implicit structural assumption about the instance. Practically interesting instances of k-means
clustering problem often have a clear optimal clustering solution (usually the ground-truth clustering)
that is stable: i.e., it remains optimal even under small perturbations of the instance. As argued in [7],
clustering objectives like k-means are often just a proxy for recovering a ground-truth clustering that
is close to the optimal solution. Instances in practice always have measurement errors, and optimizing
the k-means objective is meaningful only when the optimal solution is stable to these perturbations.

This notion of stability was formalized independently in a pair of influential works [11, 7]. The
predominant strand of work on instance stability assumes that the optimal solution is resilient to
multiplicative perturbations of the distances [11]. For any γ ≥ 1, a metric clustering instance (X, d)
on point set X ⊂ Rd and metric d : X × X → R+ is said to be γ-factor stable iff the (unique)
optimal clustering C1, . . . , Ck of X remains the optimal solution for any instance (X, d′) where any
(subset) of the the distances are increased by up to a γ factor i.e., d(x, y) ≤ d′(x, y) ≤ γd(x, y)
for any x, y ∈ X . In a series of recent works [4, 8] culminating in [2], it was shown that 2-factor
perturbation stable (i.e., γ ≥ 2) instances of k-means can be solved in polynomial time.

Multiplicative perturbation stability represents an elegant, well-motivated formalism that captures
robustness to measurement errors for clustering problems in general metric spaces (γ = 1.1 captures
relative errors of 10% in the distances). However, multiplicative perturbation stability has the
following drawbacks in the case of Euclidean clustering problems:

• Measurement errors in Euclidean instances are better captured using additive perturbations.
Uncertainty of δ in the position of x, y leads to an additive error of δ in ‖x−y‖2, irrespective
of how large or small ‖x− y‖2 is.

• The amount of stability γ needed to enable efficient algorithms (i.e., γ ≥ 2) often imply
strong structural conditions, that are unlikely to be satisfied by many real-world datasets.
For instance, γ-factor perturbation stability implies that every point is a multiplicative factor
of γ closer to its own center (say µi) than to any other cluster center µj .

• Algorithms that are known to have provable guarantees under multiplicative perturbation
stability are based on single-linkage or MST algorithms that are very non-robust by nature.
In the presence of a few outliers or noise, any incorrect decision in the lower layers gets
propagated up to the higher levels.

In this work, we consider a natural additive notion of stability for Euclidean instances, when the
optimal k-means clustering solution does not change even where each point is moved by a small
Euclidean distance of up to δ. Moving each point by at most δ corresponds to a small additive pertur-
bation to the pairwise distances between the points3. Unlike multiplicative notions of perturbation
stability [11, 4], this notion of additive perturbation is not scale invariant. Hence the normalization or
scale of the perturbation is important.

Ackerman and Ben-David [1] initiated the study of additive perturbation stability when the distance
between any pair of points can be changed by at most δ = εdiam(X) with diam(X) being the diam-
eter of the whole dataset. The algorithms take time nO(k/ε2) = nO(k diam2(X)/δ2) and correspond to
polynomial time algorithms when k, 1/ε are constants. However, this dependence of k diam2(X)/δ2

in the exponent is not desirable since the diameter is a very non-robust quantity — the presence of one
outlier (that is even far away from the decision boundary) can increase the diameter arbitrarily. Hence,
these guarantees are useful mainly when the whole instance lies within a small ball and for a small
number of clusters [1, 10]. Our notion of additive perturbation stability will use a different scale
parameter that is closely related to the distance between the centers, instead of the diameter diam(X).
As we will see soon, our results for additive perturbation stability have no explicit dependence on
the diameter, and allows instances to have potentially unbounded clusters (as in the case of far-way
outliers). Further with some additional assumptions, we also obtain polynomial time algorithmic
guarantees for large k.

3Note that not all additive perturbations to the distances can be captured by an appropriate movement of the
points in the cluster. Hence the notion we consider in our paper is a weaker assumption on the instance.

2

Figure 1: a)Left: the figure shows an instance with k = 2 satisfying ε-APS with D being separation
between the means. The half-angle of the cone is arctan(1/ε) and the distance between µ1 and the
apex of the cone (∆) is at most D/2. b) Right: The figure shows a (ρ,∆, ε)-separated instance, with
scale parameter ∆. All the points lie inside the cones of half-angle arctan(1/ε), whose apexes are
separated by a margin of at least ρ.

1.1 Additive Perturbation Stability and Our Contributions

We consider a notion of additive stability where the points in the instance can be moved by at
most δ = εD, where ε ∈ (0, 1) is a parameter, and D = maxi6=j Dij = maxi 6=j‖µi − µj‖2 is
the maximum distance between pairs of means. Suppose X is a k-means clustering instance with
optimal clustering C1, C2, . . . , Ck. We say that X is ε-APS (additive perturbation stable) iff every
δ = εD-additive perturbation of X has C1, C2, . . . , Ck as an optimal clustering solution. (See
Definition 2.3 for a formal definition). Note that there is no restriction on the diameter of the instance,
or even the diameters of the individual clusters. Hence, our notion of additive perturbation stability
allows the instance to be unbounded.

Geometric property of ε-APS instances. Clusters in the optimal solution of an ε-APS instance
satisfy a natural geometric condition, that implies an “angular separation” between every pair of
clusters.

Proposition 1.1 (Geometric Implication of ε-APS). Consider an ε-APS instance X , and let Ci, Cj
be two clusters of the optimal solution. Any point x ∈ Ci lies in a cone whose axis is along the
direction (µi − µj) with half-angle arctan(1/ε). Hence if u is the unit vector along µi − µj then

∀x ∈ Ci,
|〈x− µi+µj

2 , u〉|
‖x− µi+µj

2 ‖2
>

ε√
1 + ε2

. (1)

For any j ∈ [k], all the points in cluster Ci lie inside the cone with its axis along (µi − µj) as in
Figure 1. The distance between µi and the apex of the cone is ∆ = (1

2 − ε)D. We will call ∆ the
scale parameter of the clustering.

We believe that many clustering instances in practice satisfy ε-APS condition for reasonable constants
ε. In fact, our experiments in Section 4 suggest that the above geometric condition is satisfied for
reasonable values e.g., ε ∈ (0.001, 0.2).

While the points can be arbitrarily far away from their own means, the above angular separation (1)
is crucial in proving the polynomial time guarantees for our algorithms. For instance, this implies
that at least 1/2 of the points in a cluster Ci are within a Euclidean distance of at most O(∆/ε) from
µi. This geometric condition (1) of the dataset enables the design of a tractable algorithm for k = 2
with provable guarantees. This algorithm is based on a modification of the perceptron algorithm in
supervised learning, and is inspired by [13].

Informal Theorem 1.2. For any fixed ε > 0, there exists an dnpoly(1/ε) time algorithm that correctly
clusters all ε-APS 2-means instances.

For k-means clustering, similar techniques can be used to learn the separating halfspace for each
pair of clusters. But this incurs an exponential dependence on k2, which renders this approach

3

inefficient for large k.4 We now consider a natural strengthening of this assumption that allows us to
get poly(n, d, k) guarantees.

Angular Separation with additional Margin Separation. We consider a natural strengthening
of additive perturbation stability where there is an additional margin between any pair of clusters.
This is reminiscent of margin assumptions in supervised learning of halfspaces and spectral clustering
guarantees of Kumar and Kannan [15] (see Section 1.2). Consider a k-means clustering instance
X having an optimal solution C1, C2, . . . , Ck. This instance is (ρ,∆, ε)-separated iff for each
i 6= j ∈ [k], the subinstance induced by Ci, Cj has parameter scale ∆, and all points in the clusters
Ci, Cj lie inside cones of half-angle arctan(1/ε), which are separated by a margin of at least ρ. This
is implied by the stronger condition that the subinstance induced by Ci, Cj is ε-additive perturbation
stable with scale parameter ∆ even when Ci and Cj are moved towards each other by ρ. Please see
Figure 1 for an illustration. We formally define (ρ,∆, ε)-separated stable instances geometrically in
Section 2.
Informal Theorem 1.3 (Polytime algorithm for (ρ,∆, ε)-separated instances). There is an algorithm
running in time5 Õ(n2kd) that given any instance X that is (ρ,∆, ε)-separated with ρ ≥ Ω(∆/ε2)
recovers the optimal clustering C1, . . . , Ck.

A formal statement of the theorem (with unequal sized clusters), and its proof are given in Section 3.
We prove these polynomial time guarantees for a new, simple algorithm (Algorithm 3.1). The
algorithm constructs a graph with one vertex for each point, and edges between points that within a
distance of at most r (for an appropriate threshold r). The algorithm then finds the k-largest connected
components. It then uses the k empirical means of these k components to cluster all the points.

In addition to having provable guarantees, the algorithm also seems efficient in practice, and performs
well on standard clustering datasets. Experiments that we conducted on some standard clustering
datasets in UCI suggest that our algorithm manages to almost recover the ground truth, and achieves a
k-means objective cost that is very comparable to Lloyd’s algorithm and k-means++ (see Section 4).

In fact, our algorithm can also be used to initialize the Lloyd’s algorithm: our guarantees show
that when the instance is (ρ,∆, ε)-separated, one iteration of Lloyd’s algorithm already finds the
optimal clustering. Experiments suggest that our algorithm finds initializers of smaller k-means cost
compared to the initializers of k-means++ [3] and also recover the ground-truth to good accuracy
(see Section 4 and Supplementary material for details).

Robustness to Outliers. Perturbation stability requires the optimal solution to remain completely
unchanged under any valid perturbation. In practice, the stability of an instance may be dramatically
reduced by a few outliers. We show provable guarantees for a slight modification of the algorithm,
in the setting when an η-fraction of the points can be arbitrary outliers, and do not lie in the stable
regions. More formally, we assume that we are given an instance X ∪Z where there is an (unknown)
set of points Z with |Z| ≤ η|X| such that X is a (ρ,∆, ε)-separated-stable instance. Here ηn is
assumed to be smaller than size of the smallest cluster by a constant factor. This is similar to robust
perturbation resilience considered in [8, 16]. Our experiments in Section 4 indicate that the stability
or separation can increase a lot after ignoring a few points close to the margin.

In what follows, wmax = max|Ci|/n and wmin = min|Ci|/n are the maximum and minimum
weight of clusters, and η < wmin.
Theorem 1.4. Given X ∪ Z where X satisfies (ρ,∆, ε)-separated with η < wmin and

ρ = Ω

(
∆

ε2

(
wmax + η

wmin − η

))
and η < wmin, there is a polynomial time algorithm running in time Õ(n2dk) that returns a clustering
consistent with C1, . . . , Ck on X .

This robust algorithm is effectively the same as Algorithm 3.1 with one additional step that removes
all low-degree vertices in the graph. This step removes bad outliers in Z without removing too many
points from X .

4We remark that the results of [1] also incur an exponential dependence on k.
5The Õ hides an inverse Ackerman fuction of n.

4

1.2 Comparisons to Other Related Work

Awasthi et al. [4] showed that γ-multiplicative perturbation stable instance also satisfied the notion
of γ-center based stability (every point is a γ-factor closer to its center than to any other center) [4].
They showed that an algorithm based on the classic single linkage algorithm works under this weaker
notion when γ ≥ 3. This was subsequently improved by [8], and the best result along these lines [2]
gives a polynomial time algorithm that works for γ ≥ 2. A robust version of (γ, η)-perturbation
resilience was explored for center-based clustering objectives [8]. As such, the notions of additive
perturbation stability, and (ρ,∆, ε)-separated instances are incomparable to the various notions of
multiplicative perturbation stability. Further as argued in [9], we believe that additive perturbation
stability is more realistic for Euclidean clustering problems.

Ackerman and Ben-David [1] initiated the study of various deterministic assumptions for clustering
instances. The measure of stability most related to this work is Center Perturbation (CP) clusterability
(an instance is δ-CP-clusterable if perturbing the centers by a distance of δ does not increase the
cost much). A subtle difference is their focus on obtaining solutions with small objective cost [1],
while our goal is to recover the optimal clustering. However, the main qualitative difference is how
the length scale is defined – this is crucial for additive perturbations. The run time of the algorithm
in [1] is npoly(k,diam(X)/δ) , where the length scale of the perturbations is diam(X), the diameter
of the whole instance. Our notion of additive perturbations uses a much smaller length-scale of ∆
(essentially the inter-mean distance; see Prop. 1.1 for a geometric intepretation), and Theorem 1.2
gives a run-time guarantee of npoly(∆/δ) for k = 2 (Theorem 1.2 is stated in terms of ε = δ/∆).
By using the largest inter-mean distance instead of the diameter as the length scale, our algorithmic
guarantees can also handle unbounded clusters with arbitrarily large diameters and outliers.

The exciting results of Kumar and Kannan [15] and Awasthi and Sheffet [6] also gave deterministic
margin-separation condition, under which spectral clustering (PCA followed by k-means) finds the
optimum clusters under deterministic conditions about the data. Suppose σ = ‖X − C‖2op/n is the
“spectral radius” of the dataset, where C is the matrix given by the centers. In the case of equal-sized
clusters, the improved results of [6] proves approximate recovery of the optimal clustering if the
margin ρ between the clusters along the line joining the centers satisfies ρ = Ω(

√
kσ). Our notion

of margin ρ in (ρ,∆, ε)-separated instances is analogous to the margin separation notion used by
the above results on spectral clustering [15, 6]. In particular, we require a margin of ρ = Ω(∆/ε2)

where ∆ is our scale parameter, with no extra
√
k factor. However, we emphasize that the two margin

conditions are incomparable, since the spectral radius σ is incomparable to the scale parameter ∆.

We now illustrate the difference between these deterministic conditions by presenting a couple of
examples. Consider an instance with n points drawn from a mixture of k Gaussians in d dimensions
with identical diagonal covariance matrices with variance 1 in the first O(1) coordinates and roughly
1
d in the others, and all the means lying in the subspace spanned by these first O(1) co-ordinates. In
this setting, the results of [15, 6] require a margin separation of at least

√
k log n between clusters.

On the other hand, these instances satisfy our geometric conditions with ε = Ω(1), ∆ ∼
√

log n and
therefore our algorithm only needs a margin separation of ρ

√
log n (hence, saving a factor of

√
k). 6

However, if the n points were drawn from a mixture of spherical Gaussians in high dimensions (with
d� k), then the margin condition required for [15, 6] is weaker.

2 Stability definitions and geometric properties

X ⊆ Rd will denote a k-means clustering instance and C1, . . . , Ck will often refer to its optimal
clustering. It is well-known that given a cluster C the value of µ minimizing

∑
x∈C ‖x− µ‖

2 is
given by µ = 1

|C|
∑
x∈C x, the mean of the points in the set. We give more preliminaries about the

k-means problem in the Supplementary Material.

2.1 Balance Parameter

We define an instance parameter, β, capturing how balanced a given instance’s clusters are.

6Further, while algorithms for learning GMM models may work here, adding some outliers far from the
decision boundary will cause many of these algorithms to fail, while our algorithm is robust to such outliers.

5

Figure 2: An example of the family of perturbations considered by Lemma 2.4. Here v is in the
upwards direction. If a is to the right of the diagonal solid line, then a′ will be to the right of the
slanted dashed line and will lie on the wrong side of the separating hyperplane.

Definition 2.1 (Balance parameter). Given an instance X with optimal clustering C1, . . . , Ck, we
say X satisfies balance parameter β ≥ 1 if for all i 6= j, β|Ci| > |Cj |.

We will write β in place of β(X) when the instance is clear from context.

2.2 Additive perturbation stability

Definition 2.2 (ε-additive perturbation). Let X = {x1, . . . , xn } be a k-means clustering in-
stance with optimal clustering C1, C2, . . . , Ck whose means are given by µ1, µ2, . . . , µk. Let
D = maxi,j ‖µi − µj‖. We say that the instance X ′ = {x′1, . . . , x′n } is an ε-additive perturbation
of X if for all i, ‖x′i − xi‖ ≤ εD.
Definition 2.3 (ε-additive perturbation stability). Let X be a k-means clustering instance with
optimal clustering C1, C2, . . . , Ck. We say that X is ε-additive perturbation stable (APS) if every
ε-additive perturbation of X has unique optimal clustering given by C1, C2, . . . , Ck.

Intuitively, the difficulty of the clustering task increases as the stability parameter ε decreases. For
example, when ε = 0 the set of ε-APS instances contains any instance with a unique solution. In the
following we will only consider ε > 0.

2.3 Geometric implication of ε-APS

Let X be an ε-APS k-means clustering instance such that each cluster has at least 4 points. Fix i 6= j
and consider a pair of clusters Ci, Cj with means µi, µj and define the following notations.

• Let Di,j = ‖µi − µj‖ be the distance between µi and µj and let D = maxi′,j′ ‖µi′ − µj′‖
be the maximum distance between any pair of means.

• Let u =
µi−µj

‖µi−µj‖ be the unit vector in the intermean direction. Let V = u⊥ be the space
orthogonal to u. For x ∈ Rd, let x(u) and x(V) be the projections x onto u and V .

• Let p =
µi+µj

2 be the midpoint between µi and µj .

A simple perturbation that we can use will move all points in Ci and Cj along the direction µi − µj
by a δ amount, while another perturbation moves these points along µj − µi; these will allow us to
conclude that ∃margin of size 2δ. To establish Proposition 1.1, we will choose a clever ε-perturbation
that allows us to show that clusters must live in cone regions (see figure 1 left). This perturbation
chooses two clusters and moves their means in opposite directions orthogonal to u while moving a
single point towards the other cluster (see figure 2). The following lemma establishes Proposition 1.1.
Lemma 2.4. For any x ∈ Ci ∪ Cj , ‖(x− p)(V)‖ < 1

ε

(
‖(x− p)(u)‖ − εDi,j

)
.

Proof. Let v ∈ V be a unit vector perpendicular to u. Without loss of generality, let a, b, c, d ∈ Ci
be distinct. Note that Di,j ≤ D and consider the ε-additive perturbation given by

X ′ = { a− δu, b+ δu, c− δv, d− δv } ∪ {x− δ
2v | x ∈ Ci \ { a, b, c, d } } ∪ {x+ δ

2v | x ∈ Cj }

6

and X \ {Ci ∪ Cj}where δ = εDi,j (see figure 2). By assumption, {Ci, Cj } remains the optimal
clustering of Ci ∪ Cj . We have constructed X ′ such that the new means are at µ′i = µi − εDi,j

2 v

and µ′j = µj +
εDi,j

2 v, and the midpoint between the means is p′ = p. The halfspace containing µ′i
given by the linear separator between µ′i and µ′j is 〈x− p′, µ′i − µ′j〉 > 0. Hence, as a′ is classified
correctly by the ε-APS assumption,

〈a′ − p′, µ′i − µ′j〉 = 〈a− p− εDi,ju,Di,ju− εDi,jv〉
= Di,j(〈a− p, u〉 − ε〈a− p, v〉 − εDi,j) > 0

Then noting that 〈u, a− p〉 is positive, we have that 〈a− p, v〉 < 1
ε

(
‖(a− p)(u)‖ − εDi,j

)
.

Note that this property follows from perturbations which only affect two clusters at a time. Our
results follow from this weaker notion.

2.4 (ρ,∆, ε)-separation

Motivated by Lemma 2.4, we define a geometric condition where the angular separation and margin
separation are parametrized separately. This notion of separation is implied by a stronger stability
assumption where any pair of clusters is ε-APS with scale parameter ∆ even after being moved
towards each other a distance of ρ.

We say that a pair of clusters is (ρ,∆, ε)-separated if their points lie in cones with axes along the
intermean direction, half-angle arctan(1/ε), and apexes at distance ∆ from their means and at least
ρ from each other (see figure 1 right). Formally, we require the following.
Definition 2.5 (Pairwise (ρ,∆, ε)-separation). Given a pair of clusters Ci, Cj with means µi, µj , let
u =

µi−µj

‖µi−µj‖ be the unit vector in the intermean direction and let p = (µi + µj)/2. We say that Ci
and Cj are (ρ,∆, ε)-separated if Di,j ≥ ρ+ 2∆ and for all x ∈ Ci ∪ Cj ,

‖(x− p)(V)‖ ≤
1

ε

(
‖(x− p)(u)‖ − (Di,j/2−∆)

)
.

Definition 2.6 ((ρ,∆, ε)-separation). We say that an instance X is (ρ,∆, ε)-separated if every pair
of clusters in the optimal clustering is (ρ,∆, ε)-separated.

3 k-means clustering for general k

We assume that our instance has balance parameter β. Our algorithm takes in as input the set of
points X and k, and outputs a clustering of all the points.
Algorithm 3.1.
Input: X = {x1, . . . , xn }, k.

1: for all pairs a, b of distinct points in {xi } do
2: Let r = ‖a− b‖ be our guess for ρ
3: procedure INITIALIZE
4: Create graphG on vertex set {x1, . . . , xn } where xi and xj have an edge iff ‖xi−xj‖ <
r

5: Let a1, . . . , ak ∈ Rd where ai is the mean of the ith largest connected component of G
6: procedure ASSIGN
7: Let C1, . . . , Ck be the clusters obtained by assigning each point in X to the closest ai
8: Calculate the k-means objective of C1, . . . , Ck
9: Return clustering with smallest k-means objective found above

Theorem 3.2. Algorithm 3.1 recovers C1, . . . , Ck for any (ρ,∆, ε)-separated instance with ρ =

Ω
(

∆
ε2 + β∆

ε

)
and the running time is Õ(n2kd).

We maintain the connected components and their centers via a union-find data structure and keep it
updated as we increase ρ and add edges to the dynamic graph. Since we go over n2 possible choices
of ρ and each pass takes O(kd) time, the algorithm runs in Õ(n2kd).

7

The rest of the section is devoted to proving Theorem 3.2. Define the following regions of Rd for every
pair i, j. Given i, j, let Ci, Cj be the corresponding clusters with means µi, µj . Let u =

µi−µj

‖µi−µj‖ be

the unit vector in the inter-mean direction and p =
µi+µj

2 be the point between the two means. We
first define formally S(cone)

i,j which was described in the introduction (the feasible region) and two
other regions of the clusters that will be useful in the analysis (see Figure 1b). We observe that Ci
belongs to the intersection of all the cones S(cone)

i,j over j 6= i.
Definition 3.3.

• S(cone)
i,j = {x ∈ Rd | ‖(x− (µi −∆u))(V)‖ ≤ 1

ε 〈x− (µi −∆u), u〉 },

• S(nice)
i,j = {x ∈ S(cone)

i,j | 〈x− µi, u〉 ≤ 0 },

• S(good)
i =

⋂
j 6=i S

(nice)
i,j .

The nice area of i with respect to j i.e. S(nice)
i,j , is defined as all points in the cap of S(cone)

i,j “above” µi.

The good area of a cluster S(good)
i is the intersection of its nice areas with respect to all other clusters.

It suffices to prove the following two main lemmas. Lemma 3.4 states that the ASSIGN subroutine
correctly clusters all points given an initialization satisfying certain properties. Lemma 3.5 states that
the initialization returned by the INITIALIZE subroutine satisfies these properties when we guess
r = ρ correctly. As ρ is only used as a threshold on edge lengths, testing the distances between all
pairs of data points i.e. { ‖a− b‖ : a, b ∈ X } suffices.
Lemma 3.4. For a (ρ,∆, ε)-separated instance with ρ = Ω(∆/ε2), the ASSIGN subroutine recovers
C1, C2, · · ·Ck correctly when initialized with k points { a1, a2, . . . , ak } where ai ∈ S(good)

i .
Lemma 3.5. For an (ρ,∆, ε)-separated instance with balance parameter β and ρ = Ω(β∆/ε), the
INITIALIZE subroutine outputs one point each from {S(good)

i : i ∈ [k] } when r = ρ.

To prove Lemma 3.5 we define a region of each cluster S(core)
i , the core, such that most (at least

β/(1 + β) fraction) of the points in Ci will belong to the connected component containing S(core)
i .

Hence, any large connected component (in particular, the k largest ones) must contain the core of
one of the clusters. Meanwhile, the margin ensures points across clusters are not connected. Further,
since S(core)

i accounts for most points in Ci, the angular separation ensures that the empirical mean of
the connected component is in S(good)

i .

4 Experimental results

We evaluate Algorithm 3.1 on multiple real world datasets and compare its performance to the
performance of k-means++, and also check how well these datasets satisfy our geometric conditions.
See supplementary results for details about ground truth recovery.

Datasets. Experiments were run on unnormalized and normalized versions of four labeled datasets
from the UCI Machine Learning Repository: Wine (n = 178, k = 3, d = 13), Iris (n = 150, k = 3,
d = 4), Banknote Authentication (n = 1372, k = 2, d = 5), and Letter Recognition (n = 20, 000,
k = 26, d = 16). Normalization was used to scale each feature to unit range.

Performance We ran Algorithm 3.1 on the datasets. The cost of the returned solution for each of the
normalized and unnormalized versions of the datasets is recorded in Table 1 column 2. Our guarantees
show that under (ρ,∆, ε)-separation for appropriate values of ρ (see section 3), the algorithm will
find the optimal clustering after a single iteration of Lloyd’s algorithm. Even when ρ does not satisfy
our requirement, we can use our algorithm as an initialization heuristic for Lloyd’s algorithm. We
compare our initialization with the k-means++ initialization heuristic (D2 weighting). In Table 1,
this is compared to the smallest initialization cost of 1000 trials of k-means++ on each of the datasets,
the solution found by Lloyd’s algorithm using our initialization and the smallest k-means cost of 100
trials of Lloyd’s algorithm using a k-mean++ initialization.

Separation in real data sets. As the ground truth clusterings in our datasets are not in general
linearly separable, we consider the clusters given by Lloyd’s algorithm initialized with the ground

8

Table 1: Comparison of k-means cost for Alg 3.1 and k-means++

Dataset Alg 3.1 k-means++ Alg 3.1 with Lloyd’s k-means++ with Lloyd’s
Wine 2.376e+06 2.426e+06 2.371e+06 2.371e+06
Wine (normalized) 48.99 65.50 48.99 48.95
Iris 81.04 86.45 78.95 78.94
Iris (normalized) 7.035 7.676 6.998 6.998
Banknote Auth. 44808.9 49959.9 44049.4 44049.4
Banknote (norm.) 138.4 155.7 138.1 138.1
Letter Recognition 744707 921643 629407 611268
Letter Rec. (norm.) 3367.8 4092.1 2767.5 2742.3

Table 2: Values of (ρ, ε,∆) satisfied by (1− η)-fraction of points

Dataset η ε minimum ρ/∆ average ρ/∆ maximum ρ/∆

Wine 0.1 0.1 0.566 1.5 3.05
0.01 0.609 1.53 3.07

Iris 0.1 0.1 0.398 4.35 7.7
0.01 0.496 5.04 9.06

Banknote Auth. 0.1 0.1 0.264 0.264 0.264
0.01 0.398 0.398 0.398

Letter Recognition 0.1 0.1 0.018 2.19 7.11
0.01 0.378 3.07 11.4

truth solutions. Values of ε for Lemma 2.4. We calculate the maximum value of ε such that a given
pair of clusters satisfies the geometric condition in Proposition 1.1. The results are collected in the
Supplementary material in Table 3. We see that the average value of ε lies approximately in the range
(0.01, 0.1).

Values of (ρ,∆, ε)-separation. We attempt to measure the values of ρ, ∆, and ε in the datasets.
For η = 0.05, 0.1, ε = 0.1, 0.01, and a pair of clusters Ci, Cj , we calculate ρ as the maximum
margin separation a pair of axis-aligned cones with half-angle arctan(1/ε) can have while capturing
a (1− η)-fraction of all points. For some datasets and values for η and ε, there may not be any such
value of ρ, in this case we leave the row blank. The results for the unnormalized datasets with η = 0.1
are collected in Table 2. (See Supplementary material for the full table).

5 Conclusion and Future Directions

We studied a natural notion of additive perturbation stability, that we believe captures many real-world
instances of Euclidean k-means clustering. We first gave a polynomial time algorithm when k = 2.
For large k, under an additional margin assumption, we gave a fast algorithm of independent interest
that provably recovers the optimal clustering under these assumptions (in fact the algorithm is also
robust to noise and outliers). An appealing aspect of this algorithm that it is not tailored towards the
model; our experiments indicate that this algorithm works well in practice even when the assumptions
do not hold. Our results with the margin assumption hence gives an algorithm that (A) has provable
guarantees (under reasonable assumptions) (B) is efficient and practical (C) is robust to errors.

While the margin assumption seems like a realistic assumption qualitatively, we believe that the exact
condition we assume is not optimal. An interesting open question is understanding whether such a
margin is necessary for designing tractable algorithms for large k. We conjecture that for higher k,
clustering remains hard even with ε additive perturbation resilience (without any additional margin
assumption). Improving the margin condition or proving lower bounds on the amount of additive
stability required are interesting future directions.

9

References
[1] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study. In Proceedings of the Twelth

International Conference on Artificial Intelligence and Statistics, volume 5, pages 1–8. PMLR, 2009.

[2] Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable and perturbation-
resilient problems. In Symposium on Theory of Computing (STOC), 2017.

[3] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 1027–1035, 2007.

[4] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation stability.
Information Processing Letters, 112(1–2):49 – 54, 2012.

[5] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The hardness of
approximation of euclidean k-means. In Symposium on Computational Geometry, pages 754–767, 2015.

[6] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 37–49. 2012.

[7] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without the approxima-
tion. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09,
pages 1068–1077, 2009.

[8] Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. SIAM Journal on
Computing, 45(1):102–155, 2016.

[9] Shai Ben-David. Computational feasibility of clustering under clusterability assumptions. CoRR,
abs/1501.00437, 2015.

[10] Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look. Theoretical Computer
Science, 558:51 – 61, 2014. Algorithmic Learning Theory.

[11] Yonatan Bilu and Nathan Linial. Are stable instances easy? In Innovations in Computer Science - ICS
2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings, pages 332–341, 2010.

[12] Hans-Dieter Block. The perceptron: A model for brain functioning. Reviews of Modern Physics, 34(1):123–
135, 1962.

[13] Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm for linear programming.
In Proceedings of Symposium on Dicrete Algorithms (SODA), 2002.

[14] Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer Science and Engineering,
University of California, San Diego, 2008.

[15] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm. In
Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 299–308. IEEE,
2010.

[16] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable instances of
max cut. Proc. 22nd Symposium on Discrete Algorithms (SODA), 2014.

[17] A.B.J Novikoff. On convergence proofs on perceptrons. Proceedings of the Symposium on the Mathematical
Theory of Automata, XII(1):615–622, 1962.

[18] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, New York, NY, USA, 1st edition, 2011.

10

Appendix A Introduction to the k-means clustering problem

In the k-means clustering problem, we are given n points {x1, . . . , xn } in Rd and need to find k
centers µ1, µ2, . . . , µk ∈ Rd minimizing∑

x

min
i∈[k]
‖x− µi‖2 .

Choosing the centers µ1, µ2, . . . , µk fixes the clustering C1, C2, . . . , Ck given by Ci =
{x | ∀j, ‖x− µi‖ ≤ ‖x− µj‖ }. We can rewrite the objective as∑

i∈[k]

∑
x∈Ci

‖x− µi‖2 .

On the other hand, given a cluster Ci the value of µ minimizing
∑
x∈Ci

‖x− µ‖2 is given by
µ = 1

|Ci|
∑
x∈Ci

x, the mean of the points in the set. Thus, we can reformulate the problem as finding
a clustering C1, C2, . . . , Ck of {xi } minimizing∑

i∈[k]

∑
y∈Ci

∥∥∥∥∥y −
(

1

|Ci|
∑
x∈Ci

x

)∥∥∥∥∥
2

.

Appendix B Exact poly-time algorithm for ε-APS 2-means clustering

The following algorithm is inspired by work in [] showing that the perceptron algorithm runs in
poly-time with high probability in the smoothed analysis setting.

B.1 Review of perceptron algorithm

Suppose y1, . . . , yn is a sequence of labeled {+1,−1 }-samples consistent with a linear thresh-
old function, i.e., there exists vector w∗ such that the labeling function `(yi) is consistent with
sgn(〈w∗, yi〉). At time t = 0, the perceptron algorithm sets w0 = 0. At each subsequent time step,
the algorithm sees sample yt, outputs sgn(〈wt−1, yt〉) as its guess for `(yt), sees the true label `(yt),
and updates wt. On a correct guess, wt = wt−1, and on a mistake wt = wt−1 + `(yt)yt/ ‖yt‖.
The following well-known theorem [12, 17] bounds the number of total mistakes the perceptron
algorithm can make in terms of its angular margin.
Theorem B.1. The number of mistakes made by the perceptron algorithm is bounded above by
(1/γ)2 for

γ = min
i∈[n]

|〈w∗, yi〉|
‖w∗‖ ‖yi‖

.

For a universe U of elements and a function f : U → Z≥0, we will denote by (U, f) the multiset
where u ∈ U appears in the multiset f(u)-many times. The size of a multiset is

∑
u∈U f(u).

Lemma B.2. There exists a multiset M = ({ y1, . . . , yn } , f) of size at most (1/γ)2 such that∑
y∈M `(y) y

‖y‖ correctly classifies all of { y1, . . . , yn }.

Proof. Let r = (1/γ)2 + 1. Consider the performance of the perceptron algorithm on r consecutive
runs of the y1, . . . , yn, i.e., let the input be

1 run︷ ︸︸ ︷
y1, . . . , yn, y1, . . . , yn, . . . , y1, . . . , yn︸ ︷︷ ︸

r runs

.

If no mistakes are made on a given run, no mistakes will be made on any subsequent run. Thus if a
mistake is made on a given run, at least one mistake must have been made on every previous run.
Suppose the perceptron algorithm makes a mistake on the rth run, then the algorithm must have made
at least (1/γ)2 + 1 mistakes, a contradiction. Hence the direction of w after r runs correctly classifies
all of { y1, . . . , yn }. The value of w is

∑
i∈[n] f(yi)`(yi)

yi
‖yi‖ where f(yi) is the number of times yi

was misclassified.

11

B.2 The algorithm

Fix the following notation for this section: let I = {x1, . . . , xn } for xi ∈ Rd be an ε-APS 2-means
clustering instance such that each cluster has at least 4 points. Let D = ‖µ1 − µ2‖, u = µ1−µ2

‖µ1−µ2‖ ,
p = µ1+µ2

2 .

Algorithm B.3.
Input: X = {x1, . . . , xn }, ε

1: for all pairs a, b of distinct points in {xi } do
2: Let δ = ‖a− b‖
3: Let Xa,b = { y1, . . . , yn } be an instance given by yi = (xi−a, δ) ∈ Rd+1

4: for all multisets M of size at most c−2
1 ε−8 and assignments ` : M → {±1 } do

5: Let w =
∑
y∈M `(y) y

‖y‖
6: Calculate k-means cost of C1 = {xi | 〈w, yi〉 ≥ 0 } , C2 = {xi | 〈w, yi〉 < 0 }.
7: Return clustering with smallest k-means objective found above

B.3 Geometric conditions

The following two lemmas follow directly from Lemma 2.4.

Lemma B.4. For any x ∈ Ci ∪ Cj ,

|〈u, x− p〉| > εDi,j .

In particular, for x ∈ Ci, 〈u, x− p〉 > εDi,j and for x ∈ Cj , 〈u, x− p〉 < −εDi,j .

Lemma B.5. For any x ∈ Ci ∪ Cj ,

|〈u, x− p〉|
‖x− p‖

>

√
ε2

1 + ε2
.

The following statement says that the nice area of any cluster Ci with respect to another cluster Cj is
nonempty.

Lemma B.6. For any i 6= j, S(nice)
i,j is nonempty.

Proof. We have that 1
|Ci|

∑
x∈Ci

(x− p) = µi − p = (∆i,j/2)u. Then

1

|Ci|
∑
x∈Ci

〈u, x− p〉 = ∆i,j/2

where each term in the summation is positive. Thus there is some x ∈ Ci such that |〈v, x− p〉| ≤
∆i,j/2.

Note that Lemmas B.4 and B.6 together imply that we can not have an instance with ε ≥ 1/2.

Lemma B.7. There is no ε-APS k-means clustering instance for ε ≥ 1/2.

B.4 Proof of correctness of Algorithm B.3

Note that each new instance Xa,b has labeling consistent with some linear threshold function.
We have that `(yi) = `(xi) = sgn(〈u, xi − p〉) = sgn(〈u, xi − a〉 + 〈u, a − p〉). Then taking
w∗ = (u, 〈u,a−p〉/δ), we have that `(yi) = sgn(〈w∗, yi〉).

Lemma B.8. Let a ∈ S(nice)
1,2 , b ∈ S(nice)

2,1 . Then,

(2ε)D < ‖a− b‖ <

(√
1 + ε2

ε2

)
D.

12

Proof. For the first inequality, ‖a− b‖ ≥ |〈u, a− b〉| = |〈u, a− p〉 − 〈u, b− p〉|. Then by Lemma
B.4, ‖a− b‖ > 2εD.

For the second inequality, ‖a− b‖ ≤ ‖a− p‖+‖p− b‖. As a ∈ S(nice)
1,2 , we have |〈u, a−p〉| ≤ ∆/2,

hence by Lemma B.5, ‖a− p‖ <
√

(1 + ε2)/ε2D/2. Similarly, ‖b− p‖ <
√

(1 + ε2)/ε2D/2.

The following lemma states that the angular separation γ in Ia,b is large when a ∈ S(nice)
1,2 , b ∈ S(nice)

2,1 .

Lemma B.9. There exists constant c1 such that for any instance Ia,b = { yi } corresponding to
a ∈ S(nice)

1,2 , b ∈ S(nice)
2,1 ,

γ = min
i∈[n]

|〈w∗, yi〉|
‖w∗‖ ‖yi‖

> c1ε
4.

Proof. We bound each term in the minimization individually. Let i ∈ [n], then

|〈w∗, yi〉|
‖w∗‖ ‖yi‖

=
|〈u, xi − p〉|√

1 +
(
〈u,a−p〉

δ

)2
√
δ2 + ‖xi − a‖2

.

We first observe the following facts.

• From Lemma B.5, |〈u, xi − p〉| >
√

ε2

1+ε2 ‖xi − p‖ > ε ‖xi − p‖

• As a is in S(nice)
1,2 , |〈u, a− p〉| ≤ D

2 < δ
4ε

• As a is in S(nice)
1,2 , by Lemma B.5, ‖xi − a‖2 ≤ 2 ‖xi − p‖2 + 2 ‖p− a‖2 < 2 ‖xi − p‖2 +

1
2

1+ε2

ε2 D2

• From Lemma B.8, δ2 < 1+ε2

ε2 D2,

• From Lemma B.4, ‖xi − p‖ > εD

Making each of the substitutions above,

|〈w∗, yi〉|
‖w∗‖ ‖yi‖

> ε
‖xi − p‖√

1 + 1
16ε2

√
2 ‖xi − p‖2 + 3

2
1+ε2

ε2 D2

> ε
1√

1 + 1
16ε2

√
2 + 3

2
1+ε2

ε2

(
D

‖xi−p‖

)2

> ε
1√

1 + 1
16ε2

√
2 + 3

2ε2 + 3
2ε4

.

Then, completing both squares,

|〈w∗, yi〉|
‖w∗‖ ‖yi‖

> ε
1(

1 + 1/4
ε

)(√
2 +

√
3/2

ε2

)
= ε4 1

(ε+ 1/4)
(√

2ε2 +
√

3/2
)

As ε < 1/2 by Lemma B.7, we can bound the fraction below by some constant c1 ≈ 0.845.

Finally, we prove Theorem 1.2 restated below.

13

Theorem. There exists a universal constant c ≥ 1 such that for any fixed ε > 0, there exists an
nO((1/ε)c)d time algorithm that correctly clusters all ε-APS 2-means instances.

Proof. The correctness of Algorithm B.3 for all ε-APS 2-means clustering instances in which each
cluster has at least 4 points follows from Lemmas B.6, B.2, and B.9. On the other hand, the optimal
2-means clustering where one of the clusters has at most 3 points can be calculated in O(n4d) time.
An algorithm that returns the better of these two solutions then correctly clusters all ε-APS 2-means
instances.

Appendix C k-means clustering for general k

We assume that our instance has balance parameter β. Our algorithm takes in as input the set of
points X and k, and outputs a clustering of all the points.
Algorithm C.1.
Input: X = {x1, . . . , xn }, k.

1: for all pairs a, b of distinct points in {xi } do
2: Let r = ‖a− b‖ be our guess for ρ
3: procedure INITIALIZE
4: Create graphG on vertex set {x1, . . . , xn } where xi and xj have an edge iff ‖xi−xj‖ <
r

5: Let a1, . . . , ak ∈ Rd where ai is the mean of the ith largest connected component of G
6: procedure ASSIGN
7: Let C1, . . . , Ck be the clusters obtained by assigning each point in X to the closest ai
8: Calculate the k-means objective of C1, . . . , Ck
9: Return clustering with smallest k-means objective found above

The main theorem of this section states that the above poly-time algorithm exactly recovers optimal
clusters C1, C2, . . . , Ck for instances with ρ large enough in terms of ε, ∆, and β.
Theorem C.2. Algorithm C.1 recovers C1, . . . , Ck for any (ρ,∆, ε)-separated instance with ρ =

Ω
(

∆
ε2 + β∆

ε

)
.

The rest of the section is devoted to proving Theorem C.2. Define the following regions of Rd
for every pair i, j. Given i, j, let Ci, Cj be the corresponding clusters with means µi, µj . Let
u =

µi−µj

‖µi−µj‖ be the unit vector in the inter-mean direction and p =
µi+µj

2 be the point between the

two means. We first define formally S(cone)
i,j which was described in the introduction (the feasible

region) and two other regions of the clusters that will be useful in the analysis (see Figure 1b). We
observe that Ci belongs to the intersection of all the cones S(cone)

i,j over j 6= i.

Definition C.3. Let S(cone)
i,j = {x ∈ Rd | ‖(x− (µi −∆u))(V)‖ < 1

ε 〈x− (µi −∆u), u〉 }. The

nice area of i with respect to j is defined as all points in the cap of S(cone)
i,j “above” µi i.e., S(nice)

i,j =

{x ∈ S(cone)
i,j | 〈x− µi, u〉 ≤ 0 }. Finally, the good area of Ci is the intersection of its nice areas i.e.,

S
(good)
i =

⋂
j 6=i S

(nice)
i,j .

It suffices to prove the following two main lemmas. Lemma C.4 states that the ASSIGN subroutine
correctly clusters all points given an initialization satisfying certain properties. Lemma C.5 states that
the initialization returned by the INITIALIZE subroutine satisfies these properties when we guess
r = ρ correctly. As ρ is only used as a threshold on edge lengths, testing the distances between all
pairs of data points i.e. { ‖a− b‖ : a, b ∈ X } suffices.
Lemma C.4. For a (ρ,∆, ε)-separated instance with ρ = Ω(∆/ε2), the ASSIGN subroutine recovers
C1, C2, · · ·Ck correctly when initialized with k points { a1, a2, . . . , ak } where ai ∈ S(good)

i .
Lemma C.5. For a (ρ,∆, ε)-separated instance with balance parameter β and ρ = Ω(β∆/ε), the
INITIALIZE subroutine outputs one point each from {S(good)

i : i ∈ [k] } when r = ρ.

14

Proof of Lemma C.4. We will show that for any ai ∈ S(nice)
i,j , aj ∈ S(nice)

j,i , and x ∈ Ci, x is closer
to ai than to aj . The following simple lemma describes the properties of the perpendicular bisector
between ai and aj . All these statements follow from the definitions of the nice regions and the
angular separation (proof in Supplementary material).

Lemma C.6. Suppose ρ ≥ ∆/ε2. Then, for ai ∈ S(nice)
i,j and aj ∈ S(nice)

j,i , we have

(1) ‖(ai − aj)(u)‖ >
‖(ai − aj)(V)‖

ε
. (2) 〈ai + aj

2
, u〉 ≤ ∆

2
. (3)

∥∥∥(ai + aj
2

)
(V)

∥∥∥ ≤ ∆/ε.

Proof.

1. We have ‖(ai − aj)(V)‖ ≤ 2∆/ε. On the other hand, ρ ≤ ‖(ai − aj)(u)‖. Thus the
inequality holds for ρ > 2∆/ε2.

2. 〈ai + aj , u〉 = 〈ai, u〉 + 〈aj , u〉 ≤ Di,j/2 + (−Di,j/2 + ∆) = ∆. Multiplying by 1/2
gives the desired inequality.

3. ‖(ai + aj)(V)‖ ≤ ‖(ai)(V)‖ + ‖(aj)(V)‖ < 2∆/ε. Multiplying by 1/2 gives the desired
inequality.

We have all the properties we require from points in the nice region and we prove Lemma C.4 next.
To do so we first rewrite the condition ‖x− ai‖ < ‖x− aj‖ as 1

2 〈x− (ai + aj), ai − aj〉 > 0. Then
we write each vector in terms of their projection on u and V and use Lemma C.6 to bound each of
the terms.

Proof of Lemma C.4. It suffices to show that for any ai ∈ S(nice)
i,j , aj ∈ S(nice)

j,i , and x ∈ Ci, ‖x −
ai‖ < ‖x− aj‖. Then by Lemma C.6 above,〈
x− ai + aj

2
, ai − aj

〉
=
〈
x(u), (ai − aj)(u)

〉
+
〈
x(V), (ai − aj)(V)

〉
− 1

2

〈
((ai + aj))(u) , (ai − aj)(u)

〉
− 1

2

〈
((ai + aj))(V) , (ai − aj)(V)

〉
> ‖x(u)‖‖(ai − aj)(u)‖ −

1

ε

(
‖x(u)‖ −

ρ

2

)
ε‖(ai − aj)(u)‖

− ∆

2
‖(ai − aj)(u)‖ −

∆

ε
ε‖(ai − aj)(u)‖

=
ρ

2
− 3

2
∆ > 0

where the inequality follows because of equality on the first term and Cauchy-Schwarz on the rest.
So, for all ai ∈ S(nice)

i,j , aj ∈ S(nice)
j,i , and x ∈ Ci, x is closer to ai than aj .

Proof of Lemma C.5. We now show that INITIALIZE finds one point in each of the k good areas.
We first start by defining the “core region” of each cluster.

Definition C.7 (S(core)). Let S(core)
i = {x ∈ Rd | ‖x− µi‖ < ∆/ε }.

The core region is defined in such a way that most (at least β/(1 + β) fraction) of the points in Ci
will belong to the connected component containing S(core)

i . Hence, any large connected component
(in particular, the k largest ones) must contain the core of one of the clusters. Further, since this
component accounts for most points in Ci, the angular separation ensures that the empirical mean of
the connected component is in S(good)

i . Before we move on to the proof, we state some properties of
the connected components.
Lemma C.8.

1. Any connected component only contains points from a single cluster.

15

2. For all i, j, S(core)
i ⊇ S(nice)

i,j . In particular, S(core)
i ∩X is nonempty.

3. Fix Ci, Cj . Let Ai,j = {x ∈ Ci | 〈x− µi, µi−µj

‖µi−µj‖ 〉 ≤ β∆ }. Then, |Ai,j | ≥ β
1+β |Ci|.

4. For all i, j, Ai,j is connected in G.

5. For all i, the largest component Ki in cluster Ci contains Ai,j for all j 6= i.

Proof.

1. Let x ∈ Ci and y ∈ Cj . Then ‖x− y‖ ≥ |〈x− y, u〉| > ρ, thus no edge connecting points
in different clusters is added to G.

2. For x ∈ S
(nice)
i,j , ‖(x − µi)(V)‖ < 1

ε (∆ − ‖(x − µi)(u)‖), hence ‖x − µi‖ < ∆/ε. An

argument similar to that in Lemma B.6 shows that S(nice)
i,j ∩ X is nonempty and hence

S
(core)
i,j ∩X is nonempty.

3. µi is the mean of the points in cluster Ci. By an averaging argument, |Ai,j |∆ − (|Ci| −
|Ai,j |)β∆ ≥ 0. Rearranging, |Ai,j | ≥ β

1+β |Ci|.

4. We show that all of Ai,j is connected. Recall S(nice)
i,j is nonempty; let x ∈ S

(nice)
i,j . For

y ∈ Ai,j , ‖x − y‖2 = ‖(x − y)(u)‖2 + ‖(x − y)(V)‖2 < ((β + 1)∆)
2

+ ((β + 1)∆/ε)
2.

Thus for ρ = Ω(β∆/ε), all of Ai,j is connected.

5. By part 2, S(core)
i ∩I is nonempty; let ai ∈ S(core)

i ∩I and letKi be the connected component
containing a. As S(core)

i ⊇ S
(nice)
i,j , and S(nice)

i,j ∩ I is nonempty, Ki contains Ai,j by the
above argument. The size of this connected component is at least β/(1 + β)|Ci|. As β ≥ 1,
Ki is the largest component in the cluster.

Lemma C.9 states that each of the k largest component must lie in a different cluster which proves
that each of the k means { a1, . . . , ak } come from a different cluster. While Lemma C.10 states that
each ai lie inside a good region. Together, they imply Lemma C.5, i.e. each ai comes from a different
good area.

Lemma C.9. The set of k largest components of G contains the largest component of each cluster.

Proof. Let Ki be the largest component in Ci and let K ′j be a component in Cj that is not the largest.
Then by the β parameter, |Ki| ≥ β

1+β |Ci| >
1

1+β |Cj | ≥ |K
′
j |. It follows that the k largest connected

components are K1,K2, . . . ,Kk.

Lemma C.10. The mean of points in Ki lies in S(good)
i .

Proof. Fix i and consider Ki. For j 6= i, Ki ⊆ Ai,j . Additionally, Ki ⊆ S
(cone)
i,j a convex set.

It follows that the mean of points in Ki lies in S(cone)
i,j . As Ki ⊇ S

(core)
i ⊇ S

(nice)
i,j , the points not

contained in Ki have 〈x− µ, u〉 > 0 and hence the mean of points in Ki lies in S(nice)
i,j . As this holds

for each j 6= i, the mean of points in Ki lies in S(good)
i .

Appendix D Robust k-means

We show in this section that a simple extension of algorithm 3.1 does well even in the presence of
adversarial noise for instances with (ρ,∆, ε)-separation for large enough ρ. Specifically, we consider
the following model.

16

Let X = {x1, . . . , xn } ⊂ Rd be a k-means clustering instance with optimal clustering C1, . . . , Ck.
We call X the set of pure points. An additional set of at most ηn-many impure points Z ⊂ Rd is
added by an adversary. Our goal is to find a clustering of X ∪ Z that agrees with C1, . . . , Ck on the
pure points.

Let wmax = max|Ci|/n and let wmin = min|Ci|/n be the maximum and minimum weight of
clusters. We will assume that η < wmin.
Algorithm D.1.
Input: X ∪ Z, r, t

1: procedure INITIALIZE
2: Create graph G on I ∪ Z where points are connected by an edge iff they are at distance ≤ r
3: Remove vertices with vertex degree ≤ t
4: Let a1, . . . , ak ∈ Rd where ai is the mean of the ith largest connected component of G
5: procedure ASSIGN
6: Let C1, . . . , Ck be the clusters obtained by assigning each point in I ∪ Z to the closest ai

Theorem D.2. Given X ∪ Z where X satisfies (ρ,∆, ε)-separation for

ρ = Ω

(
∆

ε2

(
wmax + η

wmin − η

))
and η < wmin, there exists values of r, t such that Algorithm D.1 returns a clustering consistent with
C1, . . . , Ck on X . Algorithm D.1 runs in time O(n2d).

Just as in Theorem 3.2, this algorithm uses r and t as thresholds. Hence, it is possible to guess r from
the
(
n
2

)
pairwise edge lengths and t from [n].

Fix the following parameters.

α = 2

(
wmax + η

wmin − η

)
, r = (α+ 1)∆(1 + 2/ε), t = wminη

α

α+ 1
.

Definition D.3. Define the following regions.

• For i 6= j, let S(e nice)
i,j = {x ∈ S(cone)

i,j | 〈x− µi, u〉 ≤ α }.

• For i 6= j, let S(r e nice)
i,j = {x ∈ Rd | d(x, S

(e nice)
i,j) ≤ r } be the robust nice region.

• Let S(r good)
i =

⋂
j 6=i S

(r e nice)
i,j be the robust good region.

It suffices to prove the following two lemmas.
Lemma D.4. Given X ∪ Z where X satisfies the (ρ,∆, ε)-condition for ρ = Ω(α∆/ε2) and
η < wmin, the ASSIGN subroutine recovers C1, . . . , Ck correctly when initialized with k points
{ a1, . . . , ak } where ai ∈ S(r good)

i .
Lemma D.5. Given X ∪ Z where X satisfies the (ρ,∆, ε)-condition for ρ = Ω(α∆/ε2) and
η < wmin, for the choices of r and t as above, the INITIALIZE subroutine provides k points
{ a1, . . . , ak } where ai ∈ S(r good)

i .

D.1 Proof of Lemma D.4

We will show that for any ai ∈ S(r good)
i , aj ∈ S(r good)

j and x ∈ Ci, x is closer to ai than aj .

The following lemma describes the properties of the perpendicular bisector between ai and aj .

Lemma D.6. There is some ρ ≥ Ω(α∆/ε2) such that for ai ∈ S(r e nice)
i,j and aj ∈ S(r e nice)

j,i ,

1. ε‖(ai − aj)(u)‖ ≥ ‖(ai − aj)(V)‖,

2. 〈ai+aj2 , u〉 < (α+ 1)∆/2 + r,

17

3.
∥∥∥∥(ai+aj2

)
(V)

∥∥∥∥ ≤ (α+ 1)∆/ε+ r.

Proof.

1. By triangle inequality, ‖(ai − aj)(V)‖ ≤ 2((α + 1)∆/ε + r). On the other hand, ‖(ai −
aj)(u)‖ ≥ ρ− 2r. Thus the inequality holds for ρ ≥ 2r + 2

ε ((α+ 1)∆/ε+ r).

2. 〈ai+aj , u〉 = 〈ai, u〉+〈aj , u〉 < (Di,j/2+α∆+r)+(−Di,j/2+∆+r) = (α+1)∆+2r.
Multiplying by 1/2 gives the desired inequality.

3. ‖(ai + aj)(V)‖ ≤ ‖ai,(V)‖ + ‖aj,(V)‖ < 2((α + 1)∆/ε + r). Multiplying by 1/2 gives
the desired inequality.

We now prove Lemma D.4.

Proof of Lemma D.4. It suffices to show that for any ai ∈ S
(r good)
i , aj ∈ S

(r good)
j and x ∈ Ci,

‖x− ai‖ < ‖x− aj‖. By definition S(r good)
i ⊆ S(r e nice)

i,j for all j. Thus by Lemma D.6 above,〈
x− ai + aj

2
, ai − aj

〉
=
〈
x(u), (ai − aj)(u)

〉
+
〈
x(V), (ai − aj)(V)

〉
−

〈(
ai + aj

2

)
(u)

, (ai − aj)(u)

〉
−

〈(
ai + aj

2

)
(V)

, (ai − aj)(V)

〉

≥ ‖x(u)‖‖(ai − aj)(u)‖ −
1

ε

(
‖x(u)‖ − ρ/2

)
ε‖(ai − aj)(u)‖

− ((α+ 1)∆/2 + r) ‖(ai − aj)(u)‖ − ((α+ 1)∆/ε+ r) ε‖(ai − aj)(u)‖

= ρ/2−
(

3

2
(α+ 1)∆ + (1 + ε)2r

)
.

Thus for some ρ ≥ Ω(α∆/ε2), this quantity is greater than zero, i.e., for all ai ∈ S(r good)
i , aj ∈

S
(r good)
j , and x ∈ Ci, x is closer to ai than to aj .

D.2 Proof of Lemma D.5

We prove Lemma D.5 using the below proof outline.

Proof outline.

1. For any i 6= j, the set of vertices S(e nice)
i,j ∩X forms a clique and the size of this clique is

greater than t. In particular, no vertex in S(e nice)
i,j is deleted.

2. Fix i. For all j 6= i, the vertices S(e nice)
i,j ∩X belong to a single connected component. Let

Ki be this connected component.

3. Before vertex deletion (and after), no vertex is adjacent to pure points from different clusters.

4. After vertex deletion, every remaining point lies in S(r good)
i for some i. Hence by part 2,

every connected component contains pure points from at most a single cluster. In particular,
K1, . . . ,Kk are distinct.

5. Consider Ki as above and an arbitrary connected component K not in K1, . . . ,Kk. Then
|Ki| > |K|. In particular, the k largest components of G are K1, . . . ,Kk.

6. The mean of Ki lies in S(r good)
i .

18

Proof.

1. The diameter of S(e nice)
i,j is diam(S

(e nice)
i,j) ≤ (α+ 1)∆(1 + 2/ε) = r. Thus every pair of

points in this region is connected. Recall that µi is the mean of the pure points in cluster Ci.
By an averaging argument, |S(e nice)

i,j ∩X|∆− (|Ci| − |S(e nice)
i,j ∩X|)α∆ ≥ 0. Rearranging,

|S(e nice)
i,j ∩ I| ≥ α

α+1 |Ci| ≥
α
α+1nwmin = t.

2. Fix j. Let j 6= i. Recall S(nice)
i,j ∩X is nonempty; let x ∈ S(nice)

i,j ∩X . Then ‖x−µi‖ ≤ ∆/ε.

We show that for any j′ 6= i, the connected component containing x contains S(e nice)
i,j′ ∩X .

Let y ∈ S(e nice)
i,j′ ∩X . Then ‖y−x‖ ≤ ‖y−µi‖+‖x−µi‖ ≤ (α+ 1)∆/ε+α∆ + ∆/ε ≤

∆(α+ 1)(1 + 2/ε) = r.

3. Pure points in different clusters are at distance at least ρ whereas two vertices sharing a
neighbor must be at distance at most 2r. Thus the inequality holds for ρ ≥ Ω(α∆/ε).

4. Suppose a point p not in
⋃
i S

(r good)
i remains after vertex deletion. By part 3 above, p can

only be connected to pure points in a single cluster. Suppose it is connected to pure points
in cluster Ci. By assumption, there exists a j such that p /∈ S(r e nice)

i,j . We bound the degree

of p above by the number of points in X \ S(e nice)
i,j and the ηn-many impure points, i.e.,

deg(x) ≤ ηn+ |Ci|
α+1 ≤ n(η + wmax

α+1). By our choice of t, we have that deg(p) < t. Thus p

is deleted and all remaining points lie in
⋃
i S

(r good)
i .

For any i, j, the minimum distance between S(r good)
i and S(r good)

j is at least ρ − 2r. For
some ρ ≥ Ω(α∆/ε) then, the distance between these regions is greater than ρ− 2r > r and
no connected component contains pure points from multiple clusters.

5. As in part 2, the size of Ki is bounded below by the averaging argument |Ki| ≥ α
α+1 |Ci|.

Let K belong to cluster Cj . Then by part 5, the size of the connected component K is
bounded above by the number of remaining points after Kj is removed and the ηn-many
impure points, i.e., |Cj | ≤ 1

α+1 |Cj |+ ηn. Then by our choice of α, |K| < |Ki|.

6. By part 4, Ki ⊆ S(r good)
i . As S(r good)

i is convex, the mean of Ki also lies in S(r good)
i .

Appendix E Experimental Results

Table 3: Values of ε satisfying Lemma 2.4

Dataset Minimum ε Average ε Maximum ε
Wine 0.0115 0.0731 0.191
Wine (normalized) 0.000119 0.0394 0.107
Iris 0.00638 0.103 0.256
Iris (normalized) 0.00563 0.126 0.237
Banknote Auth. 0.00127 0.00127 0.00127
Banknote (norm.) 0.00175 0.00175 0.00175
Letter Recognition 3.22e-05 0.0593 0.239
Letter Rec. (norm.) 8.49e-06 0.0564 0.247

Ground truth recovery. The clustering returned by our algorithm recovers well (≈ 97%) the
solution returned by Lloyd’s algorithm initialized with the ground truth for Wine, Iris, and Banknote
Authentication across normalized and unnormalized datasets.

19

Table 4: Values of (ρ, ε,∆) satisfied by (1− η)-fraction of points

Dataset η ε minimum ρ/∆ average ρ/∆ maximum ρ/∆

Wine
0.05 0.1 0.355 0.992 2.19

0.01 0.374 1 2.2

0.1 0.1 0.566 1.5 3.05
0.01 0.609 1.53 3.07

Wine (normalized)
0.05 0.1

0.01 0.399 1.06 2.29

0.1 0.1 0.451 1.3 2.66
0.01 0.735 1.96 3.62

Iris
0.05 0.1 0.156 2.47 5.37

0.01 0.263 2.88 6.43

0.1 0.1 0.398 4.35 7.7
0.01 0.496 5.04 9.06

Iris (normalized)
0.05 0.1 0.0918 1.89 3.08

0.01 0.213 2.21 3.4

0.1 0.1 0.223 3.74 7.12
0.01 0.391 4.42 8.3

Banknote Auth.
0.05 0.1 0.0731 0.0731 0.0731

0.01 0.198 0.198 0.198

0.1 0.1 0.264 0.264 0.264
0.01 0.398 0.398 0.398

Banknote (norm.)
0.05 0.1

0.01 0.197 0.197 0.197

0.1 0.1 0.246 0.246 0.246
0.01 0.474 0.474 0.474

Letter Recognition
0.05 0.1

0.01 0.168 2.06 6.96

0.1 0.1 0.018 2.19 7.11
0.01 0.378 3.07 11.4

Letter Rec. (norm.)
0.05 0.1

0.01 0.157 1.97 7.14

0.1 0.1
0.01 0.378 2.92 11.2

20

	Introduction
	Additive Perturbation Stability and Our Contributions
	Comparisons to Other Related Work

	Stability definitions and geometric properties
	Balance Parameter
	Additive perturbation stability
	Geometric implication of -APS
	(,,)-separation

	k-means clustering for general k
	Experimental results
	Conclusion and Future Directions
	Appendix Introduction to the k-means clustering problem
	Appendix Exact poly-time algorithm for -APS 2-means clustering
	Review of perceptron algorithm
	The algorithm
	Geometric conditions
	Proof of correctness of Algorithm B.3

	Appendix k-means clustering for general k
	Appendix Robust k-means
	Proof of Lemma D.4
	Proof of Lemma D.5

	Appendix Experimental Results

