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1 Proofs of the theoretical bound for accuracy and compression
factor

In this section, we derive a theoretical bound on the accuracy of LiFEgp compared to the
original LiFE model (Proposition and we theoretically analyze the compression factor
associated to the factorized tensor approximation (Proposition [3.2)). Hereafter, we assume
a given connectome having N fascicles, each fascicle having a fixed number of IV,, nodes,
and where diffusion weighted measurements were taken on Ny gradient directions with a
gradient strength b.

Proof of Proposition[3.1: The error in modeling the diffusion signal for a particular voxel v,
fascicle f and gradient direction 0 is given by:

Ao(8) = [0(6) — D(8,a)], (S1)

where Of(8) is the orientation distribution function as defined in equation (2.3) (we avoided
making reference to the voxel v for clearity) and D(6, a) is the diffusion signal of atom a
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at gradient direction 8 = [0,,6,,0,]7. By defining v = [v,,v,,v,]T and v, = v+ A, =
[Vz + Ay, , vy + Ay, vz + A, 1T as the vectors pointing out at the directions of the fascicle f
and its closest dictionary atom a, respectively (see Fig. )7 we arrive at:
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where Ay = |g(v1 + Ay, 0) — g(v,0)| with g(v,0) = e=20"V)  For a sufficiently small error
vector Ay = [A,,, Ay, , A, ]T, we can approximate A,(0) as follows:
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and, by using the fact that [0Tv| < 1, e=b(0"V)?* < 1, A,y Ay, Ay, < AV < E, and

161 < v/3]|6] in equation , we obtain: Ay(v,0) < %. Thus, by using this result in
equation (|S2|), we obtain an upper bound for the error of modeling the diffusion signal of

one fascicle and at one gradient direction in a voxel: Ag(0) < %”T‘/é. Finally, by summing
up all over the nodes in the connectome, it implies that
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Proof of Proposition|3.4: The memory load necessary to store each fascicle in a sparse matrix
M is 3NgN,,, because using a sparse matrix structure, three numbers are required for each
node, i.e., the row-column indices plus the entry value. Thus the storage cost of M is:

C(M) = O(3N,,NgNy). (S5)

Conversely, storing fascicles in the LiFEgp model requires 4V,, values per fascicle plus the
dictionary matrix (i.e., the set of the non-zero entries and their locations within the tensor
® plus matrix D). Thus, the amount of memory required in the LiFEgp model is:

C(M) = O(4N,,N; + NoN,), (S6)

where NgN, is the storage associated with the dictionary matrix D € R¥e*Na  Finally, by
taking the ratio of equations (S5 and (S6]), we arrive at the expression of the compression
factor as shown in equation (3.7)). O
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