
A Supplementary Material

A.1 Proof of Lemma 4.1

The nonnegativity and monotonicity of fk follow immediately from the fact that u(S) and v(S) have
these properties. Thus, it remains to prove that fk is 0.5-weakly submodular for |Nk|, i.e., that for
every pair of arbitrary sets S,L ✓ Nk it holds that

X

w2S\L

fk(w | L) � 0.5 · fk(S | L) .

There are two cases to consider. The first case is that fk(L) = 2 · u(L) + 1. In this case S \ L must
contain at least dfk(S | L)/2e elements of {ui}ki=1

. Additionally, the marginal contribution to L of
every element of {ui}ki=1

which does not belong to L is at least 1. Thus, we get
X

w2S\L

fk(w | L) �
X

w2(S\L)\{ui}k
i=1

fk(w | L) � |(S \ L) \ {ui}ki=1

|

� dfk(S | L)/2e � 0.5 · fk(S | L) .

The second case is that fk(L) = 2 · v(L). In this case S \ L must contain at least dfk(S | L)/2e
elements of {vi}ki=1

, and in addition, the marginal contribution to L of every element of {vi}ki=1

which does not belong to L is at least 1. Thus, we get in this case again
X

w2S\L

fk(w | L) �
X

w2(S\L)\{vi}k
i=1

fk(w | L) � |(S \ L) \ {vi}ki=1

|

� dfk(S | L)/2e � 0.5 · fk(S | L) .

A.2 Proof of Theorem 4.2

Consider an arbitrary (randomized) streaming algorithm ALG aiming to maximize fk(S) subject to
the cardinality constraint |S|  2k. Since ALG uses o(N) memory, we can guarantee, by choosing a
large enough d, that ALG uses no more than (c/4) ·N memory. In order to show that ALG performs
poorly, consider the case that it gets first the elements of {ui}ki=1

and the dummy elements (in some
order to be determined later), and only then it gets the elements of {vi}ki=1

. The next lemma shows
that some order of the elements of {ui}ki=1

and the dummy elements is bad for ALG.

Lemma A.1. There is an order for the elements of {ui}ki=1

and the dummy elements which guarantees
that in expectation ALG returns at most (c/2) · k elements of {ui}ki=1

.

Proof. Let W be the set of the elements of {ui}ki=1

and the dummy elements. Observe that the value
of fk for every subset of W is 0. Thus, ALG has no way to differentiate between the elements of
W until it views the first element of {vi}ki=1

, which implies that the probability of every element
w 2 W to remain in ALG’s memory until the moment that the first element of {vi}ki=1

arrives is
determined only by w’s arrival position. Hence, by choosing an appropriate arrival order one can
guarantee that the sum of the probabilities of the elements of {ui}ki=1

to be at the memory of ALG at
this point is at most

kM

|W | 
k(c/4) ·N

k + d
=

k(c/4) · (2k + d)

k + d
 kc

2

,

where M is the amount of memory ALG uses.

The expected value of the solution produced by ALG for the stream order provided by Lemma A.1 is
at most ck + 1. Hence, its approximation ratio for k > 1/c is at most

ck + 1

2k
=

c

2

+

1

2k
< c .
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A.3 Proof of Observation 5.3

Algorithm 1 adds an element u to the set S only when the marginal contribution of u with respect to
S is at least ⌧/k. Thus, it is always true that

f(S) � ⌧ · |S|
k

.

A.4 Proof of Proposition 5.4

We begin by proving several intermediate lemmas. Recall that � , �k, and notice that by the
monotonicity of f we may assume that OPT is of size k. For every 0  i  |OPT | = k, let OPTi

be the random set consisting of the last i elements of OPT according to the input order. Note that
OPTi is simply a uniformly random subset of OPT of size i. Thus, we can lower bound its expected
value as follows.

Lemma A.2. For every 0  i  k, E[f(OPTi)] � [1� (1� �/k)i] · f(OPT ).

Proof. We prove the lemma by induction on i. For i = 0 the lemma follows from the nonnegativity
of f since

f(OPT
0

) � 0 = [1� (1� �/k)0] · f(OPT ) .

Assume now that the lemma holds for some 0  i� 1 < k, and let us prove it holds also for i. Since
OPTi�1

is a uniformly random subset of OPT of size i�1, and OPTi is a uniformly random subset
of OPT of size i, we can think of OPTi as obtained from OPTi�1

by adding to this set a uniformly
random element of OPT \OPTi�1

. Taking this point of view, we get, for every set T ✓ OPT of
size i� 1,

E[f(OPTi) | OPTi�1

= T ] = f(T ) +

P

u2OPT\T f(u | T )
|OPT \ T |

� f(T ) +
1

k
·

X

u2OPT\T

f(u | T )

� f(T ) +
�

k
· f(OPT \ T | T )

=

⇣

1� �

k

⌘

· f(T ) + �

k
· f(OPT ) ,

where the last inequality holds by the �-weak submodularity of f . Taking expectation over the set
OPTi�1

, the last inequality becomes

E[f(OPTi)] �
⇣

1� �

k

⌘

E[f(OPTi�1

)] +

�

k
· f(OPT )

�
⇣

1� �

k

⌘

·


1�
⇣

1� �

k

⌘i�1

�

· f(OPT ) +
�

k
· f(OPT )

=



1�
⇣

1� �

k

⌘i
�

· f(OPT ) ,

where the second inequality follows from the induction hypothesis.

Let us now denote by o
1

, o
2

, . . . , ok the k elements of OPT in the order in which they arrive, and,
for every 1  i  k, let Si be the set S of Algorithm 1 immediately before the algorithm receives oi.
Additionally, let Ai be an event fixing the arrival time of oi, the set of elements arriving before oi
and the order in which they arrive. Note that conditioned on Ai, the sets Si and OPTk�i+1

are both
deterministic.

Lemma A.3. For every 1  i  k and event Ai, E[f(oi | Si) | Ai] � (�/k) · [f(OPTk�i+1

) �
f(Si)], where OPTk�i+1

and Si represent the deterministic values these sets take given Ai.
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Proof. By the monotonicity and �-weak submodularity of f , we get
X

u2OPTk�i+1

f(u | Si) � � · f(OPTk�i+1

| Si)

= � · [f(OPTk�i+1

[ Si)� f(Si)]

� � · [f(OPTk�i+1

)� f(Si)] .

Since oi is a uniformly random element of OPTk�i+1

, even conditioned on Ai, the last inequality
implies

E[f(oi | Si) | Ai] =

P

u2OPTk�i+1
f(u | Si)

k � i+ 1

�
P

u2OPTk�i+1
f(u | Si)

k

� � · [f(OPTk�i+1

)� f(Si)]

k
.

Let �i be the increase in the value of S in the iteration of Algorithm 1 in which it gets oi.
Lemma A.4. Fix 1  i  k and event Ai, and let OPTk�i+1

and Si represent the deterministic
values these sets take given Ai. If f(Si) < ⌧ , then E[�i | Ai] � [� · f(OPTk�i+1

)� 2⌧ ]/k.

Proof. Notice that by Observation 5.3 the fact that f(Si) < ⌧ implies that Si contains less than k
elements. Thus, conditioned on Ai, Algorithm 1 adds oi to S whenever f(oi | Si) � ⌧/k, which
means that

�i =

⇢

f(oi | Si) if f(oi | Si) � ⌧/k ,

0 otherwise .

One implication of the last equality is
E[�i | Ai] � E[f(oi | Si) | Ai]� ⌧/k ,

which intuitively means that the contribution to E[f(oi | Si) | Ai] of values of f(oi | Si) which are
too small to make the algorithm add oi to S is at most ⌧/k. The lemma now follows by observing
that Lemma A.3 and the fact that f(Si) < ⌧ guarantee

E[f(oi | Si) | Ai] � (�/k) · [f(OPTk�i+1

)� f(Si)]

> (�/k) · [f(OPTk�i+1

)� ⌧ ]

� [� · f(OPTk�i+1

)� ⌧ ]/k .

We are now ready to put everything together and get a lower bound on E[�i].
Lemma A.5. For every 1  i  k,

E[�i] � � · [Pr[E ]� (1� �/k)k�i+1

] · f(OPT )� 2⌧

k
.

Proof. Let Ei be the event that f(Si) < ⌧ . Clearly Ei is the disjoint union of the events Ai which
imply f(Si) < ⌧ , and thus, by Lemma A.4,

E[�i | Ei] � [� · E[f(OPTk�i+1

) | Ei]� 2⌧ ]/k .

Note that �i is always nonnegative due to the monotonicity of f . Thus,
E[�i] = Pr[Ei] · E[�i | Ei] + Pr[

¯Ei] · E[�i | ¯Ei] � Pr[Ei] · E[�i | Ei]
� [� · Pr[Ei] · E[f(OPTk�i+1

) | Ei]� 2⌧ ]/k .

It now remains to lower bound the expression Pr[Ei] · E[f(OPTk�i+1

) | Ei] on the rightmost hand
side of the last inequality.

Pr[Ei] · E[f(OPTk�i+1

) | Ei] = E[f(OPTk�i+1

)]� Pr[

¯Ei] · E[f(OPTk�i+1

) | ¯Ei]
� [1� (1� �/k)k�i+1 � (1� Pr[Ei])] · f(OPT )

� [Pr[E ]� (1� �/k)k�i+1

] · f(OPT )

where the first inequality follows from Lemma A.2 and the monotonicity of f , and the second
inequality holds since E implies Ei which means that Pr[Ei] � Pr[E ] for every 1  i  k.
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Proposition 5.4 follows quite easily from the last lemma.

Proof of Proposition 5.4. Lemma A.5 implies, for every 1  i  dk/2e,

E[�i] � �

k
f(OPT )[Pr[E ]� (1� �/k)k�dk/2e+1

]� 2⌧

k

� �

k
f(OPT )[Pr[E ]� (1� �/k)k/2]� 2⌧

k

�
⇣

� · [Pr[E ]� e��/2
] · f(OPT )� 2⌧

⌘

/k .

The definition of �i and the monotonicity of f imply together

E[f(S)] �
b
X

i=1

E[�i]

for every integer 1  b  k. In particular, for b = dk/2e, we get

E[f(S)] � b

k
·
⇣

� · [Pr[E ]� e��/2
] · f(OPT )� 2⌧

⌘

� 1

2

·
⇣

� · [Pr[E ]� e��/2
] · f(OPT )� 2⌧

⌘

.

A.5 Proof of Theorem 5.1

In this section we combine the previous results to prove Theorem 5.1. Recall that Observation 5.2
and Proposition 5.4 give two lower bounds on E[f(S)] that depend on Pr[E ]. The following lemmata
use these lower bounds to derive another lower bound on this quantity which is independent of Pr[E ].
For ease of the reading, we use in this section the shorthand �0

= e��/2.

Lemma A.6. E[f(S)] � ⌧
2a (3 � �0 � 2

p
2� �0

) =

⌧
a · 3�e��/2�2

p
2�e��/2

2

whenever Pr[E ] �
2�p

2� �0.

Proof. By the lower bound given by Proposition 5.4,

E[f(S)] � 1

2

· {� · [Pr[E ]� �0
] · f(OPT )� 2⌧}

� 1

2

·
n

� ·
h

2�
p

2� �0 � �0
i

· f(OPT )� 2⌧
o

=

1

2

·
n

� ·
h

2�
p

2� �0 � �0
i

· f(OPT )� (

p

2� �0 � 1) · ⌧
a

o

� ⌧

2a
·
n

2�
p

2� �0 � �0 �
p

2� �0
+ 1

o

=

⌧

a
· 3� �0 � 2

p
2� �0

2

,

where the first equality holds since a = (

p
2� �0 � 1)/2, and the last inequality holds since

a� · f(OPT ) � ⌧ .

Lemma A.7. E[f(S)] � ⌧
2a (3 � �0 � 2

p
2� �0

) =

⌧
a · 3�e��/2�2

p
2�e��/2

2

whenever Pr[E ] 
2�p

2� �0.

Proof. By the lower bound given by Observation 5.2,

E[f(S)] � (1� Pr[E ]) · ⌧ �
⇣

1� 2 +

p

2� �0
⌘

· ⌧

=

⇣

p

2� �0 � 1

⌘

·
p
2� �0 � 1

2

· ⌧
a
=

3� �0 � 2

p
2� �0

2

· ⌧
a

.

Combining Lemmata A.6 and A.7 we get the theorem.
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A.6 Proof of Theorem 5.5

There are two cases to consider. If � < 4/3 · k�1, then we use the following simple observation.

Observation A.8. The final value of the variable m is fmax , max{f(u) | u 2 N} � �
k ·f(OPT ).

Proof. The way m is updated by Algorithm 2 guarantees that its final value is fmax. To see why the
other part of the observation is also true, note that the �-weak submodularity of f implies

fmax � max{f(u) | u 2 OPT} = f(?) + max{f(u | ?) | u 2 OPT}
� f(?) +

1

k

X

u2OPT

f(u | ?) � f(?) +

�

k
f(OPT | ?) � �

k
· f(OPT ) .

By Observation A.8, the value of the solution produced by STREAK is at least

f(um) = m � �

k
· f(OPT ) � 3�2

4

· f(OPT )

� (1� ")� · 3(�/2)
2

· f(OPT )

� (1� ")� · 3� 3e��/2

2

· f(OPT )

� (1� ")� · 3� e��/2 � 2

p
2� e��/2

2

· f(OPT ) ,

where the second to last inequality holds since 1� �/2  e��/2, and the last inequality holds since
e��

+ e��/2  2.

It remains to consider the case � � 4/3 · k�1, which has a somewhat more involved proof. Observe
that the approximation ratio of STREAK is 1 whenever f(OPT ) = 0 because the value of any set,
including the output set of the algorithm, is nonnegative. Thus, we can safely assume in the rest of
the analysis of the approximation ratio of Algorithm 2 that f(OPT ) > 0.

Let ⌧⇤ be the maximal value in the set {(1� ")i | i 2 Z} which is not larger than a� · f(OPT ). Note
that ⌧⇤ exists by our assumption that f(OPT ) > 0. Moreover, we also have (1�") ·a� ·f(OPT ) <
⌧⇤  a� · f(OPT ). The following lemma gives an interesting property of ⌧⇤. To understand the
lemma, it is important to note that the set of values for ⌧ in the instances of Algorithm 1 appearing in
the final collection I is deterministic because the final value of m is always fmax.
Lemma A.9. If there is an instance of Algorithm 1 with ⌧ = ⌧⇤ in I when STREAK terminates, then
in expectation STREAK has an approximation ratio of at least

(1� ")� · 3� e��/2 � 2

p
2� e��/2

2

.

Proof. Consider a value of ⌧ for which there is an instance of Algorithm 1 in I when Algorithm 2
terminates, and consider the moment that Algorithm 2 created this instance. Since the instance was
not created earlier, we get that m was smaller than ⌧/k before this point. In other words, the marginal
contribution of every element that appeared before this point to the empty set was less than ⌧/k.
Thus, even if the instance had been created earlier it would not have taken any previous elements.

An important corollary of the above observation is that the output of every instance of Algorithm 1
that appears in I when STREAK terminates is equal to the output it would have had if it had been
executed on the entire input stream from its beginning (rather than just from the point in which it was
created). Since we assume that there is an instance of Algorithm 1 with ⌧ = ⌧⇤ in the final collection
I , we get by Theorem 5.1 that the expected value of the output of this instance is at least

⌧⇤

a
· 3� e��/2 � 2

p
2� e��/2

2

> (1� ")� · f(OPT ) · 3� e��/2 � 2

p
2� e��/2

2

.

The lemma now follows since the output of STREAK is always at least as good as the output of each
one of the instances of Algorithm 1 in its collection I .
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We complement the last lemma with the next one.
Lemma A.10. If � � 4/3 · k�1, then there is an instance of Algorithm 1 with ⌧ = ⌧⇤ in I when
STREAK terminates.

Proof. We begin by bounding the final value of m. By Observation A.8 this final value is fmax �
�
k · f(OPT ). On the other hand, f(u)  f(OPT ) for every element u 2 N since {u} is a possible
candidate to be OPT , which implies fmax  f(OPT ). Thus, the final collection I contains an
instance of Algorithm 1 for every value of ⌧ within the set

�

(1� ")i | i 2 Z and (1� ") · fmax/(9k2)  (1� ")i  fmax · k 

◆ �

(1� ")i | i 2 Z and (1� ") · f(OPT )/(9k2)  (1� ")i  � · f(OPT )
 

.

To see that ⌧⇤ belongs to the last set, we need to verify that it obeys the two inequalities defining this
set. On the one hand, a = (

p
2� e��/2 � 1)/2 < 1 implies

⌧⇤  a� · f(OPT )  � · f(OPT ) .

On the other hand, � � 4/3 · k�1 and 1� e��/2 � �/2� �2/8 imply

⌧⇤ > (1� ") · a� · f(OPT ) = (1� ") · (
p

2� e��/2 � 1) · � · f(OPT )/2

� (1� ") · (
p

1 + �/2� �2/8� 1) · � · f(OPT )/2

� (1� ") · (
p

1 + �/4 + �2/64� 1) · � · f(OPT )/2

= (1� ") · (
p

(1 + �/8)2 � 1) · � · f(OPT )/2 � (1� ") · �2 · f(OPT )/16

� (1� ") · f(OPT )/(9k2) .

Combining Lemmata A.9 and A.10 we get the desired guarantee on the approximation ratio of
STREAK.

A.7 Proof of Theorem 5.6

Observe that STREAK keeps only one element (um) in addition to the elements maintained by the
instances of Algorithm 1 in I . Moreover, Algorithm 1 keeps at any given time at most O(k) elements
since the set S it maintains can never contain more than k elements. Thus, it is enough to show that
the collection I contains at every given time at most O("�1

log k) instances of Algorithm 1. If m = 0

then this is trivial since I = ?. Thus, it is enough to consider the case m > 0. Note that in this case

|I|  1� log

1�"

mk

(1� ")m/(9k2)
= 2� ln(9k3)

ln(1� ")

= 2� ln 9 + 3 ln k

ln(1� ")
= 2� O(ln k)

ln(1� ")
.

We now need to upper bound ln(1� "). Recall that 1� "  e�". Thus, ln(1� ")  �". Plugging
this into the previous inequality gives

|I|  2� O(ln k)

�"
= 2 +O("�1

ln k) = O("�1

ln k) .
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A.8 Additional Experiments

(a) (b)

(c) (d)

Figure 4: In addition to the experiment in Section 6.2, we also replaced LIME’s default feature
selection algorithms with STREAK and then fit the same sparse regression on the selected superpixels.
This method is captioned “LIME + Streak.” Since LIME fits a series of nested regression models,
the corresponding set function is guaranteed to be monotone, but is not necessarily submodular. We
see that results look qualitatively similar and are in some instances better than the default methods.
However, the running time of this approach is similar to the other LIME algorithms.
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(a) (b)

Figure 5: Here we used the same setup described in Figure 4, but compared explanations for predicting
2 different classes for the same base image: 5(a) the highest likelihood label (sunflower) and 5(b) the
second-highest likelihood label (rose). All algorithms perform similarly for the sunflower label, but
our algorithms identify the most rose-like parts of the image.

19


	Introduction
	Related Work
	Preliminaries
	Impossibility Result
	Streaming Algorithms
	Algorithm with access to tau
	Algorithm without access to tau

	Experiments
	Sparse Regression with Pairwise Features
	Black-Box Interpretability

	Conclusions
	Acknowledgments
	Supplementary Material
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Observation 5.3
	Proof of Proposition 5.4
	Proof of Theorem 5.1
	Proof of Theorem 5.5
	Proof of Theorem 5.6
	Additional Experiments


