
A Proof of Theorem 3, the Wasserstein distance bound

Theorem 3 For two distributions P and Q supported on [0, 1] whose first t moments are α and β
respectively, the Wasserstein distance ||P −Q||W is bounded by π

t + 3t
∑t
k=1 |αk − βk|.

Proof. The natural approach to bounding the Wasserstein distance,

sup
f∈Lip1

∫
f(x) (P (x)−Q(x)) dx,

is to argue that for any Lipschitz function, f , there is a polynomial Pf of degree at most k that closely
approximates f . To see this,∫ 1

0

f(x)(P (x)−Q(x))dx

≤
∫ 1

0

|pf (x)− f(x)|(P (x)−Q(x))dx+

∫ 1

0

pf (x)(P (x)−Q(x))dx

≤2||f − pf ||∞ +

t∑
k=1

ck(αk − βk),

where ck be the coefficient of the degree-k term of polynomial pf . Hence all that remains is to argue
that there is a good degree k polynomial approximation of any Lipschitz function f .

For convenience of the analysis, we generalize the domain of f from [0, 1] to [−1, 1] by letting
f(−x) = f(x). We further define function φ(θ) = f(cos(θ)) which also has Lipschitz constant 1
since the cosine function has Lipschitz constant 1. Now we are ready to apply Theorem 4.2.1 of [8]
to φ(θ), which states that for any periodic-2π function with Lipschitz constant 1 can be approximate
by a degree t trigonometric polynomials with l∞ approximation error K1

t = π
2t where K1 is Favard

constant which is equal to π
2 . Let Un(θ) be the degree t trigonometric polynomials that achieves the

stated approximation error. WLOG, by Proposition 2.1.6 of [8], we may assume Un(θ) is even. The
algebraic polynomial to approximate f(x) can be defined as pf (x) = Ut(arccos(x)) which again has
degree t. Hence we have shown that ‖f − pf‖∞ ≤ π

2t and what remains is to bound the magnitude
of ck.

The plan is to first obtain sharp bound of the coefficients of the trigonometric polynomials Ut(θ)
explicitly, after which ck can be bounded by being expressed in terms of these coefficients. Notice that
the coefficient of term cos(kθ) in Ut(θ), denoted as uk, is akλtk by Formula 1.1 in Chapter 4 of [8]
where ak = 1

π

∫ 2π

0
φ(θ) cos(kθ)dθ and λtk = kπ

2(t+1)
1

tan( kπ
2(t+1)

)
by Formula 1.42 in Chapter 4 of [8].

Given that tan(x) ≥ x for 0 ≤ x ≤ π
2 and kπ

2(t+1) <
π
2 , we have 1

tan( kπ
2(t+1)

)
≤ 2(t+1)

kπ and hence 0 ≤
λtk ≤ 1. In order to bound ak, notice that WLOG, we may assume ‖f‖∞ ≤ 1/2 and ‖φ‖∞ ≤ 1/2

since f is Lipschitz-1. Hence |ak| = 1
π |
∫ 2π

0
φ(θ) cos(kθ)dθ| ≤ 1

2π

∫ 2π

0
| cos(kθ)|dθ ≤ 1. We have

shown that for all k, uk is at most 1.

The algebraic polynomial Ut(arccos(x)) can be expressed as
∑t
k=1 ukTk(x) where Tk(x) is Cheby-

shev polynomials of the first kind. Note the recurrence relation for Chebyshev polynomials given
by Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1, T1(x) = x, for the ith polynomial, we can loosely
bound the magnitude of any of its coefficients by 3i−1. Since |ui| < 1 for all i, the magnitude of
coefficient ck can be upper bounded by

∑t
i=1 3i−1 ≤ 3t. Thus, we have shown that:∫ 1

0

f(x)(P (x)−Q(x))dx ≤ π

t
+ 3t

t∑
k=1

|αk − βk|.

B Proof of Theorem 1

In this section, we prove the main theorem of our paper, Theorem 1, which establishes guarantees of
the estimation accuracy of our algorithm. Before proving our main theorem, we first prove Lemma 1,
the properties of our moment estimators:
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Lemma 1 Given {p1, . . . , pn}, let Xi denote the random variable distributed according to
Binomial(t, pi). For k ∈ {1, . . . , t}, let αk = 1

n

∑n
i=1 p

k
i denote the kth true moment, and

βk = 1
n

∑n
i=1

(
Xi
k

)(
t
k

) denote our estimate of the kth moment. Then

E[βk] = αk, and Pr(|βk − αk| ≥ ε) ≤ 2e−
1
3nε

2

.

Proof. First we show that for each i we have E[
(
Xi
k

)
] = pki

(
t
k

)
, then the claim E[βk] = αk holds

trivially due to the additivity of expectation. Notice that the numerator counts the number of subsets
of size k that are all 1, and the denominator is the number of subsets of size k. The probability that a
certain subset of size k is all 1 is exactly pki . Hence the claim about the expectation holds.

By Bernstein’s Inequality, when ε ≤ 1, Pr(|βk − αk| ≥ ε) ≤ 2e−
3
8nε

2 ≤ 2e−
1
3nε

2

holds. We have
proved the claim about concentration.

We are now ready to prove Theorem 1. For convenience, we restate the theorem:

Theorem 1 Consider a set of n probabilities, p1, . . . , pn with pi ∈ [0, 1], and suppose we observe the
outcome of t independent flips of each coin, namely X1, . . . , Xn, with Xi ∼ Binomial(t, pi). There
is an algorithm that produces a distribution Q supported on [0, 1], such that with probability at least
1− δ over the randomness of X1, . . . , Xn,

‖P −Q‖W ≤
π

t
+ 3t

t∑
i=1

√
ln(

2t

δ
)

3

n
≤ π

t
+Oδ(

3tt ln t√
n

),

where P denotes the distribution that places mass 1
n at value pi, and ‖ · ‖W denotes the Wasserstein

distance.

Proof. Given Lemma 1, we obtain the fact that, with probability at least 1−δ, the events |αk−βk| ≤√
ln( 2t

δ ) 3
n simultaneously occur for all k ∈ {1, . . . , t}. Applying Theorem 3 yields the claimed

accuracy guarantee.

C Proof of Proposition 1, the information-theoretic lower bound

In this section, we prove Proposition 1 establishing the tightness of the Θ(1/t) dependence in our
recovery guarantees. For convenience, we restate the proposition:

Proposition 1 Let Ppop denote a distribution over [0, 1], and for positive integers t and n, let
X1, . . . , Xn denote independent random variables with Xi distributed as Binomial(t, pi) where
pi is drawn independently according to Ppop. An estimator f maps X1, . . . , Xn to a distribution
f(X1, . . . , Xn). Then, for every fixed t, the following lower bound on the accuracy of any estimator
holds for all n:

inf
f

sup
Ppop

E [‖f(X1, . . . , Xn)− Ppop‖W ] >
1

4t
.

Our proof will leverage the following result from [7] which states that there exists a pair of distribu-
tions supported on [0, 1] whose first t moments agree, but have Wasserstein distance > 1/2t:

Lemma 3. For any t, there exists a pair of distributionsDP , DQ supported on [0, 1] that each consist
of O(t) point masses, such that DP and DQ have identical first t moments, and ||DP −DQ||W > 1

2t

Proof of Proposition 1. Consider the distributions DP and DQ whose existence is guaranteed by
Lemma 3. Consider the distribution of Xi, where Xi is drawn by first drawing pi according to DP ,
and then drawing Xi ← Binomial(pi, t). Similarly, let Yi denote the random variable defined by
drawing qi from DQ and then drawing Yi ← Binomial(qi, t).
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We now claim that the distribution of Xi and Yi are identical, and hence, for every n, the joint distri-
bution of (X1, . . . , Xn) is identical to that of (Y1, . . . , Yn), and hence they cannot be distinguished.

Indeed, the distributions of Xi and Yi are given by:

P(Xi = k) =

∫ 1

0

(
t

k

)
xk(1− x)t−kDP (x)dx

P(Yi = k) =

∫ 1

0

(
t

k

)
xk(1− x)t−kDQ(x)dx

Noting that the integrand is a degree-t polynomial, and thatDP andDQ have the same first tmoments
yields the conclusion that these two distributions are identical.

To conclude, note that if we are given (Z1, . . . , Zn) with the promise that, with probability 1/2, they
correspond to DP and with probability 1/2 they correspond to DQ, then no algorithm can correctly
guess which of these distributions they were drawn from, with probability of success greater than 1/2,
and hence no estimator can achieve an expected error of recovery better than 1

2‖DP −DQ|W > 1
4t ,

as desired.

D Proof of Theorem 2, multivariate setting

The prove of Theorem 2 will be identical to Theorem 1, except that we will need the following
slightly stronger version of Lemma 2:

Lemma 2 Given any Lipschitz function f supported on [0, 1]d, there is a degree t polynomial
p(x) =

∑
|α|≤t cαx

α where α is multi-index {α1, α2, . . . αd} such that

sup
x∈[0,1]d

|p(x)− f(x)| ≤ Cd
t
, (1)

and cα ≤ Ad (2t)d2t

3|α| .

Proof. This polynomial approximation lemma is basically a restatement of Theorem 1 in [3]. What
we need to do is only to give an explicit upper bound of the coefficients.

The high level idea is to first convolve f with a holomorphic bump functionG which givesH = f ∗G,
then the Maclaurin series of H is a good polynomial approximation of H and also f .

By the definition of Maclaurin series, the coefficient cα = ∂αH(0)
|α|! . Suppose H is holomorphic

on an open neighborhood of some polydisk ES with radius S, assuming supz∈ES |H(z)| ≤ M ,
by Cauchy’s integral formula, we have |cα| = | 1

2πi

∮
|z|=S

H(z)
z|α|+1 | ≤ M

S|α| . By the definition of R
in the proof of Theorem 1 in [3], we can set R = 1 such that function f is supported on box
BR. Let S = 2R + 1 = 3 and follow all the parameter settings, by Equation 14 in [3], we have
|cα| ≤ M

S|α| ≤ Ad (2t)d(t+1)2t

t3|α| ≤ Ad (2t)d2t

3|α| , where Ad is a constant that depends on d.

E Lateness in flights

We evaluated our recovery algorithm on the distribution of flight delays, based on the 2015 Flight
Delays and Cancellations dataset from Kaggle via the Department of Transportation. This dataset
contains records consisting of flight identifer (e.g. airline, number, and departure/arrival city), date,
lateness of departure, and lateness of arrival. For each of n = 25,156 different flights—where a
“flight” is defined via the airline and flight number—we let the corresponding binomial parameter
p correspond to the probability that flight departs at least 15 minutes late. Each of the n = 25,156
flights considered had at least 50 records in the dataset, and we took the empirical distribution of the
lateness parameters of these flights as our ground truth distribution, Ppop.

In our experiment, for each of the n flights, we subsampled t of the corresponding records uniformly
at random, and let Xi represent the number of these t sampled instances that departed late. Then we
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ran Algorithm 2 on X1, . . . , Xn to produce an estimate Q of Ppop. Figure 5 depicts the results of a
typical run of the algorithm corresponding to sample sizes of t = 6 and t = 10. In the plots, the red
line is the CDF of the empirical estimator, the blue line is the CDF of the output of Algorithm 2, and
the green line is the ground truth. Based on 5 independent runs of the experiments, the average and
standard deviation of the EMD error of the recovered distribution was µ = 0.023 and std = 0.0051
(t = 6) and µ = 0.014 and std = 0.0027 (t = 10). For comparison, the average EMD error of the
empirical estimates of the distribution were 0.069 (t = 6) and 0.044 (t = 10).

The estimates were very robust to repeated runs of the experiment, producing CDFs that matched the
ground truth extremely closely for all settings of t ∈ {4, 5, . . . , 10}.

(a) t = 6 samples. (b) t = 10 samples.

Figure 5: Recovering the distribution of probabilities of flight departure delay. The blue line depicts
the distribution recovered by bootstrapping Algorithm 2 on t = 6 samples of each flight (left plot)
and t = 10 samples of each flight (right plot). For comparison, the ground truth distribution (green
line) and empirical distribution (red line) are also shown.
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