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Abstract

This paper addresses the challenge of learning from peers in an online multitask
setting. Instead of always requesting a label from a human oracle, the proposed
method first determines if the learner for each task can acquire that label with
sufficient confidence from its peers either as a task-similarity weighted sum, or
from the single most similar task. If so, it saves the oracle query for later use in
more difficult cases, and if not it queries the human oracle. The paper develops the
new algorithm to exhibit this behavior and proves a theoretical mistake bound for
the method compared to the best linear predictor in hindsight. Experiments over
three multitask learning benchmark datasets show clearly superior performance
over baselines such as assuming task independence, learning only from the oracle
and not learning from peer tasks.

1 Introduction

Multitask learning leverages the relationship between the tasks to transfer relevant knowledge from
information-rich tasks to information-poor ones. Most existing work in multitask learning focuses
on how to take advantage of these task relationships, either by sharing data directly [1] or learning
model parameters via cross-task regularization techniques [2, 3, 4]. This paper focuses on a specific
multitask setting where tasks are allowed to interact by requesting labels from other tasks for difficult
cases.

In a broad sense, there are two settings to learn multiple related tasks together: 1) batch learning, in
which an entire training set is available to the learner 2) online learning, in which the learner sees
the data sequentially. In recent years, online multitask learning has attracted increasing attention
[5, 6, 7, 8, 9, 10]. The online multitask setting starts with a learner at each round t, receiving an
example (along with a task identifier) and predicts the output label. One may also consider learning
multiple tasks simultaneously by receiving K examples for K tasks at each round t. Subsequently,
the learner receives the true label and updates the model(s) as necessary. This sequence is repeated
over the entire data, simulating a data stream. In this setting, the assumption is that the true label is
readily available for the task learner, which is impractical in many applications.

Recent works in active learning for sequential problems have addressed this concern by allowing
the learner to make a decision on whether to ask the oracle to provide the true label for the current
example and incur a cost or to skip this example. Most approach in active learning for sequential
problems use a measure such a confidence of the learner in the current example [11, 12, 13, 14, 15].
In online multitask learning, one can utilize the task relationship to further reduce the total number
of labels requested from the oracle. This paper presents a novel active learning for the sequential
decision problems using peers or related tasks. The key idea is that when the learner is not confident
on the current example, the learner is allowed to query its peers, which usually has a low cost, before
requesting a true label from the oracle and incur a high cost. Our approach follows a perceptron-based
update rule in which the model for a given task is updated only when the prediction for that task is
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in error. The goal of an online learner in this setting is to minimize errors attempting to reach the
performance of the full hindsight learner and at the same time, reduce the total number of queries
issued to the oracle.

There are many useful application areas for online multitask learning with selective sampling,
including optimizing financial trading, email prioritization and filtering, personalized news, crowd
source-based annotation, spam filtering and spoken dialog system, etc. Consider the latter, where
several automated agents/bots servicing several clients. Each agent is specialized or trained to answer
questions from customers on a specific subject such as automated payment, troubleshooting, adding
or cancelling services, etc. In such setting, when one of the automated agents cannot answer a
customer’s question, it may request the assistance of another automated agent that is an expert in the
subject related to that question. For example, an automated agent for customer retention may request
some help from an automated agent for new services to offer new deals for the customer. When both
the agents could not answer the customer’s question, the system may then direct the call to a live
agent. This may reduce the number of service calls directed to live agents and the cost associated
with such requests.

Similarly in spam filtering, where some spam is universal to all users (e.g. financial scams), some
messages might be useful to certain affinity groups, but spam to most others (e.g. announcements
of meditation classes or other special interest activities), and some may depend on evolving user
interests. In spam filtering each user is a task, and shared interests and dis-interests formulate the
inter-task relationship matrix. If we can learn the task relationship matrix as well as improving
models from specific decisions from peers on difficult examples, we can perform mass customization
of spam filtering, borrowing from spam/not-spam feedback from users with similar preferences. The
primary contribution of this paper is precisely active learning for multiple related tasks and its use in
estimating per-task model parameters in an online setting.

1.1 Related Work

While there is considerable literature in online multitask learning, many crucial aspects remain largely
unexplored. Most existing work in online multitask learning focuses on how to take advantage of
task relationships. To achieve this, Lugosi et. al [7] imposed a hard constraint on the K simultaneous
actions taken by the learner in the expert setting, Agarwal et. al [16] used matrix regularization, and
Dekel et. al [6] proposed a global loss function, as an absolute norm, to tie together the loss values
of the individual tasks. In all these works, their proposed algorithms assume that the true labels are
available for each instance.

Selective sampling-based learners in online setting, on the other hand, decides whether to ask the
human oracle for labeling of difficult instances [11, 12, 13, 14, 15]. It can be easily extended to online
multitask learning setting by applying selective sampling for each individual task separately. Saha
et. al [9] formulated the learning of task relationship matrix as a Bregman-divergence minimization
problem w.r.t. positive definite matrices and used this task-relationship matrix to naively select the
instances for labelling from the human oracle.

Several recent works in online multitask learning recommended updating all the task learners
on each round t [10, 9, 8]. When a task learner makes a mistake on an example, all the tasks’
model parameters are updated to account for the new examples. This significantly increases the
computational complexity at each round, especially when the number of tasks is large [17]. Our
proposed method avoids this issue by updating only the learner of the current example and utilize the
knowledge from peers only when the current learner requested them.

This work is motivated by the recent interests in active learning from multiple (strong or weak)
teachers [18, 19, 12, 20, 21, 22]. Instead of single all-known oracle, these papers assume multiple
oracles (or teachers) each with a different area of expertise. At round t, some of the teachers are
experts in the current instance but the others may not be confident in their predicted labels. Such
learning setting is very common in crowd-sourcing platform where multiple annotators are used to
label an instance. Our learning setting is different from their approaches where, instead of learning
from multiple oracles, we learn from our peers (or related tasks) without any associated high cost.
Finally, our proposed method is closely related to learning with rejection option [23, 24] where the
learner may choose not to predict label for an instance. To reject an instance, they use a measure of
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1. Receive an example x(t) for the task k
2. If the task k is not confident in the prediction for this example, ask

the peers or related tasks whether they can give a confident label
to this example.

3. If the peers are not confident enough, ask the oracle for the true
label y(t).

Figure 1: Proposed learning approach from peers.

confidence to identify difficult instances. We use a similar approach to identify when to query peers
and when to query the human oracle for true label.

2 Problem Setup

Suppose we are given K tasks where the kth task is associated with Nk training examples. For
brevity, we consider a binary classification problem for each task, but the methods generalize to
multi-class settings and are also applicable to regression tasks. We denote by [N ] consecutive integers
ranging from 1 to N . Let

{
(x

(i)
k , y

(i)
k )
}Nk
i=1

be data for task k where x(i)k ∈ Rd is the ith instance

from the kth task and y(i)k is its corresponding true label. When the notation is clear from the context,
we drop the index k and write ((x(i), k), y(i)).

Let {w∗k}k∈[K] be any set of arbitrary vectors where w∗k ∈ Rd. The hinge losses on the example(
(x(t), k), y(t)

)
are given by `(t)∗kk =

(
1 − y(t)〈x(t), w∗k〉

)
+

and `(t)∗km =
(
1 − y(t)〈x(t), w∗m〉

)
+

,

respectively, where (z)+ = max(0, z). Similarly, we define hinge losses `(t)kk and `(t)km for the linear
predictors {w(t)

k }k∈[K] learned at round t. Let Z(t) be a Bernoulli random variable to indicate whether
the learner requested a true label for the example x(t). Let M (t) be a binary variable to indicate
whether the learner made a mistake on the example x(t). We use the following expected hinge losses

for our theoretical analysis: L̃kk = E
[∑

tM
(t)Z(t)`

(t)∗
kk

]
and L̃km = E

[∑
tM

(t)Z(t)`
(t)∗
km

]
.

We start with our proposed active learning from peers algorithm based on selective sampling for
online multitask problems and study the mistake bound for the algorithm in Section 3. We report our
experimental results and analysis in Section 4. Additionally, we extend our learning algorithm to
learning multiple task in parallel in the supplementary.

3 Learning from Peers

We consider multitask perceptron for our online learning algorithm. On each round t, we receive an
example (x(t), k) from task k 1. Each perceptron learner for the task k maintains a model represented
by w(t−1)

k learned from examples received until round t− 1. Task k predicts a label for the received
example x(t) using hk(x(t)) = 〈w(t−1)

k , x(t)〉 2. As in the previous works [11, 12, 23], we use
|hk(x(t))| to measure the confidence of the kth task learner on this example. When the confidence is
higher, the learner doesn’t require the need to request the true label y(t) from the oracle.

Built on this idea, [11] proposed a selective sampling algorithm using the margin |hk(x(t))| to decide
whether to query the oracle or not. Intuitively, if |hk(x(t))| is small, then the kth task learner is not
confident in the prediction of x(t) and vice versa. They consider a Bernoulli random variable P (t)

for the event |hk(x(t))| ≤ b1 with probability b1
b1+|hk(x(t))| for some predefined constant b1 ≥ 0. If

1We will consider a different online learning setting later in the supplementary section where we simultane-
ously receive K examples at each round, one for each task k

2We also use the notation p̂kk = 〈w(t−1)
k , x(t)〉 and p̂km = 〈w(t−1)

m , x(t)〉
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P (t) = 1 (confidence is low), then the kth learner requests the oracle for the true label. Similarly
when P (t) = 0 (confidence is high), the learner skips the request to the oracle. This considerably
saves a lot of label requests from the oracle. When dealing with multiple tasks, one may use similar
idea and apply selective sampling for each task individually [25]. Unfortunately, such approach
doesn’t take into account the inherent relationship between the tasks.

In this paper, we consider a novel active learning (or selective sampling) for online multitask learning
to address the concerns discussed above. Our proposed learning approach can be summarized in
Figure 1. Unlike in the previous work [8, 9, 10], we update only the current task parameter wk
when we made a mistake at round t, instead of updating all the task model parameters wm,∀m ∈
[K],m 6= k. Our proposed method avoids this issue by updating only the learner of the current
example and share the knowledge from peers only when the assistance is needed. In addition, the
task relationship is taken into account, to measure whether the peers are confident in predicting this
example. This approach provides a compromise between learning them independently and learning
them by updating all the learners when a specific learner makes a mistake.

As in traditional selective sampling algorithm [11], we consider a Bernoulli random variable P (t) for
the event |hk(x(t))| ≤ b1 with probability b1

b1+|hk(x(t))| . In addition, we consider a second Bernoulli

random variable Q(t) for the event |hm(x(t))| ≤ b2 with probability b2
b2+

∑
m∈[K],m 6=k τ

(t−1)
km |hm(x(t))|

.

The idea is that when the weighted sum of the confidence of the peers on the current example is high,
then we use the predicted label ỹ(t) from the peers for the perceptron update instead of requesting a
true label y(t) from the oracle. In our experiment in Section 4, we consider the confidence of most
related task instead of the weighted sum to reduce the computational complexity at each round. We
set Z(t) = P (t)Q(t) and set M (t) = 1 if we made a mistake at round t i.e., (y(t) 6= ŷ(t)) (only when
the label is revealed/queried).

The pseudo-code is in Algorithm 1. Line 14 is executed when we request a label from the oracle or
when peers are confident on the label for the current example. Note the two terms in (M (t)Z(t)y(t) +

Z̃(t)ỹ(t)) are mutually exclusive (when P (t) = 1). Line (15-16) computes the relationship between
tasks τkm based on the recent work by [10]. It maintains a distribution over peers w.r.t the current
task. The value of τ is updated at each round using the cross-task error `km. In addition, we use the
τ to get the confidence of the most-related task rather than the weighted sum of the confidence of
the peers to get the predicted label from the peers (see Section 4 for more details). When we are
learning with many tasks [17], it provides a faster computation without significantly compromising
the performance of the learning algorithm. One may use different notion of task relationship based
on the application at hand. Now, we give the bound on the expected number of mistakes.

Theorem 1. let Sk =
{(

(x(t), k), y(t)
)}T
t=1

be a sequence of T examples given to Algorithm 1 where
x(t) ∈ Rd, y(t) ∈ {−1,+1} and X = maxt ‖x(t)‖. Let P (t) be a Bernoulli random variable for
the event |hk(x(t))| ≤ b1 with probability b1

b1+|hk(x(t))| and let Q(t) be a Bernoulli random variable

for the event |hm(x(t))| ≤ b2 with probability b2
b2+maxm∈[K]

m6=k
|hm(x(t))| . Let Z(t) = P (t)Q(t) and

M (t) = I(y(t) 6= ŷ(t)).

If the Algorithm 1 is run with b1 > 0 and b2 > 0 (b2 ≥ b1), then ∀t ≥ 1 and γ > 0 we have

E
[ ∑
t∈[T ]

M (t)

]
≤ b2

γ

[
(2b1 +X2)2

8b1γ

(
‖w∗k‖2 + max

m∈[K],m 6=k
‖w∗m‖2

)
+
(
1 +

X2

2b1

)(
L̃kk + max

m∈[K],m6=k
L̃km

)]

Then, the expected number of label requests to the oracle by the algorithm is∑
t

b1
b1 + |hk(x(t))|

b2
b2 +maxm∈[K]

m 6=k
|hm(x(t))|
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Algorithm 1: Active Learning from Peers
Input : b1 > 0, b2 > 0 s.t., b2 ≥ b1, λ > 0, Number of rounds T

1 Initialize w(0)
m = 0 ∀m ∈ [K], τ (0).

2 for t = 1 . . . T do
3 Receive (x(t), k)

4 Compute p̂(t)kk = 〈x(t), w(t−1)
k 〉

5 Predict ŷ(t) = sign(p̂
(t)
kk )

6 Draw a Bernoulli random variable P (t) with probability b1

b1+|p̂
(t)
kk
|

7 if P (t) = 1 then
8 Compute p̂(t)km = 〈x(t), w(t−1)

m 〉 ∀m 6= k,m ∈ [K]

9 Compute p̃(t) =
∑

m 6=k,m∈[K] τ
(t−1)
km p̂

(t)
km and ỹ(t) = sign(p̃(t))

10 Draw a Bernoulli random variable Q(t) with probability b2
b2+|p̃(t)|

11 end
12 Set Z(t) = P (t)Q(t) & Z̃(t) = P (t)(1−Q(t))

13 Query true label y(t) if Z(t) = 1 and set M (t) = 1 if ŷ(t) 6= y(t)

14 Update w(t)
k = w

(t−1)
k + (M (t)Z(t)y(t) + Z̃(t)ỹ(t))x(t)

15 Update τ :
16

τ
(t)
km =

τ
(t−1)
km e−

Z(t)

λ
`
(t)
km∑

m′∈[K]

m′ 6=k

τ
(t−1)

km′ e
−Z

(t)

λ
`
(t)

km′

m ∈ [K],m 6= k (1)

17 end

The proof is given in Appendix A. It follows from Theorem 1 in [11] and Theorem 1 in [10] and

setting b2 = b1 +
X2

2 +
‖w∗k‖

2 , where b1 = X2

2

√
1 + 4γ2

‖w∗k‖X2
L̃kk
γ . Theorem 1 states that the quality

of the bound depends on both L̃kk and the maximum of {L̃km}m∈[K],m 6=k. In other words, the worst-
case regret will be lower if the kth true hypothesis w∗k can predict the labels for training examples in
both the kth task itself as well as those in all the other related tasks in high confidence. In addition,
we consider a related problem setting in which all the K tasks receive an example simultaneously.
We give the learning algorithm and mistake bound for this setting in Appendix B.

4 Experiments

We evaluate the performance of our algorithm in the online setting. All reported results in this section
are averaged over 10 random runs on permutations of the training data. We set the value of b1 = 1 for
all the experiments and the value of b2 is tuned from 20 different values. Unless otherwise specified,
all model parameters are chosen via 5-fold cross validation.

4.1 Benchmark Datasets

We use three datasets for our experiments. Details are given below:

Landmine Detection3 consists of 19 tasks collected from different landmine fields. Each task is a
binary classification problem: landmines (+) or clutter (−) and each example consists of 9 features
extracted from radar images with four moment-based features, three correlation-based features, one
energy ratio feature and a spatial variance feature. Landmine data is collected from two different
terrains: tasks 1-10 are from highly foliated regions and tasks 11-19 are from desert regions, therefore
tasks naturally form two clusters. Any hypothesis learned from a task should be able to utilize the
information available from other tasks belonging to the same cluster.

3http://www.ee.duke.edu/~lcarin/LandmineData.zip
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Spam Detection4 We use the dataset obtained from ECML PAKDD 2006 Discovery challenge for
the spam detection task. We used the task B challenge dataset which consists of labeled training
data from the inboxes of 15 users. We consider each user as a single task and the goal is to build
a personalized spam filter for each user. Each task is a binary classification problem: spam (+)
or non-spam (−) and each example consists of approximately 150K features representing term
frequency of the word occurrences. Since some spam is universal to all users (e.g. financial scams),
some messages might be useful to certain affinity groups, but spam to most others. Such adaptive
behavior of user’s interests and dis-interests can be modeled efficiently by utilizing the data from
other users to learn per-user model parameters.

Sentiment Analysis5 We evaluated our algorithm on product reviews from Amazon on a dataset
containing reviews from 24 domains. We consider each domain as a binary classification task.
Reviews with rating > 3 were labeled positive (+), those with rating < 3 were labeled negative (−),
reviews with rating = 3 are discarded as the sentiments were ambiguous and hard to predict. Similar
to the previous dataset, each example consists of approximately 350K features representing term
frequency of the word occurrences.

We choose 3040 examples (160 training examples per task) for landmine, 1500 emails for spam (100
emails per user inbox) and 2400 reviews for sentiment (100 reviews per domain) for our experiments.
We use the rest of the examples for test set. On average, each task in landmine, spam, sentiment has
509, 400 and 2000 examples respectively. Note that we intentionally kept the size of the training data
small to drive the need for learning from other tasks, which diminishes as the training sets per task
become large.

4.2 Results

To evaluate the performance of our proposed approach, we compare our proposed methods to 2
standard baselines. The first baseline selects the examples to query randomly (Random) and the second
baseline chooses the examples via selective sampling independently for each task (Independent)
[11]. We compare these baselines against two versions of our proposed algorithm 1 with different
confidence measures for predictions from peer tasks: PEERsum where the confidence p̃(t) at round t is
computed by the weighted sum of the confidence of each task as shown originally in Algorithm 1 and
PEERone where the confidence p̃(t) is set to the confidence of the most related task k (p̂(t)k ), sampled
from the probability distribution τ (t)km, m ∈ [K], m 6= k. The intuition is that, for multitask learning
with many tasks [17], PEERone provides a faster computation without significantly compromising
the performance of the learning algorithm. The task weights τ are computed based on the relationship
between the tasks. As mentioned earlier, the τ values can be easily replaced by other functions based
on the application at hand 6.

In addition to PEERsum and PEERone, we evaluated a method that queries the peer with the highest
confidence, instead of the most related task as in PEERone, to provide the label. Since this method
uses only local information for the task with highest confidence, it is not necessarily the best peer in
hindsight, and the results are worse than or comparable (in some cases) to the Independent baseline.
Hence, we do not report its results in our experiment.

Figure 2 shows the performance of the models during training. We measure the average rate of
mistakes (cumulative measure), the number of label requests to the oracle and the number of peer
query requests to evaluate the performance during the training time. From Figure 2 (top and middle),
we can see that our proposed methods (PEERsum and PEERone) outperform both the baselines.
Among the proposed methods, PEERsum outperforms PEERone as it uses the confidence from all
the tasks (weighted by task relationship) to measure the final confidence. We notice that during the
earlier part of the learning, all the methods issue more query to the oracle. After a few initial set of
label requests, peer requests (dotted lines) steadily take over in our proposed methods. We can see
three noticeable phases in our learning algorithm: initial label requests to the oracle, label requests to
peers, and as task confidence grows, learning with less dependency on other tasks.

4http://ecmlpkdd2006.org/challenge.html
5http://www.cs.jhu.edu/~mdredze/datasets/sentiment
6Our algorithm and theorem can be easily generalized to other types of functions on τ
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Figure 2: Average rate of mistakes vs. Number of examples calculated for compared models on the
three datasets (top). Average number of label and peer requests on the three datasets (middle). Average
rate of (training) mistakes vs. Number of examples with the query budget of (10%, 20%, 30%) of the
total number of examples T on sentiment (bottom). These plots are generated during the training.

In order to efficiently evaluate the proposed methods, we restrict the total number of label re-
quests issued to the oracle during training, that is we give all the methods the same query budget:
(10%, 20%, 30%) of the total number of examples T on sentiment dataset. After the desired number
of label requests to the oracle reached the said budget limit, the baseline methods predicts label for
the new examples based on the earlier assistance from the oracle. On the other hand, our proposed
methods continue to reduce the average mistake rate by requesting labels from peers. This shows the
power of learning from peers when human expert assistance is expensive, scarce or unavailable.

Table 1 summarizes the performance of all the above algorithms on the test set for the three datasets.
In addition to the average accuracy ACC scores, we report the average total number of queries
or label requests to the oracle (#Queries) and the CPU time taken (seconds) for learning from T
examples (Time). From the table, it is evident that PEER* outperforms all the baselines in terms of
both ACC and #Queries. In case of landmine and sentiment, we get a significant improvement in
the test set accuracy while reducing the total number of label requests to the oracle. As in the training
set results before, PEERsum performs slightly better than PEERone. Our methods perform slightly
better than Independent in spam, we can see from Figure 2 (middle) for spam dataset, the number of
peer queries are lower compared to that of the other datasets.

The results justify our claim that relying on assistance from peers in addition to human intervention
leads to improved performance. Moreover, our algorithm consumes less or comparable CPU time
than the baselines which take into account inter-task relationships and peer requests. Note that
PEERone takes a little more training time than PEERsum. This is due to our implementation that
takes more time in (MATLAB’s) inbuilt sampler to draw the most related task. One may improve
the sampling procedure to get better run time. However, the time spent on selecting the most related
tasks is small compared to the other operations when dealing with many tasks.

Figure 3 (left) shows the average test set accuracy computed for 20 different values of b2 for PEER*
methods in sentiment. We set b1 = 1. Each point in the plot corresponds to ACC (y-axis) and
#Queries (x-axis) computed for a specific value of b2. We find the algorithm performs well for
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Table 1: Average test accuracy on three datasets: means and standard errors over 10 random shuffles.

Models Landmine Detection Spam Detection Sentiment Analysis
ACC #Queries Time (s) ACC #Queries Time (s) ACC #Queries Time (s)

Random 0.8905
(0.007)

1519.4
(31.9) 0.38 0.8117

(0.021)
753.4
(29.1) 8 0.7443

(0.028)
1221.8
(22.78) 35.6

Independent 0.9040
(0.016)

1802.8
(35.5) 0.29 0.8309

(0.022)
1186.6
(18.3) 7.9 0.7522

(0.015)
2137.6
(19.1) 35.6

PEERsum 0.9403
(0.001)
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Figure 3: Average test set ACC calculated for different values of b2 (left). A visualization of the
peer query requests among the tasks in sentiment learned by PEERone (middle) and comparison
of proposed methods against SHAMPO in parallel setting. We report the average test set accuracy
(right).

b2 > b1 and the small values of b2. When we increase the value of b2 to∞, our algorithm reduces to
the baseline (Independent), as all request are directed to the oracle instead of the peers.

Figure 3 (middle) shows the snapshot of the total number of peer requests between the tasks in
sentiment at the end of the training of PEERone. Each edge says that there was one peer query request
from a task/domain to another related task/domain (based on the task relationship matrix τ ). The
edges with similar colors show the total number of peer requests from a task. It is evident from the
figure that all the tasks are collaborative in terms of learning from each other.

Figure 3 (right) compares the PEER* implementation of Algorithm 2 in Appendix B against SHAMPO
in terms of test set accuracy for sentiment dataset (See Supplementary material for more details on the
Algorithm). The algorithm learns multiple tasks in parallel, where at most κ out of K label requests
to the oracle are allowed at each round. While SHAMPO ignores the other tasks, our PEER* allows
peer query to related tasks and thereby improves the overall performance. As we can see from the
figure, when κ is set to small values, PEER* performs significantly better than SHAMPO.

5 Conclusion

We proposed a novel online multitask learning algorithm that learns to perform each task jointly
with learning inter-task relationships. The primary intuition we leveraged in this paper is that task
performance can be improved both by querying external oracles and by querying peer tasks. The
former incurs a cost or at least a query-budget bound, but the latter requires no human attention.
Hence, our hypothesis was that with bounded queries to the human expert, additionally querying
peers should improve task performance. Querying peers requires estimating the relation among
tasks. The key idea is based on smoothing the loss function of each task w.r.t. a probabilistic
distribution over all tasks, and adaptively refining such distribution over time. In addition to closed-
form updating rules, we provided a theoretical bound on the expected number of mistakes. The
effectiveness of our algorithm is empirically verified over three benchmark datasets where in all
cases task accuracy improves both for PEERsum (sum of peer recommendations weighted by task
similarity) and PEERone (peer recommendation from the most highly related task) over baselines
such as assuming task independence.
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