
A Proofs
This appendix collects various proofs omitted from the main text.

A.1 Lipschitz properties of ReLU and max-pooling nonlinearities
The standard ReLU (“Rectified Linear Unit”) is the univariate mapping

σr(r) := max{0, r}.

When applied to a vector or a matrix, it operates coordinate-wise. While the ReLU is currently
the most popular choice of univariate nonlinearity, another common choice is the sigmoid r 7→
1/(1 + exp(−r)). More generally, these univariate nonlinearities are Lipschitz, and this carries over
to their vector and matrix forms as follows.

Lemma A.1. If σ : Rd → Rd is ρ-Lipschitz along every coordinate, then it is ρ-Lipschitz according
to ‖ · ‖p for any p ≥ 1.

Proof. for any z, z′ ∈ Rd,

‖σ(z)− σ(z′)‖p =

∑
i

|σ(z)i − σ(z′)i|p
1/p

≤

∑
i

ρp|zi − z′i|p
1/p

= ρ‖z − z′‖p.

Define a max-pooling operator P as follows. Given an input and output pair of finite-dimensional
vector spaces T and T ′ (possibly arranged as matrices or tensors), the max-pooling operator iterates
over a collection of sets of indices Z (whose cardinality is equal to the dimension of T ’), and for
each element of Zi ∈ Z sets the corresponding coordinate i in the output to the maximum entry of
the input over Zi: given T ∈ T ,

P(T )i := max
j∈Zi

Tj .

The following Lipschitz constant of pooling operators will depend on the number of times each
coordinate is accessed across elements of Z; when this operator is used in computer vision, the
number of times is typically a small constant, for instance 5 or 9 [Krizhevsky et al., 2012].

Lemma A.2. Suppose that each coordinate j of the input appears in at most m elements of the
collection Z . Then the max-pooling operator P is m1/p-Lipschitz wrt ‖ · ‖p for any p ≥ 1. In
particular, the max-pooling operator is 1-Lipschitz whenever Z forms a partition.

Proof. Let T, T ′ ∈ T be given. First consider any fixed set of indices Z ∈ Z , and suppose without
loss of generality that P(T )Z = maxj∈Z Tj ≥ maxj∈Z T

′
j . Then

|P(T )Z − P(T ′)Z |p =

(
min
j′∈Z

max
j∈Z

Tj − T ′j′
)p
≤ max

j∈Z

(
Tj − T ′j

)p
≤
∑
j∈Z

∣∣∣Tj − T ′j∣∣∣p .
Consequently,

‖P(T )− P(T ′)‖p =

∑
i

|P(T )i − P(T ′)i|p
1/p

=

∑
Z∈Z
|P(T )Z − P(T ′)Z |p

1/p

≤

∑
Z∈Z

∑
j∈Z
|Tj − T ′j |p

1/p

=

∑
j

∑
Z∈Z:j∈Z

|Tj − T ′j |p
1/p

≤

m∑
j

|Tj − T ′j |p
1/p

= m1/p‖T − T ′‖p.
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A.2 Margin properties in Section 3.1
The goal of this subsection is to prove the general margin bound in Lemma 3.1. To this end, it is first
necessary to establish a few properties of the margin operatorM(v, j) := vj −maxi6=j vi and of the
ramp loss `λ.

Lemma A.3. For every j and every p ≥ 1,M(·, j) is 2-Lipschitz wrt ‖ · ‖p.

Proof. Let v, v′, j be given, and suppose (without loss of generality)M(v, j) ≥M(v′, j). Choose
coordinate i 6= j so thatM(v′, j) = v′j − v′i. Then

M(v, j)−M(v′, j) =

(
vj −max

l 6=j
vj

)
−
(
v′j − v′i

)
= vj − v′j + v′i + min

l 6=j
(−vl)

≤
(
vj − v′j

)
+
(
v′i − vi

)
≤ 2‖v − v′‖∞ ≤ 2‖v − v′‖p.

Next, recall the definition of the ramp loss

`γ(r) :=


0 r < −γ,
1 + r/γ r ∈ [−γ, 0],

1 r > 0,

and of the ramp risk
Rγ(f) := E(`γ(−M(f(x), y))).

(These quantities are standard; see for instance [Boucheron et al., 2005, Zhang, 2004, Tewari and
Bartlett, 2007].)

Lemma A.4. For any f : Rd → Rk and every γ > 0,

Pr[arg max
i

f(x)i 6= y] ≤ Pr[M(f(x), y) ≤ 0] ≤ Rγ(f),

where the arg max follows any deterministic tie-breaking strategy.

Proof.

Pr[arg max
i

f(x)i 6= y] ≤ Pr[max
i 6=y

f(x)i ≥ f(x)y]

= Pr[−M(f(x), y) ≥ 0]

= E1[−M(f(x), y) ≥ 0]

≤ E`γ(−M(f(x), y))

With these tools in place, the proof of Lemma 3.1 is straightforward.

Proof of Lemma 3.1. Since `γ has range [0, 1], it follows by standard properties of Rademacher
complexity [see, for example, Mohri et al., 2012, Theorem 3.1] that with probability at least 1− δ,
every f ∈ F satisfies

Rγ(f) ≤ R̂γ(f) + 2R((Fγ)|S) + 3

√
ln(2/δ)

2n
.

The bound now follows by applying Lemma A.4 to the left hand side.
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A.3 Dudley Entropy Integral
This section contains a slight variant of the standard Dudley entropy integral bound on the empirical
Rademacher complexity (e.g. Mohri et al. [2012]), which is used in the proof of Theorem 1.1. The
presentation here diverges from standard presentations because the data metric (as in Eq. (A.1)) is
not normalized by

√
n. The proof itself is entirely standard however — even up to constants — and

is included only for completeness.
Lemma A.5. Let F be a real-valued function class taking values in [0, 1], and assume that 0 ∈ F .
Then

R(F|S) ≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
logN (F|S , ε, ‖·‖2)dε.

)

Proof. Let N ∈ N be arbitrary and let εi =
√
n2−(i−1) for each i ∈ [N ]. For each i let Vi denote

the cover achieving N (F|S , εi, ‖·‖2), so that

∀f ∈ F ∃v ∈ Vi

 n∑
t=1

(f(xt)− vt)2

1/2

≤ εi, (A.1)

and|Vi| = N (F|S , εi, ‖·‖2). For a fixed f ∈ F , let vi[f ] denote the nearest element in Vi . Then

E
ε

sup
f∈F

n∑
t=1

εif(xt)

= E
ε

sup
f∈F

 n∑
t=1

εt(f(xt)− vNt [f ]) +

N−1∑
i=1

n∑
t=1

εt(v
i
t[f ]− vi+1

t [f ])−
n∑
t=1

εtv
1
t [f ]


≤ E

ε
sup
f∈F

 n∑
t=1

εt(f(xt)− vNt [f ])

+

N−1∑
i=1

E
ε

sup
f∈F

 n∑
t=1

εt(v
i
t[f ]− vi+1

t [f ])

+ E
ε

sup
f∈F

 n∑
t=1

εtv
1
t [f ]

.
For the third term, observe that it suffices to take V1 = {0}, which implies

E
ε

sup
f∈F

 n∑
t=1

εtv
1
t [f ]

 = 0.

The first term may be handled using Cauchy-Schwarz as follows:

E
ε

sup
f∈F

 n∑
t=1

εt(f(xt)− vNt [f ])

 ≤
√√√√E

ε

n∑
t=1

(εt)2

√√√√sup
f∈F

n∑
t=1

(f(xt)− vNt [f ])2 ≤
√
nεN .

Last to take care of are the terms of the form

E
ε

sup
f∈F

 n∑
t=1

εt(v
i
t[f ]− vi+1

t [f ])

.
For each i, let Wi =

{
vi[f ]− vi+1[f ] | f ∈ F

}
. Then|Wi| ≤ |Vi||Vi+1| ≤ |Vi+1|2,

E
ε

sup
f∈F

 n∑
t=1

εt(v
i
t[f ]− vi+1

t [f ])

 ≤ E
ε

sup
w∈Wi

 n∑
t=1

εtwt

,
and furthermore

sup
w∈Wi

√√√√ n∑
t=1

w2
t = sup

f∈F

∥∥∥vi[f ]− vi+1[f ]
∥∥∥

2

≤ sup
f∈F

∥∥∥vi[f ]− (f(x1), . . . , f(xn))
∥∥∥

2
+ sup
f∈F

∥∥∥(f(x1), . . . , f(xn))− vi+1[f ]
∥∥∥

2

≤ εi + εi+1

= 3εi+1.
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With this observation, the standard Massart finite class lemma [Mohri et al., 2012] implies

E
ε

sup
w∈Wi

 n∑
t=1

εtwt

 ≤
√√√√2 sup

w∈Wi

n∑
t=1

(wt)2 log|Wi| ≤ 3
√

2 log|Wi|εi+1 ≤ 6
√

log|Vi+1|εi+1.

Collecting all terms, this establishes

E
ε

sup
f∈F

n∑
t=1

εtf(xt) ≤ εN
√
n+ 6

N−1∑
i=1

εi+1

√
logN (F|S , εi+1, ‖·‖2)

≤ εN
√
n+ 12

N∑
i=1

(εi − εi+1)
√

logN (F|S , εi, ‖·‖2)

≤ εN
√
n+ 12

∫ √n
εN+1

√
logN (F|S , ε, ‖·‖2)dε.

Finally, select any α > 0 and takeN be the largest integer with εN+1 > α. Then εN = 4εN+2 < 4α,
and so

εN
√
n+ 12

∫ √n
εN+1

√
logN (F|S , ε, ‖·‖2)dε ≤ 4α

√
n+ 12

∫ √n
α

√
logN (F|S , ε, ‖·‖2)dε.

A.4 Proof of matrix covering (Lemma 3.2)
First recall the Maurey sparsification lemma.
Lemma A.6 (Maurey; cf. [Pisier, 1980], [Zhang, 2002, Lemma 1]). Fix Hilbert spaceH with norm
‖ · ‖. Let U ∈ H be given with representation U =

∑d
i=1 αiVi where Vi ∈ H and α ∈ Rd≥0 \ {0}.

Then for any positive integer k, there exists a choice of nonnegative integers (k1, . . . , kd),
∑
i ki = k,

such that ∥∥∥∥∥∥U − ‖α‖1k

d∑
i=1

kiVi

∥∥∥∥∥∥
2

≤ ‖α‖1
k

d∑
i=1

αi‖Vi‖2 ≤
‖α‖21
k

max
i
‖Vi‖2.

Proof. Set β := ‖α‖1 for convenience, and let (W1, . . . ,Wk) denote k iid random variables where
Pr[W1 = βVi] := αi/β. Define W := k−1

∑k
i=1Wi, whereby

EW = EW1 =

d∑
i=1

βVi

(
αi
β

)
= U.

Consequently

E‖U −W‖2 =
1

k2
E

∥∥∥∥∥∥
∑
i

(U −Wi)

∥∥∥∥∥∥
2

=
1

k2
E

∑
i

‖U −Wi‖2 +
∑
i 6=j

〈
U −Wi, U −Wj

〉
=

1

k
E‖U −W1‖2 =

1

k

(
E‖W1‖2 − ‖U‖2

)
≤ 1

k
E‖W1‖2

=
1

k

d∑
i=1

αi
β
‖βVi‖2 =

β

k

d∑
i=1

αi‖Vi‖2

≤ β2

k
max
i
‖Vi‖2.

To finish, by the probabilistic method, there exists integers (j1, . . . , jk) ∈ {1, . . . , d}k and an
assignment Ŵi := βVji and Ŵ := k−1

∑k
i=1 Ŵi such that∥∥∥U − Ŵ∥∥∥2

≤ E‖U −W‖2 .

The result now follows by defining integers (k1, . . . , kd) according to ki :=
∑k
l=1 1[jl = i].
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As stated, the Maurey sparsification lemma seems to only grant bounds in terms of l1 norms. As
developed by Zhang [2002] in the vector covering case, however, it is easy to handle other norms by
rescaling the cover elements. With slightly more care, these proofs generalize to the matrix case, thus
yielding the proof of Lemma 3.2.

Proof of Lemma 3.2. Let matrix X ∈ Rn×d be given, and obtain matrix Y ∈ Rn×d by rescaling the
columns of X to have unit p-norm: Y:,j := X:,j/‖X:,j‖p. Set N := 2dm and k := da2b2m2/r/ε2e
and ā := am1/r‖X‖p, and define

{V1, . . . , VN} :=
{
gY eie

>
j : g ∈ {−1,+1} , i ∈ {1, . . . , d} , j ∈ {1, . . . ,m}

}
,

C :=

 ā

k

N∑
i=1

kiVi : ki ≥ 0,

N∑
i=1

ki = k

 =

 ā

k

k∑
j=1

Vij : (i1, . . . , ik) ∈ [N ]k

 ,

(A.2)
where the ki’s are integers. Now p ≤ 2 combined with the definition of Vi and Y implies

max
i
‖Vi‖2 ≤ max

i
‖Y ei‖2 = max

i

‖Xei‖2
‖Xei‖p

≤ 1.

It will now be shown that C is the desired cover. Firstly, |C| ≤ Nk by construction, namely by the
final equality of eq. (A.2). Secondly, let A with ‖A‖q,s ≤ a be given, and construct a cover element
within C using the following technique, which follows the approach developed by Zhang [2002] for
linear prediction in which the basic Maurey lemma is applied to non-l1 balls simply by rescaling.

• Define α ∈ Rd×m to be a “rescaling matrix” where every element of row j is equal to ‖xj‖p;
the purpose of α is to annul the rescaling of X introduced by Y , meaning XA = Y (α�A)
where “�” denotes element-wise product. Note,

‖α‖p,r =
∥∥(‖α:,1‖p, . . . , ‖α:,m‖p)

∥∥
r

=

∥∥∥∥(∥∥(‖X:,1‖p, . . . , ‖X:,d‖p)
∥∥
p
, . . . ,

∥∥(‖X:,1‖p, . . . , ‖X:,d‖p)
∥∥
p

)∥∥∥∥
r

= m1/r
∥∥(‖X:,1‖p, . . . , ‖X:,d‖p)

∥∥
p

= m1/r

 d∑
j=1

‖X:,j‖pp

1/p

= m1/r

 d∑
j=1

n∑
i=1

Xp
i,j

1/p

= m1/r‖X‖p.

• Define B := α�A, whereby using conjugacy of ‖ · ‖p,r and ‖ · ‖q,s gives

‖B‖1 ≤
〈
α, |A|

〉
≤ ‖α‖p,r‖A‖q,s ≤ m1/r‖X‖pa = ā.

Consequently, XA is equal to

Y B = Y

d∑
i=1

m∑
j=1

Bijeie
>
j = ‖B‖1

d∑
i=1

m∑
j=1

Bij
‖B‖1

(
Y eie

>
j

)
∈ ā · conv({V1, . . . , VN}),

where conv({V1, . . . , VN}) is the convex hull of {V1, . . . , VN}.

• Combining the preceding constructions with Lemma A.6, there exist nonnegative integers
(k1, . . . , kN ) with

∑
i ki = k with∥∥∥∥∥∥XA− ā

k

N∑
i=1

kiVi

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥Y B − ā

k

N∑
i=1

kiVi

∥∥∥∥∥∥
2

2

≤ ā2

k
max
i
‖Vi‖2 ≤

a2m2/r‖X‖2p
k

≤ ε2.

The desired cover element is thus ā
k

∑
i kiVi ∈ C.
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A.5 A whole-network covering bound for general norms
As stated in the text, the construction of a whole-network cover via induction on layers does not
demand much structure from the norms placed on the weight matrices. This subsection develops
this general analysis. A tantalizing direction for future work is to specialize the general bound in
other ways, namely ones that are better adapted to the geometry of neural networks as encountered in
practice.

The structure of the networks is the same as before; namely, given matrices A = (A1, . . . , AL),
define the mapping FA as (1.1), and more generally for i ≤ L define Ai1 := (A1, . . . , Ai) and

FAi1(Z) := σi(Aiσi−1(Ai−1 · · ·σ1(A1Z) · · · )),
with the convention F∅(Z) = Z.

• Define two sequences of vector spaces V1, . . . ,VL and W2, . . . ,WL+1, where Vi has a
norm | · |i andWi has norm |||·|||i.

• The inputs Z ∈ V1 satisfy a norm constraint |Z|1 ≤ B. The subscript merely indicates an
index, and does not refer to any l1 norm. The vector space V1, and moreover the collection
of vector spaces Vi andWi, have no fixed meaning and are simply abstract vector spaces.
However, when using these tools to prove Theorem 1.1, V1 = Rd×n and Z ∈ V1 is formed
by collecting the n data points into its columns; that is, Z = X>.

• The linear operators Ai : Vi →Wi+1 are associated with some operator norm |Ai|i→i+1 ≤
ci:

|Ai|i→i+1 := sup
|Z|i≤1

|||AiZ|||i+1 = ci.

As stated before, these linear operators A = (A1, . . . , AL) vary across functions FA. When
used to prove Theorem 1.1, Z is a matrix (the forward image of data matrix X> across
layers), and these norms are all matrix norms.

• The ρi-Lipschitz mappings σi : Wi+1 → Vi+1 have ρi measured with respect to norms
| · |i+1 and |||·|||i+1: for any z, z′ ∈ Wi+1,∣∣σi(z)− σi(z′)∣∣i+1

≤ ρi|||z − z′|||i+1.

These Lipschitz mappings are considered fixed within FA. Note again that these operations,
when applied to prove Theorem 1.1, operate on matrices that represent the forward images
of all data points together. Lipschitz properties of the standard coordinate-wise ReLU and
max-pooling operators can be found in Appendix A.1.

Lemma A.7. Let (ε1, . . . , εL) be given, along with fixed Lipschitz mappings (σ1, . . . , σL) (where σi
is ρi-Lipschitz), and operator norm bounds (c1, . . . , cL). Suppose the matrices A = (A1, . . . , AL)
lie within B1 × · · · × BL where Bi are arbitrary classes with the property that each Ai ∈ Bi
has |Ai|i→i+1 ≤ ci. Lastly, let data Z be given with |Z|1 ≤ B. Then, letting τ :=∑
j≤L εjρj

∏L
l=j+1 ρlcl, the neural net images HZ := {FA(Z) : A ∈ B1 × · · · × BL} have

covering number bound

N
(
HZ , τ, | · |L+1

)
≤

L∏
i=1

sup
(A1,...,Ai−1)
∀j<i�Aj∈Bj

N
({

AiF(A1,...,Ai−1)(Z) : Ai ∈ Bi
}
, εi, |||·|||i+1

)
.

Proof. Inductively construct covers F1, . . . ,FL ofW2, . . . ,WL+1 as follows.

• Choose an ε1-cover F1 of {A1Z : A1 ∈ B1}, thus
|F1| ≤ N ({A1Z : A1 ∈ B1} , ε1, |||·|||2) =: N1.

• For every element F ∈ Fi, construct an εi+1-cover Gi+1(F ) of{
Ai+1σi(F ) : Ai+1 ∈ Bi+1

}
.

Since the covers are proper, meaning F = AiF(A1,...,Ai−1)(Z) for some matrices
(A1, . . . , Ai) ∈ B1 × · · · × Bi, it follows that∣∣Gi+1(F )

∣∣ ≤ sup
(A1,...,Ai)
∀j≤i�Aj∈Bj

N
({
Ai+1FA1,...,Ai(Z) : Ai+1 ∈ Bi+1

}
, εi+1, |||·|||i+2

)
=: Ni+1.
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Lastly form the cover

Fi+1 :=
⋃
F∈Fi

Gi+1(F ),

whose cardinality satisfies

|Fi+1| ≤ |Fi| ·Ni+1 ≤
i+1∏
l=1

Nl.

Define F :=
{
σL(F ) : F ∈ FL

}
; by construction, F satisfies the desired cardinality constraint.

to show that it is indeed a cover, fix any (A1, . . . , AL) satisfying the above constraints, and for
convenience define recursively the mapped elements

F1 = A1X ∈ W2, Gi = σi(Fi) ∈ Vi+1 Fi+1 = Ai+1Gi ∈ Wi+2.

The goal is to exhibit ĜL ∈ F satisfying |GL − ĜL|L+1 ≤ τ . To this end, inductively construct
approximating elements (F̂i, Ĝi) as follows.

• Base case: set Ĝ0 = X .

• Choose F̂i ∈ Fi with |||AiĜi−1 − F̂i|||i+1 ≤ εi, and set Ĝi := σi(F̂i).

To complete the proof, it will be shown inductively that

|Gi − Ĝi|i+1 ≤
∑

1≤j≤i

εjρj

i∏
l=j+1

ρlcl.

For the base case,
|G0 − Ĝ0|1 = 0.

For the inductive step,

|Gi+1 − Ĝi+1|i+2 ≤ ρi+1|||Fi+1 − F̂i+1|||i+2

≤ ρi+1|||Fi+1 −Ai+1Ĝi|||i+2 + ρi+1|||Ai+1Ĝi − F̂i+1|||i+2

≤ ρi+1|Ai+1|i+1→i+2

∣∣∣Gi − Ĝi∣∣∣
i+1

+ ρi+1εi+1

≤ ρi+1ci+1

∑
j≤i

εjρj

i∏
l=j+1

ρlcl

+ ρi+1εi+1

=
∑
j≤i+1

εjρj

i+1∏
l=j+1

ρlcl.

The core of the proof rests upon inequalities which break the covering at a layer into the covering
at the previous layer (handled by induction) and a cover of the present layer’s weights (handled
by matrix covering). These inequalities are similar to those in an existing covering number proof
[Anthony and Bartlett, 1999, Chapter 12] (itself rooted in the earlier work of Bartlett [1996]); however
(a) that proof operates node by node, and can not take advantage of special norms on A, and (b) that
proof does not maintain an empirical cover across layers, instead explicitly covering the parameters
of all weight matrices, which incurs the number of parameters as a multiplicative factor. The idea
here to push an empirical cover through layers, meanwhile, is reminiscent of VC dimension proofs
for neural networks [Anthony and Bartlett, 1999, Chapter 8].
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A.6 Proof of spectral covering bound (Theorem 3.3)
The whole-network covering bound in terms of spectral and (2, 1) norms now follows by the general
norm covering number in Lemma A.7, and the matrix covering lemma in Lemma 3.2.

Proof of Theorem 3.3. First dispense with the parenthetical statement regarding coordinate-wise
ReLU and max-pooling operaters, which are Lipschitz by Lemmas A.1 and A.2. The rest of the proof
is now a consequence of Lemma A.7 with all data norms set to the l2 norm (| · |i = |||·|||i = ‖ · ‖2),
all operator norms set to the spectral norm (| · |i→i+1 = ‖ · ‖σ), the matrix constraint sets set to Bi ={
Ai : ‖Ai‖σ ≤ si, ‖A>i −M>i ‖2,1 ≤ bi

}
, and lastly the per-layer cover resolutions (ε1, . . . , εL) set

according to

εi :=
αiε

ρi
∏
j>i ρjsj

where αi :=
1

ᾱ

(
bi
si

)2/3

, ᾱ :=

L∑
j=1

(
bj
sj

)2/3

.

By this choice, it follows that the final cover resolution τ provided by Lemma A.7 satisfies

τ ≤
∑
j≤L

εjρj

L∏
l=j+1

ρlsl =
∑
j≤L

αjε = ε.

The key technique in the remainder of the proof is to apply Lemma A.7 with the covering number
estimate from Lemma 3.2, but centering the covers at Mi (meaning the cover at layer i is of matrices
Bi where Ai ∈ Bi satisfies ‖A>i −M>i ‖2,1 ≤ bi), and collecting (x1, . . . , xn) as rows of matrix
X ∈ Rn×d. To start, the covering number estimate from Lemma A.7 can be combined with
Lemma 3.2 (specifically with p = 2, s = 1) to give

lnN (H|S , ε, ‖ · ‖2) (A.3)

≤
L∑
i=1

sup
(A1,...,Ai−1)
∀j<i�Aj∈Bj

lnN
({

AiF(A1,...,Ai−1)(X
>) : Ai ∈ Bi

}
, εi, ‖ · ‖2

)

(∗)
=

L∑
i=1

sup
(A1,...,Ai−1)
∀j<i�Aj∈Bj

lnN
({

F(A1,...,Ai−1)(X
>)>(Ai −Mi)

> : ‖A>i −M>i ‖2,1 ≤ bi, ‖Ai‖σ ≤ si
}
, εi, ‖ · ‖2

)

≤
L∑
i=1

sup
(A1,...,Ai−1)
∀j<i�Aj∈Bj

lnN
({

F(A1,...,Ai−1)(X
>)>(Ai −Mi)

> : ‖A>i −M>i ‖2,1 ≤ bi
}
, εi, ‖ · ‖2

)

≤
L∑
i=1

sup
(A1,...,Ai−1)
∀j<i�Aj∈Bj

b2i ‖F(A1,...,Ai−1)(X
>)>‖22

ε2i
ln(2W 2), (A.4)

where (∗) follows first since l2 covering a matrix and its transpose is the same, and secondly since
the cover can be translated by F(A1,...,Ai−1)(X

>)>M>i without changing its cardinality. In order to
simplify this expression, note for any (A1, . . . , Ai−1) that

‖F(A1,...,Ai−1)(X
>)>‖2 = ‖F(A1,...,Ai−1)(X

>)‖2
= ‖σi−1(Ai−1F(A1,...,Ai−2)(X

>)− σi−1(0)‖2
≤ ρi−1‖Ai−1F(A1,...,Ai−2)(X

>)− 0‖2
≤ ρi−1‖Ai−1‖σ‖F(A1,...,Ai−2)(X

>)‖2,

which by induction gives

max
j
‖F(A1,...,Ai−1)(X

>)>ej‖2 ≤ ‖X‖2
i−1∏
j=1

ρj‖Aj‖σ. (A.5)
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Combining eqs. (A.4) and (A.5), then expanding the choice of εi and collecting terms,

lnN (H|S , ε, ‖ · ‖2) ≤
L∑
i=1

sup
(A1,...,Ai−1)
∀j<i�Aj∈Bj

b2i ‖X‖22
∏
j<i ρ

2
j‖Aj‖2σ

ε2i
ln(2W 2)

≤
L∑
i=1

b2iB
2
∏
j<i ρ

2
js

2
j

ε2i
ln(2W 2)

=
B2 ln(2W 2)

∏L
j=1 ρ

2
js

2
j

ε2

L∑
i=1

b2i
α2
i s

2
i

=
B2 ln(2W 2)

∏L
j=1 ρ

2
js

2
j

ε2

(
ᾱ3
)
.

A.7 Proof of Theorem 1.1
As an intermediate step to Theorem 1.1, a bound is first produced which has constraints on matrix
and data norms provided in advance.
Lemma A.8. Let fixed nonlinearities (σ1, . . . , σL) and reference matrices (M1, . . . ,ML) be given
where σi is ρi-Lipschitz and σi(0) = 0. Further let margin γ > 0, data bound B, spectral norm
bounds (si)

L
i=1, and l1 norm bounds (bi)

L
i=1 be given. Then with probability at least 1− δ over an

iid draw of n examples ((xi, yi))
n
i=1 with

√∑
i ‖xi‖22 ≤ B, every network FA : Rd → Rk whose

weight matrices A = (A1, . . . , AL) obey ‖Ai‖σ ≤ si and ‖A>i −M>i ‖2,1 ≤ bi satisfies

Pr
[
argmax

j
FA(x)j 6= y

]
≤ R̂γ(f) +

8

n
+

72B ln(2W ) ln(n)

γn

 L∏
i=1

siρi

 L∑
i=1

b
2/3
i

s
2/3
i

3/2

+ 3

√
ln(1/δ)

2n
.

Proof. Consider the class of networks Fλ obtained by affixing the ramp loss `γ and the negated
margin operator −M to the output of the provided network class:

Fγ :=
{

(x, y) 7→ `γ(−M(f(x), y)) : f ∈ F
}

;

Since (z, y) 7→ `γ(−M(z, y)) is 2/γ-Lipschitz wrt ‖ · ‖2 by Lemma A.3 and definition of `γ , the
function class Fγ still falls under the setting of Theorem 3.3, and gives

lnN
(

(Fγ)|S , ε, ‖ · ‖2
)
≤ 4B2 ln(2W 2)

γ2ε2

 L∏
j=1

s2
jρ

2
j

 L∑
i=1

(
bi
si

)2/3
3

=:
R

ε2
.

What remains is to relate covering numbers and Rademacher complexity via a Dudley entropy
integral; note that most presentations of this technique place 1/n inside the covering number norm,
and thus the application here is the result of a tiny amount of massaging. Continuing with this in
mind, the Dudley entropy integral bound on Rademacher complexity from Lemma A.5 grants

R((Fγ)|S) ≤ inf
α>0

(
4α√
n

+
12

n

∫ √n
α

√
R

ε2
dε

)
= inf
α>0

(
4α√
n

+ ln(
√
n/α)

12
√
R

n

)
.

The inf is uniquely minimized at α := 3
√
R/n, but the desired bound may be obtained by the simple

choice α := 1/n, and plugging the resulting Rademacher complexity estimate into Lemma 3.1.

The proof of Theorem 1.1 now follows by instantiating Lemma A.8 for many choices of its various
parameters, and applying a union bound. There are many ways to cut up this parameter space and
organize the union bound; the following lemma makes one such choice, whereby Theorem 1.1 is
easily proved. A slightly better bound is possible by invoking positive homogeneity of (σ1, . . . , σL)
to balance the spectral norms of the matrices (A1, . . . , AL), however these rebalanced matrices are
then used in the comparison to (M1, . . . ,ML), which is harder to interpret when Mi 6= 0.
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Lemma A.9. Suppose the setting and notation of Theorem 1.1. With probability at least 1− δ, every
network FA : Rd → Rk with weight matrices A = (A1, . . . , AL) and every γ > 0 satisfy

Pr
[
argmax

j
FA(x)j 6= y

]
≤ R̂γ(FA) +

8

n

+
144 ln(n) ln(2W )

γn

∏
i

ρi

(1 + ‖X‖2)
 L∑
i=1

( 1

L
+ ‖A>i −M>i ‖2,1

)∏
j 6=i

(
1

L
+ ‖Aj‖σ

)2/3


3/2

+

√
9

2n

√√√√ln(1/δ) + ln(2n/γ) + 2 ln(2 + ‖X‖2) + 2

L∑
i=1

ln(2 + L‖A>i −M>i ‖2,1) + 2

L∑
i=1

ln(2 + L‖Ai‖σ).

(A.6)

Proof. Given positive integers (~j,~k,~l) = (j1, j2, j3, k1, . . . , kL, l1, . . . , lL), define a set of instances
(a set of triples (γ,X,A))

B(~j,~k,~l) = B(j1, j2, j3, k1, . . . , kL, l1, . . . , lL)

:=

{
(γ,X,A) : 0 <

1

γ
<

2j1

n
, ‖X‖2 < j2, ‖A>i −M>i ‖2,1 <

ki
L
, ‖Ai‖σ <

li
L

}
.

Correspondingly subdivide δ as

δ(~j,~k,~l) = δ(j1, j2, j3, k1, . . . , kL, l1, . . . , lL)

:=
δ

2j1 · j2(j2 + 1) · k1(k1 + 1) · · · kL(kL + 1) · l1(l1 + 1) · · · lL(lL + 1)
.

Fix any (~j,~k,~l). By Lemma A.8, with probability at least 1− δ(~j,~k,~l), every (γ,X,A) ∈ B(~j,~k,~l)
satisfies

Pr
[
arg max

j
FA(x)i 6= y

]
(A.7)

≤ R̂γ(f) +
8

n

+
72 · 2j1 · j2 ln(2W ) ln(n)

n2

 L∏
i=1

ρi


 L∑
i=1

ki
L

∏
j 6=i

lj
L

2/3


3/2

︸ ︷︷ ︸
=:♥

+ 3

√
ln(1/δ) + ln(2j1) + 2 ln(1 + j2) + 2

∑L
i=1 ln(1 + ki) + 2

∑L
i=1 ln(1 + li)

2n︸ ︷︷ ︸
=:♣

. (A.8)

Since
∑
~j,~k,~l δ(

~j,~k,~l) = δ, by a union bound, the preceding bound holds simultaneously over all

B(~j,~k,~l) with probability at least 1− δ.

Thus, to finish the proof, discard the preceding failure event, and let an arbitrary (γ,X,A) be given.
Choose the smallest (~j,~k,~l) so that (γ,X,A) ∈ B(~j,~k,~l); by the preceding union bound, eq. (A.8)
holds for this (~j,~k,~l). The remainder of the proof will massage eq. (A.8) into the form in the
statement of Theorem 1.1.

As such, first consider the case j1 = 1, meaning γ < 2/n; then

Pr
[
arg max

j
FA(x)j 6= y

]
≤ 1 <

1

γn
,
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where the last expression lower bounds the right hand side of eq. (A.6), thus completing the proof in
the case j1 = 1. Suppose henceforth that j1 ≥ 2 (and γ ≥ 2/n).

Combining the preceding bound j2 ≥ 2 with the definition of B(~j,~k,~l), the elements of (~j,~k,~l)
satisfy

2j1 ≤ 2n

γ
,

j2 ≤ 1 + ‖X‖2,
∀i � ki ≤ 1 + L‖A>i −M>i ‖2,1,
∀i � li ≤ 1 + L‖Ai‖σ.

For the term ♥, the factors with (~j,~k,~l) are bounded as

2j1 · j2

 L∑
i=1

ki∏
j 6=i

lj

2/3


3/2

≤ 2n

γ

(
1 + ‖X‖2

) L∑
i=1

(L−1 + ‖A>i −M>i ‖2,1)
∏
j 6=i

(L−1 + ‖Ai‖σ)

2/3


3/2

.

For the term ♣, the factors with (~j,~k,~l) are bounded as

ln(2j1) + 2 ln(1 + j2) + 2

L∑
i=1

ln(1 + ki) + 2

L∑
i=1

ln(1 + li)

≤ ln(2n/γ) + 2 ln(2 + ‖X‖2) + 2

L∑
i=1

ln(2 + L‖A>i −M>i ‖2,1) + 2

L∑
i=1

ln(2 + L‖Ai‖σ).

Plugging these bounds on ♥ and ♣ into eq. (A.8) gives eq. (A.6).

The proof of Theorem 1.1 is now a consequence of Lemma A.9, simplifying the bound with a Õ(·).
Before proceeding, it is useful to pin down the asymptotic notation Õ(·), as it is not completely
standard in the multivariate case. The notation can be understood via the lim sup view ofO(·); namely,
f = Õ(g) if there exists a constant C so that any sequence ((n(j), γ(j), X(j), A

(j)
1 , . . . , A

(j)
L ))∞j=1

with n(j) →∞, γ(j) →∞, ‖X(j)‖2 →∞, ‖A(j)
i ‖1 →∞ satisfies

lim sup
j→∞

f(n(j), γ(j), X(j), A
(j)
1 , . . . , A

(j)
L )

g(n(j), γ(j), X(j), A
(j)
1 , . . . , A

(j)
L ) poly log(g(n(j), γ(j), X(j), A

(j)
1 , . . . , A

(j)
L ))

≤ C.

Proof of Theorem 1.1. Let f = f0+f1+f2 denote the three excess risk terms of the upper bound from
Lemma A.9, and g = g1+g2 denote the two excess risk terms of the upper bound from Theorem 1.1; as
discussed above, the goal is to show that there exists a universal constant C so that for any sequence of
tuples ((n(j), γ(j), X(j), A

(j)
1 , . . . , A

(j)
L ))∞j=1 increasing as above, lim supj→∞ f/(g poly log(g)) ≤

C.

It is immediate that lim supj→∞ f0/g = 0 and lim supj→∞ f1/(g1 ln(g)) ≤ 144. The only tricki-
ness arises when studying f2/(g2 ln(g)), namely the term

∑
i ln(2 + L‖A>i −M>i ‖2,1), since g2

instead has the term ln(
∑
i ‖A>i −M>i ‖

2/3
2,1 ), and the ratio of these two can scale with L. A solution

however is to compare to ln(
∏
i ‖Ai‖σ), noting that ‖(Ai)>‖2,1 ≤W 1/2‖Ai‖2 ≤W‖Ai‖σ:

lim sup
j→∞

∑
i ln(2 + L‖(A(j)

i )> −M>i ‖2,1)

ln(
∏
i ‖A

(j)
i ‖σ)

≤ lim sup
j→∞

∑
i ln(2 + L‖(A(j)

i )>‖2,1 + L‖M>i ‖2,1)∑
i ln(‖(A(j)

i )>‖2,1/W )
= 1.
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A.8 Proof of lower bound (Theorem 3.4)
Proof of Theorem 3.4. Define

F(r) :=

ALσL−1(AL−1 · · ·σ2(A2σ1(A1x)) :
L∏
i=1

‖Ai‖σ ≤ r

 ,

where each σi = σ is the ReLU and each Ak ∈ Rdk×dk−1 , with d0 = d and dL = 1, and let
S := (x1, . . . , xn) denote the sample.

Define a new class G(r) =
{
x 7→ 〈a, x〉 | ‖w‖2 ≤ r

}
. It will be shown that G(r) ⊆ F(C · r) for

some C > 0, whereby the result easily follows from a standard lower bound on R(G(r)|S).

Given any linear function x 7→ 〈a, x〉 with ‖a‖2 ≤ r, construct a network f =
ALσL−1(AL−1 · · ·σ2(A2σ1(A1x))) as follows:

• A1 = (e1 − e2)a>.

• Ak = e1e
>
1 + e2e

>
2 for each k ∈ {2, . . . , L− 1}.

• AL = e1 − e2.

It is now shown that f(x) = 〈a, x〉 pointwise. First, observe σ(A1x) =
(σ(〈a, x〉), σ(−〈a, x〉), 0, . . . , 0). Since σ is positive homogeneous, σL−1(AL1 · · ·σ2(A2y) =
AL−1AL−2 · · ·A2y = (y1, y2, 0, . . . , 0) for any y in the non-negative orthant. Because
σ(A1x) lies in the non-negative orthant, this means σL−1(AL−1 · · ·σ2(A2σ1(A1x))) =
(σ(〈a, x〉), σ(−〈a, x〉), 0, . . . , 0). Finally, the choice of AL = e1 − e2 gives f(x) = σ(〈a, x〉) −
σ(−〈a, x〉) = 〈a, x〉.

Observe that for all k ∈ {2, . . . , L− 1}, ‖Ak‖σ = 1. For the other layers, ‖AL‖σ = ‖AL‖2 =
√

2

and ‖A1‖σ =
√

2 · r, which implies f ∈ F(2r).

Combining the pieces,

R(F(2r)|S) ≥ R(G(r)|S) = E sup
a:‖a‖2≤r

n∑
t=1

εt〈a, xt〉 = r · E

∥∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥∥
2

.

Finally, by the Khintchine-Kahane inequality there exists c > 0 such that

E

∥∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥∥
2

≥ c ·

√√√√ n∑
t=1

‖xt‖22 = c‖X‖2.
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