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1 Optimization

We want to solve the following optimization problem

min
a,s

∥∥∥∥∥Y −
l∑
i=1

si ~ ai

∥∥∥∥∥
2

F

+ α

l∑
i=1

‖si‖0 + β

l∑
i=1

‖ai‖1 (1)

where ~ denotes the convolution operator which is defined by

si ~ ai =

τ∑
j=1

ai,j · S(j − 1)si (2)

with ai,j being the jth column of ai and Y ∈ Rn×m+ . The column shift operator S(j) moves a matrix
j places to the right while keeping the same size and filling missing values appropriately with zeros
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[1], for example:

A = (a b c d)

S(0)A = (a b c d)

S(1)A = (0 a b c)

S(2)A = (0 0 a b) .

The optimization problem in equation (1) is non-convex in general but can be solved approximately
by initializing the si randomly and using a block coordinate descent strategy [2, Section 2.7] to
alternatingly optimize for the two variables.

1.1 Update the motifs ai

When keeping the assembly activations si fixed, the motif coefficients ai can be learned using LASSO
regression with non-negativity constraints [3] by transforming the convolution with si to a linear set
of equations using modified Toeplitz matrices s̃i ∈ Rmn×nτ which are then stacked next to each
other [4, 5]:

min
a

∥∥∥∥∥vec(Y)−
l∑
i=1

s̃i · vec(ai)

∥∥∥∥∥
2

2

+ β

l∑
i=1

‖ai‖1

=min
a

∥∥∥∥∥∥∥∥∥∥
vec(Y)︸ ︷︷ ︸
b∈Rmn

− [̃s1 ... s̃l]︸ ︷︷ ︸
A∈Rmn×lnτ

[
vec(a1)
...

vec(al)

]
︸ ︷︷ ︸
x∈Rlnτ

∥∥∥∥∥∥∥∥∥∥

2

2

+ β

l∑
i=1

‖ai‖1 (3)

The matrices s̃i are constructed from the si with s̃i,j,k = s̃i,j+1,k+1 = si,j−k for j ≥ k and s̃i,j,k = 0
for j < k and s̃i,j,k = 0 for j > p ·m and k < p · τ for p = 1, . . . , n (where i denotes the ith matrix
with element indices j and k, τ is the number of columns of ai, and n and m are the number of rows
and columns of the data matrix, respectively). That means the matrix s̃i consists of n blocks si with

si =

si,0 0 . . . 0

si,1 si,0
. . .

...

... si,1
. . . 0

...
... si,0

...
...

...
si,m si,m−1 . . . si,m−τ




m

τ

(4)

and

s̃i =

si 0

si

. . .
0 si





n
times

mn

nτ

. (5)

Special care has to be taken to avoid missing parts of the motif due to the originally identified
positions. Consider the ground truth motif shown in figure 1a. After a single iteration the learned
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(a) Ground truth motif (b) Possible wrong motifs after a
single iteration

(c) Equivalent padded motifs

Figure 1: Ground truth motif and learned state after a single iteration. This figure shows four neurons
forming a motif over three frames as shown in (a). After a single iteration parts of the motif can be
missing as shown in (b), which is solved in (c) by using a larger assembly length and centering the
motifs after each iteration.

Data: binned spike matrix Y ∈ Rn×m+ , ∀i ∈ [1, ..., l]: assembly ai ∈ Rn×τ+

Result: ∀i ∈ [1, ..., l]: updated assembly activity si ∈ R1×m
+

initialize all elements of si to zeros ∀i;
while not converged do

calculate current residual R = Y −
∑l
i si ~ ai;

initialize inner product result P ∈ Rl×m+ to zeros;
foreach frame f ∈ [1, ...,m] do

foreach assembly index i ∈ [1, ..., l] do
foreach offset j ∈ [0, ..., τ − 1] do

u← column j of assembly ai ;
v ← column f + j of residual R ;
Pif ← Pif + uT v ;

end
end

end
i∗, f∗ ← argmaxP ;
increase f∗-th element of si∗ by maxP ;

end
Algorithm 1: Convolutional matching pursuit algorithm to learn the assembly activities while
keeping the currently found motifs fixed. After initializing si to zeros, assembly appearances are
added wherever they reduce the reconstruction error. The algorithm stops when adding an additional
assembly appearance increases this error or when the error is converged.

motif could be any of the two wrong possibilities seen in figure 1b. While the learned motif does
indeed occur in the data, it is not complete and can never be completed since there is no more space
on the left or right to identify the missing associations. To overcome this problem the vectors ai have
to be chosen larger than required and centered after each iteration when possible: When there are
enough empty columns on either side the whole motif is shifted before the new assembly activities si
are learned. This does not increase the reconstruction error since the activities will also just be shifted
by the same amount. When new coefficients ai are learned in the next iteration there now is enough
space to also capture the previously missed associations (see figure 1c which can be completed in the
next iteration). Another possibility is to move the center of mass of the motif. This method showed
also good results, especially on datasets with high noise levels.

1.2 Update the activations si

When keeping the currently found motifs ai fixed, their activation in time is learned using a convolu-
tional matching pursuit algorithm [6–8] to approximate the `0 norm. The greedy algorithm iteratively
chooses to include the assembly appearance that most reduces the reconstruction error given the
current residual. The pursuit stops when adding an additional assembly appearance increases this
error or when the difference of this error to the error in the previous step falls below a small threshold.
Algorithm 1 explains this approach in detail.
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Data: binned spike matrix Y ∈ Rn×m+ , upper bound l on the number of assemblies and τ on their
length

Result: ∀i ∈ [1, ..., l]: assembly ai ∈ Rn×τ+ , assembly activity si ∈ R1×m
+

∀i ∈ [1, ..., l]: randomly initialize all elements of si to 0 or 1;
while not converged do

a← LASSO solution of equation 3 depending on Y and s;
foreach assembly ai do

if number of empty columns on both sides is not balanced then
ai ←

ξ→
ai or ai ←

←ξ
ai to balance empty columns

end
end
s← matching pursuit approximation (algorithm 1) using Y and a;
foreach assembly activity vector si do

if ‖si‖ ≤ small threshold ε then
randomly initialize all elements of si to 0 or 1;

end
end

end
Algorithm 2: Sparse convolutional coding algorithm. After initializing the activities of the assemblies
to random noise, a block coordinate descent strategy is used to alternatingly learn the motifs with
LASSO regression and their activities with a convolutional matching pursuit algorithm. After each
iteration the motifs are centered if possible and activities below a small threshold are newly initialized
to random noise.

Sometimes a given assembly ai completely disappears during the matching pursuit because all its
components are better explained by another assembly aj . In this case the assembly activity vector si
is randomly reinitialized to allow another different assembly to appear in the next iteration.

Based on these considerations, algorithm 2 is proposed to learn assemblies and their activity vectors
simultaneously given a spike matrix.

2 Motif sorting and non-parametric threshold estimation

As our algorithm only finds local minima of the optimization problem in equation (1), the list of
motifs is expected to contain false positives that are not actually present in the spike data. Unlike real
motifs, which should always have the same appearance, the random initialization of the activities will
cause the false positives to look differently every time it is changed. We therefore propose to run our
algorithm multiple times on the same data with the same parameter settings in order to distinguish
between persistent and spurious motifs. The following method is used to find out which motifs
reappear in different runs.

2.1 Motif sorting – K-partite matching

The motifs found in each run have to be sorted because the order of the motifs after learning is
arbitrary and it has to be assured that the motifs with the greatest similarity are compared between
the different runs. Therefore, the motifs within each set have to be ordered in such a way that the
difference between all runs is minimized for all motifs.

Let K be the number of times the algorithm was run with the same parameters but different ini-
tializations (the number of trials), l the upper bound on the number of motifs and let aki be the ith
motif found during the kth run. This will result in K sets {aki |i = 1, ..., l} for k = 1, . . . ,K each
of which contains the motifs of a single trial. Given that the order of the motifs in each trial (and
thus their indices i) is arbitrarily chosen and therefore independent, we want to find permutations
πk : {1, . . . , l} → {1, . . . , l} of these indices for each k such that akπk(i), the ith motif in the kth
trial, is most similar to the ith motif in all other permuted trials. To this end we propose to solve the
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following optimization problem:

min
π2,...,πK

l∑
i=1

K∑
k=1

K∑
p=k+1

d
(
apπp(i),a

k
πk(i)

)
(6)

where d(x,y) denotes the difference between two motifs defined as

d (x,y) = min
j

‖S(j)x− y‖22
‖x‖0 · ‖y‖0

. (7)

We allow j = −τ, . . . , τ to also include shifts to the left. Dividing by the product of the `0 norms of
the two motifs assures that a reasonable comparison of the difference between two motifs with only
few spikes and the difference between two motifs with many spikes is still possible.

The sorting of the motifs is a K-dimensional assignment problem also known as K-partite matching
which can be solved exactly in polynomial time for K = 2 using the Hungarian algorithm [9, 10] but
is NP hard in general [11]. An approximate solution is found by using a greedy algorithm that starts
by first finding the two trials that have the lowest assignment cost after permutation. Afterwards, the
remaining sets of motifs are sorted one after the other according to the order of motifs given by the
already sorted sets.

Once all sets are sorted, for each motif i the distance of the results from the K trials to their medoid
Mi is computed. The medoid is the ith motif from trial mi that has the minimal difference to the ith
motif in all other trials and is defined by

mi = argmin
p

K∑
k=1

d
(
apπp(i),a

k
πk(i)

)
, (8)

Mi = amiπmi (i)
. (9)

If the distance d(Mi,a
k
πk(i)

) of a motif from its medoid is larger than a threshold T , the motif akπk(i)
is erased from the list of representatives of motif i. Motifs where only one representative is left (the
medoid itself) are assumed to be spurious results of the approximate solution of equation (1) and
discarded completely.

In order to also get rid of spurious spikes and find the final set of motifs a∗i , we use for every motif
coefficient a∗i,νt the minimal coefficient value of all selected representatives of the motif:

a∗i,νt = min
{
akπk(i),νt|k ∈ {1, ...,K} ∧ d

(
Mi,a

k
πk(i)

)
< T

}
(10)

where ν and t are the neuron (row) and time (column) index of the motif.

2.2 Non-parametric threshold estimation

To determine the threshold T above which motifs are discarded as false positives, we use a shuffled
spike matrix. This matrix is created by shuffling each row of the original spike matrix independently
to preserve the number of spikes per neuron but destroy any temporal correlations between and
within neurons [12]. On a matrix with no temporal correlations there should be no matching motifs
in-between runs. Therefore, the shuffled matrix is also analyzed using the sparse convolutional coding
algorithm with K random initializations and the same parameters as used for the analysis of the
original matrix. The motifs ãki found in the shuffled matrix are also sorted as described in section 2.1.

The threshold T is set to be the minimal distance between any motif ãkπk(i) found in the shuffled
matrix and the corresponding medoid Mi

T = min
i∈{1,...,l}

k∈{1,...,K},k 6=mi

d
(
ãkπk(i),Mi

)
. (11)

2.3 Exemplary result on synthetic data

We show the results for the above described algorithm on an exemplary set of synthetic data.
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(a) Spike matrix (b) Ground truth motifs

Figure 2: Exemplary synthetic dataset with three motifs. (a) shows the spike matrix for a set of twenty
neurons observed over one thousand time frames. In addition to the three motifs shown in (b) this
dataset also contains fifty spurious spikes.

This dataset consists of twenty neurons observed over one thousand time frames (spike matrix see
figure 2a). A subset of the neurons is randomly assigned to belong to a single motif, others to multiple
motifs and the rest are not part of any assembly and fire completely on their own. The assembly
activity itself is modeled as a Poisson process with a randomly chosen mean [13] and a refractory
period of at least the length of the assembly itself. Additionally spurious spikes of single neurons are
added to simulate neurons firing out of sync. In the shown example three motifs appear in the data
(see figure 2b).

To distinguish real from spurious motifs, the sparse convolutional coding algorithm is applied four
times to the dataset as well as to the shuffled spike matrix. In every run we were looking for five
motifs with a length of ten frames. The `1 penalty β was set to 10−4. The set of motifs found in each
of the four runs is shown in figure 3a to 3d.

In a first step the motifs in each set are sorted such that the ith motif in the first trial is most similar to
the ith motif in all other trials as described above. The resorted sets are shown in figure 4. Figure 5
shows the matched motifs.

In the same fashion the motifs found in the shuffled matrix (shown in figure 6) are sorted and the
matched motifs are shown in figure 7. As all temporal correlation between neurons has been destroyed,
there are no repeating motifs in the shuffled matrix. For this reason we expect to find different motifs
whenever we change the initialization. Hence, we can use the distance between motifs from different
runs on the shuffled matrix as a measure to distinguish whether motifs found in different runs on
the original matrix are similar. For this reason we define the threshold T as the minimal distance
of a motif found in runs of the algorithm with different initializations on the shuffled matrix to its
medoid. For each motif (except for the medoid itsself) the distance to its medoid is computed and the
minimum of these values is taken to be T . In this example we find T = 2.81 · 10−5.

Once the sorting is done and the threshold is determined, for each of the five motifs found on the
original matrix the medoid over the four runs is calculated and motifs with a difference to the medoid
larger than the threshold T = 2.81 · 10−5 are excluded from the list of real motifs. The remaining
representatives for each of the five originally learned motifs are shown in figure 8. Motifs for which
only the medoid itself is left are considered to be spurious motifs and are therefore deleted. Finally,
persistent motifs are found by taking for all motif coefficients the minimum value over the remaining
representatives of the motif. The resulting motifs for this example are shown in figure 9.

3 Generation of synthetic datasets

Various datasets consisting of fifty neurons observed over one thousand time frames were created
for the comparison of our approach to some well-established methods. A subset of the neurons is
randomly assigned to belong to a single motif, others to multiple motifs and the rest are not part of
any assembly and fire completely on their own. The assembly activity itself is modeled as a Poisson

6



Table 1: Experimental parameters. We show the used maximal number of assemblies, maximal motif
length in frames, `1 penalty value β, and number of runs of the algorithm with different initializations
for the performed experiments on different hippocampal CA1 region and cortical neuron culture
datasets. We also display the estimated threshold T used for distinguishing between real and spurious
motifs.

Experiment #motifs motif length in frames β #runs T

hippocampal CA1 region
dataset 5 5 10 10−6 5 1.49 · 10−5
dataset 15 5 10 10−6 5 9.24 · 10−6

cortical neuron culture
dataset L97_P1 5 10 10−6 5 1.23 · 10−2
dataset L97_P3 5 10 10−7 5 2.26 · 10−6

Table 2: Runtimes. CPU runtime for the analysis of different parts of the cortical neuron culture
dataset with parameter settings as shown in the paper.

analyzed part of the dataset #neurons #time frames runtime in minutes

complete dataset 400 18733 425
first half of the time frames 400 9366 192
second half of the time frames 400 9366 206
first quarter of time frames 400 4683 72
last quarter of time frames 400 4683 117
half of the neurons, all time frames 200 18733 154
one quarter of the neurons, all time frames 100 18733 64

process with a randomly chosen mean [13] and a refractory period of at least the length of the motif
itself. Additionally spurious spikes of single neurons are added to simulate neurons firing out of
sync. The percentile of neurons belonging to multiple motifs and the fraction of spurious spikes have
been varied to create different test cases. For each of the three temporal motif lengths τ = 1, 7 and
21 frames twenty different datasets were created.

4 Results on real data

We analyzed several datasets which were recorded similarly to those described in the paper. Figure 10
shows two examples of results of our method on additional hippocampal CA1 region datasets. Figure
11 shows results from two additional datasets from cortical neuron culture data. The parameters used
for the analysis of these datasets can be found in table 1. The identified motifs from these datasets
show similar temporal structures as the motifs shown in the paper.

5 Runtime

General statements about runtime are difficult, since it depends not only on the size of the data, but
also on the choice of parameters (maximum motif length, maximum number of motifs, ensemble
penalty, number of initialisations) as well as on the sparsity of the data and implementational details.
To give a rough intuition for the dependence on neuron number and data length, we did the analysis
for different slices of the cortical neuron culture dataset shown in the paper (400 neurons, 18733
time frames) with the same parameter settings. We show always the CPU time for one run of the
sparse convolutional coding algorithm on an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz machine.
This dataset is very sparse at the beginning (approximately the first quarter of the time frames) and
shows increased firing activity in the rest of the dataset. In order to reduce computation costs, the
implementation of the conversion into Toeplitz matrices follows equations (4) and (5), resulting in
the LASSO regression being the bottleneck w.r.t. runtime.
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(a) Motifs found in run 1

(b) Motifs found in run 2

(c) Motifs found in run 3

(d) Motifs found in run 4

Figure 3: Sets of found motifs for each of the four initializations on original spike matrix. Shown are
the results from the sparse convolutional coding algorithm on the synthetic dataset for four runs with
different random initializations. In each run we learned five motifs with a length of ten frames and `1
penalty β = 10−4.
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(a) Sorted motifs in run 1

(b) Sorted motifs in run 2

(c) Sorted motifs in run 3

(d) Sorted motifs in run 4

Figure 4: Sorted sets for each of the four runs on original spike matrix. The motifs were sorted such
that the difference of the ith motif in the first run to the ith motif in all other runs is minimized.
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(a) Motif 1

(b) Motif 2

(c) Motif 3
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(d) Motif 4

(e) Motif 5

Figure 5: Matched motifs from original spike matrix. We show for each of the five motifs the motif
from each of the four runs that matches best.
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(a) Motifs found in run 1

(b) Motifs found in run 2

(c) Motifs found in run 3

(d) Motifs found in run 4

Figure 6: Sets of found motifs for each of the four initializations on shuffled matrix. Shown are the
results from the sparse convolutional coding algorithm on the shuffled dataset for four runs with
different random initializations. In each run we learned five motifs with a length of ten frames and `1
penalty β = 10−4.
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(a) Motif 1

(b) Motif 2

(c) Motif 3
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(d) Motif 4

(e) Motif 5

Figure 7: Matched motifs from shuffled matrix. We show for each of the five motifs the motif from
each of the four runs that matches best.
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(a) Remaining representatives of motif 1 (b) Remaining representatives of motif 2

(c) Remaining representatives of motif 3

(d) Remaining representatives of motif 4

(e) Remaining representatives of motif 5

Figure 8: Remaining representatives of the motifs from original spike matrix. For each of the five
motifs the medoid over the four runs is calculated and motifs with a difference to the medoid bigger
than T = 2.81 · 10−5 are deleted from the list of representatives for this motif. Shown are the
remaining representatives for each of the five motifs.
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Figure 9: Final set of motifs. The final set of motifs is achieved by taking for all motif coefficients the
minimum value over the remaining representatives of the motif. Motifs where only one representative
is left, are deleted. In the shown case only three motifs have remained, which are in almost perfect
agreement with the ground truth motifs.
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(b) Activity of motifs from hippocampal CA1 region
dataset 5
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(c) Motifs from hippocampal CA1 region dataset 15
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(d) Activity of motifs from hippocampal CA1 region
dataset 15

Figure 10: Additional results from in vitro hippocampal CA1 region data. We show four examples
of motifs (left) found in different hippocampal CA1 region datasets and the motifs activity in time
(right).
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(b) Motifs from cortical neuron culture dataset L97_P3
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(c) Activity of motifs from cortical neuron culture dataset L97_P1
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(d) Activity of motifs from cortical neuron culture dataset L97_P3

Figure 11: Additional results from in vitro cortical neuron culture data. We show two examples of
motifs (top) found in different cortical neuron culture datasets and the motifs activity in time (bottom).

18


	Optimization
	Update the motifs ai
	Update the activations si

	Motif sorting and non-parametric threshold estimation
	Motif sorting – K-partite matching
	Non-parametric threshold estimation
	Exemplary result on synthetic data

	Generation of synthetic datasets
	Results on real data
	Runtime

