A  Proof of Lemma 1

Just like Russo and Zou [3], we exploit the Donsker—Varadhan variational representation of the
relative entropy [20, Corollary 4.15]: for any two probability measures 7, p on a common measurable

space (Q, F),
D(x||p) = sup {/ Fdr— log/ ede} , (A.1)
F Ua Q

where the supremum is over all measurable functions F' :  — R, such that e’ € L!(p). From
(A.1), we know that for any A € R,

D(Px,y||Px ® Py) > EI\f(X,Y)] — log E[e? (X))

o /\20_2
> ME[f(X, V)] - E[f(X,Y)]) = ——, (A2)

where the second step follows from the subgaussian assumption on f(X,Y):

- - - /\20_2
log]E[ef\(f(X’Y)*E[f(XvY)])] < 5 v\ € R.

Inequality (A.2) gives a nonnegative parabola in A, whose discriminant must be nonpositive, which
implies

[E[f(X.Y)] - E[f(X.¥)]| < /202D(Px v [ Px ® Py).
The result follows by noting that I(X;Y") = D(Px y||Px ® Py).

B Proof of Theorem 3

To prove Theorem 3, we need the following two lemmas.

Lemma B.1. Consider the parallel execution of m independent copies of Py s on independent
datasets Sy, ..., Sp: fort =1,...,m, an independent copy of Py s takes Sy ~ pu®" as input and
outputs Wy. Define S™ £ (Sy,...,Sy,). If under j1, Py s satisfies that I(Aw (S); W) < ¢, then the
overall algorithm Pyym|gm satisfies I(Aw(S1), ..., Aw(Sm); W™) < me.

Proof. The proof is based on the independence among (S¢, W;), t = 1,...,m, and the chain rule of
mutual information. O
Lemma B.2. Let S™ £ (S1,...,S,,), where S; ~ p®™. If an algorithm Py rigm : 27" —

W x [m] x {£1} satisfies I(Aw(S1), ..., Aw(Sm); W, T, R) < ¢, and if {(w, Z) is o-subgaussian
forallw e W, then
202¢

n

E[R(Ls, (W) = L,(W))] <

Proof. The proof is based on Lemma 1. Let X = (Aw(S1),...,Aw(Sn)), Y = (W, T, R), and
f((AW(51)7 o 7AW(sm))7 (wa t7 T)) - TLSf (’LU)

If {(w, Z) is o-subgaussian under Z ~ p for all w € W, then 3
X,Y

subgaussian for all w € W, ¢t € [m] and r € {£1}, and hence f(X,
Lemma 1 implies that

o l(w, Zy ) is o/y/n-
) is o/+/n-subgaussian.

E[RLs, (W)] — E[RL, (W)] < \/202[(AW(51), s Aw(Sm); W, T, R)

n
and proves the claim. O

Note that the upper bound in Lemma B.2 does not depend on m. With these lemmas, we can prove
Theorem 3.



Proof of Theorem 3. The proof is an adaptation of a “monitor technique” proposed by Bassily
et al. [6]. First, let Pym|gm be the parallel execution of m independent copies of Py |g: for

t =1,...,m, an independent copy of Py |s takes an independent S ~ u®™ as input and outputs

W;. Given S™ and W™, let the output of the “monitor” be a sample (W*,T*, R*) drawn from
W x [m] x {£1} according to

(T*,R*) = argmax r(L,(W;)—Lg,(W;)) and W*= Wr.. (B.3)
te[m], re{£1}

This gives
R*(L,(W*) = Lg,.. (W) = max | L (Wi) — Ls, (W)

Taking expectation on both sides, we have

E[R* (L (W*) - Lg,. (W*))] = E[max |, (W) — Lst(Wt)”. (B.4)

te[m]
Note that conditional on W™, the tuple (W*, T*, R*) can take only 2m values, which means that
I(Aw(S1), .o, Aw(Sp); W*, T* R*[W™) < log(2m). (B.5)
In addition, since Pyy|g is assumed to satisfy I(Aw(S); W) < e, Lemma B.1 implies that
T(Aw(S1), .-, Aw(Sm); W™) < me.
Therefore, by the chain rule of mutual information and the data processing inequality, we have

I(Aw(S1), -, Aw(Sm); W™, T*, R*) < I(Aw(S1), .- ., Aw(Sp); W™, W*, T*  R¥)
< me + log(2m).

By Lemma B.2 and the assumption that ¢(w, Z) is o-subgaussian,

952
E[R* (Ls,. (W*) — Ly(W")] < \/Z(ms +1log(2m)). (B.6)
Combining (B.6) and (B.4) gives
E{max|L (W) — L (W)” <\/M(m€+log(2m)) (B.7)
te[m] Sl HATTUI] = n ' )

The rest of the proof is by contradiction. Choose m = [1/3]. Suppose the algorithm Py |5 does not
satisfy the claimed generalization property, namely,

P[|Ls(W) = L,(W)| > o] > B. (B.8)
Then by the independence among the pairs (S, W), t =1,...,m,

P[max |Ls, (Wy) = L,(Wy)| > a} s1—a-pe s L

te[m] 2
Thus
«
E[max |Ls, (W) — Lu(Wt)}} > 2 (B.9)
te[m] 2
Combining (B.7) and (B.9) gives
Q 202 s ¢ 2
AP i f). B.10
3 < \/ ( ERRS (®.10)
The above inequality implies that
802 (€ 2
— | = +log = B.11
n < o2 (64-0g6>7 ( )
which contradicts the condition in (16). Therefore, under the condition in (16), the assumption in
(B.8) cannot hold. This completes the proof. O



C Proof of Theorem 5

To solve the relaxed optimization problem in (26), first note that

it (]E[LS(W)] N ;D(PWSHQUDS))

Py s
. 1
=t [ (a9 (BLE OIS = ] + 5D
w|s n ﬂ
. 1
= [ wenias) int (BILOV)IS = 5]+ 3D(Rws= Q) )
n W|S=s B
It follows that for each s € Z", the algorithm P{fm 5 that minimizes (26) satisfies
. 1
Py, = arginf (E[Ls(W)|S =s|+ D(PW|S—S|Q)> : (C.12)
Py s=s g

This is a simple convex optimization problem. The solution to (C.12) for each s € Z™ turns out to be
the Gibbs algorithm [21] as described in (27), which does not depend on .

D Proof of Corollary 2

We can bound the expected empirical risk of the Gibbs algorithm P;‘VI g as

E[Ls (W) < ElLs(W)] + 3D(RislQIPs) (D.13)
< E[Ls(w)] + %D((FwHQ) forallw € W, (D.14)

where d,, is the point mass at w. The second inequality is due to Theorem 5, as §,, can be viewed
as a learning algorithm that ignores the dataset and always outputs w. Taking w = w,, noting that
E[Ls(w,)] = L, (w,), and combining with the upper bound on the expected generalization error
(28), we obtain

1
BILW(W)] < inf, Lu(w) + 5D, Q) + 5

This leads to (29), as D(dy, ||Q) = — log Q(w,) when W is countable.

(D.15)

E Proof of Corollary 3

Similar to the proof of Corollary 2, we first bound the expected empirical risk of the Gibbs algorithm
P;‘Vl - Forany a > 0, NV (w,, a*I,) can be viewed as a learning algorithm that ignores the dataset
and always draws a hypothesis from this distribution. The nonnegativity of relative entropy and
Theorem 5 imply that

B[Ls(W)] < ElLs(W)] + 5D(PisQIFs) (E.16)
< | E[Ls(w)|N (w; w,, a*Tq)dw + %D(N(wo, a’1y)||Q) (E.17)

"
- / L, (w)N (w; w,, a*Ig)dw + %D(/\/‘(wo, aZId)HQ). (E.18)

"

Combining with the upper bound on the expected generalization error (28), we obtain

E[L,(W)] < inf (/W L (w)N (w; w, a®Lz)dw + ;D(N(wo,aQId)HQ)) + % (E.19)

a>0
Since ¢(-, z) is p-Lipschitz for all z € Z, we have that for any w € W,
| Ly (w) = Ly (wo)| < E[[f(w, Z) — £(wo, Z)[] < pllw — w,- (E.20)



Then
/ Ly (w)N (w; w,, a*1)dw < / (L (wo) + pllw — wol| )N (w; wo, a*Iy)dw (E.21)
w w

< Ly(wo) + paVd. (E.22)
Substituting this into (E.19), we obtain (31).

F Proof of Corollary 4
We prove the result assuming |W| = k. When W is countably infinite, the proof carries over by
replacing k with oo.

First, we upper-bound the expected generalization error via I(S; W). We have the following chain of
inequalities:

I(S;W) < I((Ls(ws))icpr); (Ls(wi) + Ni)icpw) (F.23)
k
<Y I(Lg(w;); Ls(wi) + N;) (F24)
=1
k
<Y log (1 + ]E[st‘(w”> (E.25)
i—1 i
k
= log (1 n L”é””) , (F.26)
i=1 i

where we have used the data processing inequality for mutual information; the fact that for product
channels, the mutual information between the overall input and output is upper-bounded by the sum
of the input-output mutual information of individual channels [22]; the formula for the capacity
of the additive exponential noise channel under an input mean constraint [23]; and the fact that
E[Ls(w;)] = L,(w;). The assumption that ¢ takes values in [0, 1] implies that ¢(w, Z) is 1/2-
subgaussian for all w € W, and as a consequence of (F.26),

1 & L, (w;)
Puts) < | — S log (1 4+ 22\ F27
gen(y, Pyyjs) < 2n; og< + = ) (F27)

Then, we upper-bound the expected empirical risk. From the definition of the algorithm, we have that
with probability one,

Ls(W) = Ls(W) + Nw — Nw (F.28)
< Ls(w;,) + N;, — Nw (F.29)
< Lg(wio) + Nio - min{Ni,i S [k‘}} (F.30)

Taking expectation on both sides, we get
-1

K
E[Ls(W)] < Ly(w,) + bi, — (Z b1> . (F31)

Combining (F.27) and (F.31), we have

-1
Lu<wi> ) : 1
» ) +b;, — (Zl o] (F.32)

7

k
_ 1
E[L,(W)] < min Lu(wi) + 4| 5- i:leog (1 +

<ux.

which leads to (34) with the fact that log(1 + z)
When b; = il'l/n1/3, using the fact that

k
1
Z ST <1- 10k 1/10 (F.33)
=1



and upper-bounding L, (w;)’s by 1, we get

. 1 1 - 1.1 1
E[LM(W)] < gfﬁ LM(wi) + RSV (\/2 (11 — 10k 1/10) +1, — 11—1()]<:_1/10> (F.34)

3 -1.1
< min L, (w;) + 22t (E35)

ic[k] nl/3 "’

which proves (35).



