
A Proofs

A.1 Multi-scale FTPL algorithm

Proof of Theorem 1. Recall that B(i) = 5c
i

�
n�log(1�⇡

i

) + log(4c2
i

n)�. Let C =�g ∈ RN � �g
i

� ≤ c
i

∀i ∈ [N]�. For a regret bound of the form B(i) + K to be achievable by a
randomized algorithm such as Algorithm 3 we need

V
n

� � inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

�n

t=1 sup

i∈[N]� n�
t=1�eit , gt� − n�

t=1�ei, gt� −B(i)� ≤K,

where ���n
t=1 denotes interleaving of the operator � from t = 1 to n. In the context of Algorithm 3,

the distributions p
t

above refer to the strategy p
t

(�
t+1∶n) selected by the algorithm and P

t

refers to
the distribution over this strategy induced by sampling the random variables �

t+1∶n. See [14] for a
more extensive introduction to this type of minimax analysis for comparator-dependent regret bounds.

We will develop an algorithm to certify this bound for K = 1 using the framework of adaptive
relaxations proposed by [14]. Define a relaxation Rel ∶ �n

t=0 Ct → R via

Rel(g
1∶t) � E

�t+1∶n∈{±1}N sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�.
The proof structure is as follows: We show that playing p

t

as suggested by Algorithm 3 with Rel

satisfies the initial condition and admissibility condition for adaptive relaxations from [14], which
implies that if we play p

t

we will have Reg

n

(i) ≤ B(i) +Rel(⋅). Then as a final step we bound
Rel(⋅) using a probabilistic maximal inequality, Lemma 2.

Initial condition This condition asks that the initial value of the relaxation Rel upper bound the
worst-case value of the negative benchmark minus the bound B(i) (in other words, the inner part ofV
n

with the learner’s loss removed). This is holds by definition and is trivial to verify:

Rel(g
1∶n) = sup

i∈[N]�− n�
t=1�ei, gt� −B(i)�.

Admissibility For this step we must show that the inequality

inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

[�e
it , gt� +Rel(g

1∶t)] ≤Rel(g
1∶t−1)

holds for each timestep t, and further that the inequality is certified by the strategy of Algorithm 3.
We begin by expanding the definition of Rel:

inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

[�e
it , gt� +Rel(g

1∶t)]
= inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

������eit , gt� + E
�t+1∶n∈{±1}N sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Now plug in the randomized strategy given by Algorithm 3, with E

�t+1∶n∈{±1}N taking the place of
E
pt∼Pt :

≤ sup

gt∈C
����� E
�t+1∶n∈{±1}N� E

it∼pt(�t+1∶n)�eit , gt�� + E
�t+1∶n∈{±1}N sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Grouping expectations and applying Jensen’s inequality:

≤ E
�t+1∶n∈{±1}N sup

gt∈C
����� E
it∼pt(�t+1∶n)�eit , gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Expanding the definition of p

t

(using its optimality in particular):

= E
�t+1∶n∈{±1}N inf

pt∈�N

sup

gt∈C
������pt, gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
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Now apply a somewhat standard sequential symmetrization procedure. Begin by using the minimax
theorem to swap the order of inf

pt and sup

gt
. To do so, we allow the g

t

player to randomize, and
denote their distribution by Q

t

∈�(C).
= E

�t+1∶n∈{±1}N sup

Qt∈�(C) inf

pt∈�N

E
gt∼Qt

������pt, gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Since the supremum over i does not directly depend on p

t

, we can rewrite this expression by
introducing a (conditionally) IID copy of g

t

which we will denote as g′
t

:

= E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
gt∼Qt

����� supi∈[N]� inf

pt∈�N

E
g

′
t∼Qt

[�p
t

, g′
t

�] − t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Choosing p

t

to match e
i

:

≤ E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
gt∼Qt

sup

i∈[N]� E
g

′
t∼Qt

[�e
i

, g′
t

�] − �e
i

, g
t

� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�.
Applying Jensen’s inequality:

≤ E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
gt,g

′
t∼Qt

sup

i∈[N]��ei, g′t� − �ei, gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�.
At this point we can introduce a new Rademacher random variable ✏

t

without changing the distribution
of g′

t

− g
t

, thereby not changing the value of the game:

= E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
✏t∈{±1} E

gt,g
′
t∼Qt

sup

i∈[N]�✏t�ei, g′t − gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
≤ E

�t+1∶n∈{±1}N sup

Qt∈�(C) E
✏t∈{±1} E

gt,g
′
t∼Qt

�����������������
sup

i∈[N]�✏t�ei, g′t� + 1

2

�− t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)��
+ sup

i∈[N]�✏t�ei,−gt� + 1

2

�− t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)��
�����������������

= E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
✏t∈{±1} E

gt∼Qt

sup

i∈[N]�2✏t�ei, gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
The above expression is now linear in Q

t

, so it may be replaced with a pure strategy:

= E
�t+1∶n∈{±1}N sup

gt∈C E
✏t∈{±1} sup

i∈[N]�2✏t�ei, gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
This expression is also convex in g

t

, which means that the supremum will be obtained at a vertex ofC:

= E
�t+1∶n∈{±1}N sup

�t∈{±1}N E
✏t∈{±1} sup

i∈[N]�2✏t�t

[i]c
i

− t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
Now apply Theorem 10 conditioned on �

t+1∶n, with w
i

= −∑t−1
s=1�ei, gs� + 4∑n

s=t+1 �s

[i]c
i

−B(i).
≤ E

�t∶n∈{±1}N sup

i∈[N]�− t−1�
s=1�ei, gs� + 4 n�

s=t�s

[i]c
i

−B(i)�
=Rel(g

1∶t−1).
Final value The final value of the relaxation is

Rel(⋅) = 2 E
�1∶n∈{±1}N sup

i∈[N]�2 n�
t=1�t

[i]c
i

− 5c
i

�
n�log(1�⇡

i

) + log(4c2
i

n)�� ≤ 2 �
i∈[N]

⇡
i

4c2
i

n
≤ 1.

To show the first inequality we have applied a maximal inequality, Lemma 2, by recognizing
that Rel(⋅) is a supremum of a random process. Namely, we can write Rel(⋅) in the form
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E sup

i∈[N]{Xi

−B(i)} with X
i

= 2∑n

t=1 �t

[i]c
i

. The standard mgf bound of E e�X ≤ e�2(b−a)2�8
for mean-zero random variables X with a ≤X ≤ b [6], along with independence of the Rademacher
random variables in X

i

, implies that X
i

enjoys an mgf bound of

E e�Xi ≤ e2c2i�2
n.

So to prove the result it suffices to take h
i

= 4c2
i

n and p = 2 in the statement of Lemma 2 and note that
B(i) ≥ (2 + 1�p)h1�p

i

(log(h
i

) + log(1�⇡
i

))1−1�p in the notation of the lemma. The only additional
detail to verify is that, since it was assumed that c

i

≥ 1 for all i and since n ≥ 1 by definition, the
condition h

i

�⇡
i

≥ e required by Lemma 2 is satisfied.

Computational efficiency We briefly sketch how the min-max optimization problem in the
learner’s strategy can be computed efficiently. Recall that the optimization problem is

min

p∈�N

sup

gt∶�gt[i]�≤ci
������p, gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������
= min

p∈�N

sup

i∈[N] sup

gt∶�gt[i]�≤ci��p, gt� −
t�

s=1�ei, gs� + 4 n�
s=t+1�s

[i]c
i

−B(i)�
Let G

t−1(i) = ∑t−1
s=1 gs[i]. Since the quantity in the brackets above is linear in g

t

and there are no
interactions between coordinates, we can verify that conditioned on i the max over g

t

is obtained via

= min

p∈�N

sup

i∈[N]��p, c� + (1 − 2p[i])ci −Gt−1(i) + 4 n�
s=t+1�s

[i]c
i

−B(i)�
= min

p∈�N

sup

i∈[N][�p, c� + �a, ei� − 2�p,diag(c)ei�],
where a[i] = c

i

−G
t−1(i) + 4∑n

s=t+1 �s

[i]c
i

−B(i). We can now employ a standard reduction from
saddle point optimization to linear programming, i.e.

minimize �p, c� + s
subject to s ≥ �a, e

i

� − 2�p,diag(c)e
i

� ∀i.
p ∈�

N

.

Assuming that min

i

c
i

≥ 1, this linear program can be solved to accuracy ✏ by interior point methods
(e.g. [35]) in time O(N3.5

log(✏−1max

i

c
i

)) or by Mirror-Prox [28] in time O(N✏−1max

i

c
i

). Since
our rates scale as

√
n we can set ✏ = 1�(√nmax

i

c
i

) to conclude the result.

As a final implementation detail, we remark that similar to the FTPL algorithm in [34] one can draw
each perturbation �

t

[i], from the distributionN (0,1) instead of using Rademacher random variables.
This allows one to replace each sum ∑n

s=t �s

[i] with a draw from N (0, n − t) and therefore avoid
spending O(n) time per step sampling perturbations. We have omitted the details because — for
most values of c and N used in our applications, at least — the time required to solve the saddle point
optimization problem dominates the runtime, not the time to sample perturbations.

Theorem 10. For any w ∈ RN , any c ∈ RN+ ,

sup

�∈{±1}N E
✏∈{±1}max

i∈[N]{wi

+ 2✏�
i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+ 4�
i

c
i

}. (11)

Proof of Theorem 10. Fix any � ∈ {±1}N . Let i
1

= argmax

i∈[N]{wi

+ 2�
i

c
i

} and i−1 =
argmax

i∈[N]{wi

− 2�
i

c
i

}. Then it is easy to see that

E
✏

max

i∈[N]{wi

+ 2✏�
i

c
i

} = E
✏

max

i∈{i1,i−1}{wi

+ 2✏�
i

c
i

} ≤ E
�

′∈{±1}N max

i∈{i1,i−1}{wi

+ 4�′
i

c
i

} ≤ E
�

′∈{±1}N max

i∈[N]{wi

+ 4�′
i

c
i

}.
The central inequality above follows by Lemma 1 with the pair (w,2c). Since the above bound holds
for any �, we conclude that (11) holds.
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Lemma 1. For any pair (w, c) where w ∈ RN any c ∈ RN+ , the inequality
sup

�∈{±1}N E
✏∈{±1}max

i∈[N]{wi

+ ✏�
i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+ 2�
i

c
i

}. (12)

holds when N = 2.

Proof of Lemma 1. In this proof we adopt the notation that for any element j ∈ [2], −j denote the
other element. Say the pair (w, c) is dominated if there exists j for which w

j

− c
j

≥ w−j + c−j . Note
that this of course implies w

j

+ c
j

≥ w−j + c−j as well, since c is non-negative.

Dominated case Suppose (w, c) is dominated by index j. Then (12) holds trivially for any K ∈ R
by

sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

} = w
j

= max

i∈[N]{wi

+K E
�∈{±1}N �

i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+K�
i

c
i

}.
We now focus on the trickier “not dominated” case.

Rescaling doesn’t induce domination We first observe that if (w, c) does is not dominated,(w,Bc) is not dominated either for any B ≥ 1. Let j be the index for which w
j

+ c
j

≥ w−j + c−j
which implies w

j

− c
j

≤ w−j + c−j because (w, c) is not dominated. Observe that if (w,Bc) is
dominated we either have w

j

−Bc
j

≥ w−j +Bc−j or w−j −Bc−j ≥ wj

+Bc
j

. The first case cannot
hold because B ≥ 1 and we already know that (w, c) is not dominated. The second case in particular
implies w−j ≥ wj

, so we must have had c
j

≥ c−j to begin with. But in that case we will still have
w

j

+Bc
j

≥ w−j +Bc−j which contradicts the domination.

Note: It is good to keep in mind that while rescaling does not induce domination, it may not be the
case in general that w

j

+Bc
j

≥ w−j +Bc−j even though w
j

+ c
j

≥ w−j + c−j . That is, the “leader”
may change after rescaling.

LHS of (12) for (w, c) not dominated When (w, c) is not dominated we have

sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

} = 1

2

(w
1

+ c
1

) + 1

2

(w
2

+ c
2

).
RHS of (12) for (w, c) not dominated We will consider the RHS of (12) for (w, c′) � (w,Bc)
for some B ≥ 1 to be decided. By the argument above, the pair (w, c′) is also not dominated. For
the remainder of the proof, 1 will denote the index for which w

1

+ c′
1

≥ w
2

+ c′
2

. Because the pair is
not dominated, the value the RHS takes can be classified into two cases based on the relationship
between c′ and w.

• Case 1: w
1

− c′
1

≤ w
2

− c′
2

:
In this case there is equal probability that the process takes on value w

2

− c′
2

or w
2

+ c′
2

conditioned on the event that �
1

= −1, so we have the equality:

E
�∈{±1}N max

i∈[N]{wi

+ �
i

c′
i

} = 1

2

(w
1

+w
2

) + 1

2

c′
1

Furthermore, Case 1 implies c′
1

≥ c′
2

, which leads to an inequality:

≥ 1

2

(w
1

+w
2

) + 1

4

(c′
1

+ c′
2

).
• Case 2: w

1

− c′
1

≥ w
2

− c′
2

:
In this case, conditioned on the event that �

1

= −1, there is equal probability that the process
takes on value w

2

+ c′
2

or w
1

− c′
1

, so the equality becomes:

E
�∈{±1}N max

i∈[N]{wi

+ �
i

c′
i

} = 1

2

(w
1

+ c′
1

) + 1

4

(w
2

+ c′
2

) + 1

4

(w
1

− c′
1

)
Case 2 implies that w

1

≥ w
2

, because we may add the inequalities w
1

+ c′
1

≥ w
2

+ c′
2

and
w

1

− c′
1

≥ w
2

− c′
2

. This gives an inequality:

≥ 1

2

(w
1

+w
2

) + 1

4

(c′
1

+ c′
2

).
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Combining our results for the two cases, we have that for any vector c′, so long as (w, c′) is not
dominated,

E
�∈{±1}N max

i∈[N]{wi

+ �
i

c′
i

} ≥ 1

2

(w
1

+w
2

) + 1

4

(c′
1

+ c′
2

).
In particular, choosing B = 2 implies (12) in the non-dominated case:

E
�∈{±1}N max

i∈[N]{wi

+ 2�
i

c
i

} ≥ 1

2

(w
1

+w
2

) + 1

2

(c
1

+ c
2

)
= sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

}.
Final result Combining the dominated and non-dominated results we have that for any (w, c).

sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+ 2�
i

c
i

}.
Lemma 2 (Multi-scale maximal inequality). Let (X

i

)
i∈[N] be a real-valued random process for

which there exists a sequence (h
i

)
i∈[N] with h

i

> 0 such that the moment generating function bound
E e�Xi ≤ e�p

hi is satisfied for all � > 0 and some choice of p > 0. Then for any distribution ⇡ ∈�
N

for which h
i

�⇡
i

≥ e for all i ∈ [N] it holds that

E sup

i∈[N]�Xi

− (2 + 1�p)h1�p
i

(log(h
i

) + log(1�⇡
i

))1−1�p� ≤ �
i∈[N]

⇡
i

h
i

. (13)

Proof. Let B(i) = Ch
1�p
i

(log(h
i

) + log(1�⇡
i

))1−1�p for some constant C to be decided later. One
should verify that log(h

i

) + log(1�⇡
i

) is always non-negative by the assumption that h
i

�⇡
i

≥ e,
which will be used repeatedly. To begin, observe that

E sup

i∈[N]{Xi

−B(i)} ≤ E sup

i∈[N][Xi

−B(i)]+,
where [x]+ =max{x,0}. By non-negativity of [x]+ it further holds that≤ E �

i∈[N][Xi

−B(i)]+.
Fixing an arbitrary sequence (�

i

)
i∈[N] with �

i

> 0, the basic inequality max{a, b} ≤ 1

�

log(e�a+e�b)
implies the following upper bound:

≤ E �
i∈[N]

1

�
i

log

�
1 + e�i(Xi−B(i))�.

Apply Jensen’s inequality:

≤ �
i∈[N]

1

�
i

log

�
1 +E e�i(Xi−B(i))�.

Now use the moment bound assumed in the lemma statement:

≤ �
i∈[N]

1

�
i

log�1 + e��p
i hi−�iB(i)��.

Lastly, apply the inequality log(1 + x) ≤ x for x ≥ 0:≤ �
i∈[N] exp��p

i

h
i

− �
i

B(i) + log(1��
i

)�.
We now take �

i

= � log(hi)+log(1�⇡i)
hi

�1�p and bound each exponent in the sum above. Using the
definition of B(i):

�p

i

h
i

− �
i

B(i) + log(1��
i

) = log(1��
i

) − (C − 1)(log(1�⇡
i

) + log(h
i

)).
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Next observe that

log(1��
i

) = 1

p
log� h

i

log(h
i

�⇡
i

)� ≤ 1

p
log(h

i

),
where we have used that h

i

�⇡
i

≥ e. With this, and using that log(1�⇡
i

) ≥ 0, we have

�p

i

h
i

− �
i

B(i) + log(1��
i

) ≤ − (C − 1 − 1�p)(log(1�⇡
i

) + log(h
i

)).
Taking C ≥ 2 + 1�p and using this bound in the summation over i yields the result:

E sup

i∈[N]{Xi

−B(i)} ≤ �
i∈[N]

⇡
i

h
i

.

A.2 Proofs for Section 2.2

Proof of Theorem 2. First, we verify that the loss sequence (g
t

)
t≤n is such that the regret bound

derived for MULTISCALEFTPL applies. In particular, we need to verify that �g
t

[i]� ≤ c
i

for each i.
To this end, fix an index i ∈ [N], and note that since f

t

is L
i

-Lipschitz onW
i

with respect to the
norm �⋅�(i) we have

�g
t

[i]� = �f
t

(wi

t

) − f
t

(0)� ≤ L
i

�wi

t

− 0�(i) ≤ Li

R
i

≤ L
i

R
i

= c
i

,

as required. Also, it was assumed that c
i

= L
i

R
i

≥ 1, as required for Theorem 1.

Now, recall that (p
t

) is the sequence of distributions produced by the meta-algorithm. The algorithm’s
total loss with respect to the centered iterates (f̃

t

) is given by

n�
t=1 f̃t(wit

t

) = n�
t=1�eit , gt�,

where this equality is due to the construction of the losses (g
t

)
t≤n given to MULTISCALEFTPL. The

regret bound for MULTISCALEFTPL now implies that

E� n�
t=1�eit , gt� − min

i∈[N]� n�
t=1 gt[i] +O�Ri

L
i

�
n log(R

i

L
i

n�⇡
i

)��� ≤ 0,
where we have obtained this inequality by substituting the value of the vector c constructed by
MULTISCALEOCO into the regret bound (4) for MULTISCALEFTPL. Now, observe that for each i
we have

n�
t=1 gt[i] = n�

t=1 f̃t(wi

t

) ≤ inf

w∈Wi

n�
t=1 f̃t(w) +Reg

n

(i),
where we have used the definition of g

t

and the regret bound assumed on the sub-algorithm. Combin-
ing these inequalities, we have

E� n�
t=1 f̃t(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 f̃t(w) +Reg

n

(i) +O�R
i

L
i

�
n log(R

i

L
i

n�⇡
i

)��� ≤ 0.
Finally, observe that since f̃

t

(w) = f
t

(w) − f
t

(0), the above is equivalent to

E� n�
t=1 ft(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 ft(w) +Reg

n

(i) +O�R
i

L
i

�
n log(R

i

L
i

n�⇡
i

)��� ≤ 0.
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Mirror Descent Online Mirror Descent is the standard algorithm for online linear optimization over
convex sets. It is parameterized by a convex setW , learning rate ⌘, and strongly convex regularizerR ∶W → R. We define the update MIRRORDESCENT(⌘,W ,R) as follows.
First, set w

1

= argmin

w∈W R(w). Then, for each time t ∈ [n]:
• Receive gradient g

t

and let w̃
t+1 satisfy ∇R(w̃

t+1) = ∇R(wt

) − ⌘g
t

.

• Set w
t+1 = argmin

w∈W DR(w � w̃t+1).
Fact 1 (Mirror Descent (e.g. [15])). Let (w

t

) be the iterates produced by
MIRRORDESCENT(⌘,W ,R) on a sequence of vectors (g

t

)
t≤n. If R is �-strongly convex

with respect to a norm �⋅�R, the iterates satisfy
n�
t=1�wt

−w, g
t

� ≤ ⌘

2�

n�
t=1�gt�2R,� + 1

⌘
R(w) ∀w ∈W . (14)

Proof of Theorem 3. Recall that each sub-algorithm ALG
i

runs Mirror Descent over a ball in(B, �⋅�) of radius R
i

using the regularizer R(w) = 1

2

�w�2. From the regret bound for Mirror
Descent (Fact 1), the meta-algorithm’s choice of Mirror Descent parameters for ALG

i

(in particular,
the choice ⌘

i

= Ri

L

�
�

n

) guarantees that

n�
t=1 ft(wi

t

) − inf

w∈Wi

n�
t=1 ft(w) ≤ O(Ri

L
�
n��).

Combined with the regret bound for MULTISCALEOCO (Theorem 2, noting that R
i

L
i

= R
i

L ≥ 1),
this implies that the meta-algorithm’s regret satisfies

E� n�
t=1 ft(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 ft(w) +O(Ri

L
�
n��) +O�R

i

L
�
n log(R

i

Ln�⇡
i

)��� ≤ 0.
Which, using that ⇡

i

= 1�(n + 1) and combining terms, further implies

E� n�
t=1 ft(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 ft(w) +O�Ri

L
�
n log(R

i

Ln)����� ≤ 0.
Now, recall that i ∈ [n + 1], and that R

i

= ei−1. Consider the algorithm’s regret against a comparator
w. For now, assume that w satisfies 1 ≤ �w� ≤ en — we will see shortly that this is without loss of
generality. Let i�(w) =min{i � w ∈W

i

}. Then the regret bound above implies

E� n�
t=1 ft(wit

t

) − � n�
t=1 ft(w) +O�Ri

�(w)L�n log�R
i

�(w)Ln������ ≤ 0.
Furthermore, since R

i

= ei−1, we have that R
i

�(w) ≤ e�w�, and so

E� n�
t=1 ft(wit

t

) − � n�
t=1 ft(w) +O��w�L�n log(�w�Ln�)���� ≤ 0.

This is exactly the regret bound we wanted. Now, the case where �w� ≤ 1 is handled by simply noting
i�(w) = 1 and writing R

1

= 1 ≤ 1 + �w�, which gives the �w� + 1 factor as follows:

E� n�
t=1 ft(wit

t

) − � n�
t=1 ft(w) +O�(�w� + 1)L�n log((�w� + 1)Ln�)���� ≤ 0.

To handle the case where �w� ≥ en we appeal to Corollary 1 with c = L
√
n and � = 1�2, which

shows that it suffices to consider only �w� ≤ exp��Ln

c

�1��� = en. Note that the constants appearing

in the regret bound above, both inside the O(⋅) and inside the
�
log(⋅) are worse than those with

which we instantiate Corollary 1. This is not an issue because worse constants only reduce the radius
that must be considered in the corollary.
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Lemma 3. Let F ∶ R+ → R+ be given. Suppose the loss sequence (f
t

)
t≤n is L-Lipschitz with respect

to �⋅��. Then a regret bound of the form
n�
t=1 ft(wt

) − n�
t=1 ft(w) ≤ F (�w�) ∀w ∈B (15)

holds if the restricted regret bound
n�
t=1 ft(wt

) − n�
t=1 ft(w) ≤ F (�w�) ∀f ∶ �f� ≤ ↵�, (16)

holds, where ↵� is the greatest non-negative number for which F (↵�) − ↵�Ln ≥ F (0).
Proof of Lemma 3. Assume wlog that f

t

(0) = 0 for each t. This is possible because
n�
t=1 ft(wt

) − n�
t=1 ft(w) = n�

t=1(ft(wt

) − f
t

(0)) − n�
t=1(ft(w) − ft(0)).

To begin, observe that (15) is equivalent to
n�
t=1 ft(wt

) ≤ inf

w∈B� n�
t=1 ft(w) + F (�w�)�.

By selecting w = 0, f
t

(0) = 0 implies that the infimum on the right is always upper bounded in value
by F (0). In the other direction, Lipschitzness of the losses along with f

t

(0) = 0 implies that the
infimum is lower bounded as

inf

w∈B� n�
t=1 ft(w) + F (�w�)� ≥ inf

w∈B{−L�w�n + F (�w�)} = inf↵≥0{−↵Ln + F (↵)}.
Therefore if ↵ ≥ ↵�, the lower bound −↵Ln + F (↵) will be sub-optimal compared to the upper
bound of F (0) obtained by choosing ↵ = 0.

Corollary 1. When F (r) = c ⋅ (r + 1) log(r + 1)� for � > 0, it is sufficient to consider
n�
t=1 ft(wt

) − n�
t=1 ft(w) ≤ F (�w�) ∀w ∶ �w� ≤ exp��Ln

c
�1���. (17)

Proof of Corollary 1. Note that F (0) = 0. Let r denote the minimizer of F (↵) − ↵ ⋅ a (where
a = Ln). Differentiating this expression yields

a = c�log(r + 1)� + � log(r + 1)�−1�,
which further implies

log(r + 1)� = a

c
⋅ 1

1 + �� log(r + 1) ≤ a

c
.

Rearranging, we have r ≤ exp((a�c)1��) − 1. Since F (↵) − ↵ ⋅ a is strictly convex, this function is
increasing above r. To conclude, we guess an upper bound on the value of ↵�: ↵ ∶= exp((a�c)1��)−1.
Substituting this value in, we have

F (↵) − ↵ ⋅ a ≥ a exp((a�c)1��) − a ⋅ exp((a�c)1��) = 0 = F (0),
which yields the result.

Proof of Theorem 4. We only sketch the details of this proof as it follows Theorem 3 very closely.

We first describe sub-algorithm configuration for MULTISCALEOCO that achieves the claimed
regret bound. Our strategy will be to take a discretization the range of p values [1 + �,2], and
produce a set of sub-algorithms for each p in this discrete set. For a fixed p, the construction of
the set of sub-algorithms will be exactly is in Theorem 3. The discrete set of ps will have the form
p
k

= 1+�+min{(k − 1) ⋅ ✏, (1 − �)}, for ✏ = 1� log(d) and k ∈ [1, . . . ,K], where K = �(1 − �)�✏�+1
(in particular k ≤ log(d) + 1).

For a fixed k, the norm �⋅�
pk

has that 1

2

�⋅�2
pk

is (p
k

− 1)-strongly convex with respect to itself [19].
With this in mind, we create a set of N ∶= K(n + 1) sub-algorithms, which we will index by pairs(k, j) ∈ [K] × [n + 1] instead of i ∈ [K(n + 1)] for notational convenience.
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• For each k ∈ [K]:
– L

k

= L
pk .

– For each j ∈ {1, . . . , n + 1}:
* Set R

j

= ej−1.

* TakeW(k,j) = �w ∈B � �w�
pk
≤ R

j

�, ⌘(k,j) = Rj

Lk

�
�pk

n

, where �
pk = (pk − 1).

* Let ALG
j

= MIRRORDESCENT(⌘(k,j),W(k,j), �⋅�2
pk
).

• ⇡ = Uniform([K] × [n + 1]).
Clearly the total number of sub-algorithms and hence the running time scales as O(n ⋅ log(d)).
Referring back to the proof of Theorem 3, and letting (k

t

, j
t

) denote the index pair chosen by
MULTISCALEOCO in round t, it is clear that for a fixed k, the algorithm satisfies for all w ∈ Rd

E� n�
t=1 ft(w(kt,jt)

t

) − � n�
t=1 ft(w) +O�(�w�pk + 1)Lpk

�
n log((�w�

pk + 1)Lpkn log(d))�(pk − 1)��� ≤ 0.
In fact, the regret guarantee for MULTISCALEOCO implies that

E� n�
t=1 ft(w(kt,jt)

t

) − min

k∈[N]� n�
t=1 ft(w) +O�(�w�pk + 1)Lpk

�
n log((�w�

pk + 1)Lpkn log(d))�(pk − 1)��� ≤ 0.
(18)

We now appeal to the choice of discretization to deduce that

E� n�
t=1 ft(w(kt,jt)

t

) − min

p∈[1+�,2]� n�
t=1 ft(w) +O�(�w�p + 1)Lp

�
n log((�w�

p

+ 1)L
p

log(d)n)�(p − 1)��� ≤ 0.
Suppose there is some p ∈ [1 + �,2] of interest. Let k be the greatest integer for which p

k

≤ p. We
claim that the bound

E� n�
t=1 ft(w(kt,jt)

t

) − � n�
t=1 ft(w) +O�(�w�pk + 1)Lpk

�
n log((�w�

pk + 1)Lpkn log(d))�(pk − 1)��� ≤ 0,
implies the desired result. By duality we have that �w�

pk
≥ �w�

p

and L
pk ≤ Lp

. To conclude, observe
that �w�

pk��w�p ≤ �w�pk��w�pk+1 ≤ d✏ = d1� log(d) = O(1), so the norm terms in the bound above
are within constant factors of the desired bound.

Proof of Theorem 5. Recall that for fixed k, the learner predicts from a classW
k

= �W ∈ Rd×d �W � 0, �W �
�

≤ 1, �W,I� = k�,
and experiences affine losses f

t

(W
t

) = �I −W
t

, Y
t

�, where Y
t

∈ Y ∶= �Y ∈ Rd×d � Y � 0, �Y �
�

≤ 1�.
The regret for this game is given by

sup

W ∈Wk

� n�
t=1�I −Wt

, Y
t

� − n�
t=1�I −W,Y

t

��. (19)

From [29], we have that for fixed k the strategy MATRIX EXPONENTIATED GRADIENT has regret
bounded by

O�min��nk2 log(n�k),�n(d − k)2 log(n�(d − k))�� = Õ��nmin{k, d − k}2�.
Note: The variant of MATRIX EXPONENTIATED GRADIENT that obtains this strategy uses either
losses or gains depending on the value of k. See [29] for more details.

The configuration with which we invoke MULTISCALEOCO is:

• For each i ∈ [�log(d�2)� + 1]:
– Set R

i

= ei−1, L
i

= 1.
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– W
i

= �W ∈ Rd×d �W � 0, �W �
�

≤ 1, �W,I� = R
i

�
– Take ALG

i

= MATRIX EXPONENTIATED GRADIENT(W
i

) as described in [29].

• ⇡ = Uniform([�log(d�2)� + 1]).
As in Theorem 3 and Theorem 4, choosing R

i

to be spaced exponentially is sufficient to guarantee
that there is a sub-algorithm whose regret is within a constant factor e of Õ�k√n� for any choice of
the rank k.

All that remains is that the losses of the sub-algorithms satisfy the claimed upper bound R
i

. Observe
that MULTISCALEOCO works with centered loss f̃

t

(W ) = −�W,Y
t

�. For any W ∈W
k

, we have��W,Y
t

�� ≤ �Y
t

�
�

�W �
⌃

≤ 1 ⋅R
k

,

so the condition is satisfied.

Proof of Theorem 6. We will use a meta-algorithm strategy closely resembling that of the smooth
Banach space setting. The only difference is that �⋅�

⌃

is not smooth, so MATRIX MULTIPLICATIVE
WEIGHTS, which uses the log-trace-exponential function as a surrogate for �⋅�

⌃

, is used as the
sub-algorithm instead of working with �⋅�

⌃

directly.

We use the version of MATRIX MULTIPLICATIVE WEIGHTS stated in [18] Theorem 13, which uses
classes of the formW

r

= �W ∈ Rd×d �W � 0, �W �
⌃

≤ r� and has regret againstW
r

bounded by
O(r√n log d) whenever each loss matrix Y

t

has �Y
t

�
�

≤ 1. Using this strategy for fixed r as a
sub-algorithm for MULTISCALEOCO, we achieve the following oracle inequality efficiently:

For each i ∈ [n + 1]:
• Set R

i

= 2i−1
• L

i

= 1 (we are assuming �Y
t

�
�

≤ 1).

• W
i

= �W ∈ Rd×d �W � 0, �W �
⌃

≤ R
i

�
• ALG

i

= MATRIX MULTIPLICATIVE WEIGHTS(W
i

)
Finally, we set ⇡ = Uniform([n + 1]). That this configuration is sufficient follows from the dou-
bling analysis given in the proof of Theorem 3. Losses are once again bounded via ��W,Y

t

�� ≤�W �
⌃

�Y
t

�
�

≤ R
i

for W ∈W
i

.

A.3 Proofs from Section 2.3

Algorithm 5
procedure MULTISCALELEARNING({ALGi,Ri, Li}i∈[N], ⇡) ▷ Collection of sub-algorithms, prior ⇡.

c← (Ri ⋅Li)i∈[N] ▷ Sub-algorithm scale parameters.
Define ˜`(ŷ, y) = `(ŷ, y) − `(0, y). ▷ Center the loss function.
for t = 1, . . . , n do

Receive context xt

ŷi
t ← ALGi((x1

, y
1

), . . . , (xt−1, yt−1), xt) for each i ∈ [N].
it ← MULTISCALEFTPL[c,⇡](g

1

, . . . , gt−1).
Play ŷt = ŷit

t .
Observe yt and let gt = �˜`t(ŷi

t, yt)�i∈[N].
end for

end procedure

Proof of Theorem 7. This theorem is an immediate consequence of Theorem 2, using the absolute
value �⋅� as the norm. The only significant detail one must check is that the proof of Theorem 2 uses
the regret statement for each sub-algorithm as a black box, and so the nonlinearity of the comparatorF does not change the analysis.
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Proof of Theorem 8. This is a corollary of Theorem 7. That theorem, configured with one sub-
algorithm for each class F

k

and with L
k

= L, R
k

= R
k

, and ⇡
k

= 1�k2, implies

E� n�
t=1 `(ŷit, yt) − inf

f∈Fk

n�
t=1 `(f(xt

), y
t

)� ≤ E[Rad

n

(F
k

)] +O�R
k

L
�
n log(R

k

Lnk)� ∀i ∈ [N].
(20)

The final regret bounded stated follows from the assumed growth rate on Rad(F
k

).
Proof of Theorem 9. We briefly sketch the construction as follows:

1. For eachH
k

, construct a sequence of nested subclasses (norm balls) as precisely as in the
proof of Theorem 3. There will be O(n) sub-algorithms for each such class.

2. For each sub-algorithm in class k, take the prior weight ⇡ proportional to 1�nk2.

Using the analysis from Theorem 3 — namely that for each norm �⋅�Hk
it is sufficient to only consider

predictors with norm bounded by en — , one can see that the result follows from Theorem 7.
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