
A Proofs

A.1 Multi-scale FTPL algorithm

Proof of Theorem 1. Recall that B(i) = 5c
i

�
n�log(1�⇡

i

) + log(4c2
i

n)�. Let C =�g ∈ RN � �g
i

� ≤ c
i

∀i ∈ [N]�. For a regret bound of the form B(i) + K to be achievable by a
randomized algorithm such as Algorithm 3 we need

V
n

� � inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

�n

t=1 sup

i∈[N]� n�
t=1�eit , gt� − n�

t=1�ei, gt� −B(i)� ≤K,

where ���n
t=1 denotes interleaving of the operator � from t = 1 to n. In the context of Algorithm 3,

the distributions p
t

above refer to the strategy p
t

(�
t+1∶n) selected by the algorithm and P

t

refers to
the distribution over this strategy induced by sampling the random variables �

t+1∶n. See [14] for a
more extensive introduction to this type of minimax analysis for comparator-dependent regret bounds.

We will develop an algorithm to certify this bound for K = 1 using the framework of adaptive
relaxations proposed by [14]. Define a relaxation Rel ∶ �n

t=0 Ct → R via

Rel(g
1∶t) � E

�t+1∶n∈{±1}N sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�.
The proof structure is as follows: We show that playing p

t

as suggested by Algorithm 3 with Rel

satisfies the initial condition and admissibility condition for adaptive relaxations from [14], which
implies that if we play p

t

we will have Reg

n

(i) ≤ B(i) +Rel(⋅). Then as a final step we bound
Rel(⋅) using a probabilistic maximal inequality, Lemma 2.

Initial condition This condition asks that the initial value of the relaxation Rel upper bound the
worst-case value of the negative benchmark minus the bound B(i) (in other words, the inner part ofV
n

with the learner’s loss removed). This is holds by definition and is trivial to verify:

Rel(g
1∶n) = sup

i∈[N]�− n�
t=1�ei, gt� −B(i)�.

Admissibility For this step we must show that the inequality

inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

[�e
it , gt� +Rel(g

1∶t)] ≤Rel(g
1∶t−1)

holds for each timestep t, and further that the inequality is certified by the strategy of Algorithm 3.
We begin by expanding the definition of Rel:

inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

[�e
it , gt� +Rel(g

1∶t)]
= inf

Pt∈�(�N ) sup
gt∈C E

pt∼Pt

E
it∼pt

������eit , gt� + E
�t+1∶n∈{±1}N sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Now plug in the randomized strategy given by Algorithm 3, with E

�t+1∶n∈{±1}N taking the place of
E
pt∼Pt :

≤ sup

gt∈C
����� E
�t+1∶n∈{±1}N� E

it∼pt(�t+1∶n)�eit , gt�� + E
�t+1∶n∈{±1}N sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Grouping expectations and applying Jensen’s inequality:

≤ E
�t+1∶n∈{±1}N sup

gt∈C
����� E
it∼pt(�t+1∶n)�eit , gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Expanding the definition of p

t

(using its optimality in particular):

= E
�t+1∶n∈{±1}N inf

pt∈�N

sup

gt∈C
������pt, gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
12



Now apply a somewhat standard sequential symmetrization procedure. Begin by using the minimax
theorem to swap the order of inf

pt and sup

gt
. To do so, we allow the g

t

player to randomize, and
denote their distribution by Q

t

∈�(C).
= E

�t+1∶n∈{±1}N sup

Qt∈�(C) inf

pt∈�N

E
gt∼Qt

������pt, gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Since the supremum over i does not directly depend on p

t

, we can rewrite this expression by
introducing a (conditionally) IID copy of g

t

which we will denote as g′
t

:

= E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
gt∼Qt

����� supi∈[N]� inf

pt∈�N

E
g

′
t∼Qt

[�p
t

, g′
t

�] − t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������.
Choosing p

t

to match e
i

:

≤ E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
gt∼Qt

sup

i∈[N]� E
g

′
t∼Qt

[�e
i

, g′
t

�] − �e
i

, g
t

� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�.
Applying Jensen’s inequality:

≤ E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
gt,g

′
t∼Qt

sup

i∈[N]��ei, g′t� − �ei, gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�.
At this point we can introduce a new Rademacher random variable ✏

t

without changing the distribution
of g′

t

− g
t

, thereby not changing the value of the game:

= E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
✏t∈{±1} E

gt,g
′
t∼Qt

sup

i∈[N]�✏t�ei, g′t − gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
≤ E

�t+1∶n∈{±1}N sup

Qt∈�(C) E
✏t∈{±1} E

gt,g
′
t∼Qt

�����������������
sup

i∈[N]�✏t�ei, g′t� + 1

2

�− t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)��
+ sup

i∈[N]�✏t�ei,−gt� + 1

2

�− t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)��
�����������������

= E
�t+1∶n∈{±1}N sup

Qt∈�(C) E
✏t∈{±1} E

gt∼Qt

sup

i∈[N]�2✏t�ei, gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
The above expression is now linear in Q

t

, so it may be replaced with a pure strategy:

= E
�t+1∶n∈{±1}N sup

gt∈C E
✏t∈{±1} sup

i∈[N]�2✏t�ei, gt� − t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
This expression is also convex in g

t

, which means that the supremum will be obtained at a vertex ofC:

= E
�t+1∶n∈{±1}N sup

�t∈{±1}N E
✏t∈{±1} sup

i∈[N]�2✏t�t

[i]c
i

− t−1�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)�
Now apply Theorem 10 conditioned on �

t+1∶n, with w
i

= −∑t−1
s=1�ei, gs� + 4∑n

s=t+1 �s

[i]c
i

−B(i).
≤ E

�t∶n∈{±1}N sup

i∈[N]�− t−1�
s=1�ei, gs� + 4 n�

s=t�s

[i]c
i

−B(i)�
=Rel(g

1∶t−1).
Final value The final value of the relaxation is

Rel(⋅) = 2 E
�1∶n∈{±1}N sup

i∈[N]�2 n�
t=1�t

[i]c
i

− 5c
i

�
n�log(1�⇡

i

) + log(4c2
i

n)�� ≤ 2 �
i∈[N]

⇡
i

4c2
i

n
≤ 1.

To show the first inequality we have applied a maximal inequality, Lemma 2, by recognizing
that Rel(⋅) is a supremum of a random process. Namely, we can write Rel(⋅) in the form

13



E sup

i∈[N]{Xi

−B(i)} with X
i

= 2∑n

t=1 �t

[i]c
i

. The standard mgf bound of E e�X ≤ e�2(b−a)2�8
for mean-zero random variables X with a ≤X ≤ b [6], along with independence of the Rademacher
random variables in X

i

, implies that X
i

enjoys an mgf bound of

E e�Xi ≤ e2c2i�2
n.

So to prove the result it suffices to take h
i

= 4c2
i

n and p = 2 in the statement of Lemma 2 and note that
B(i) ≥ (2 + 1�p)h1�p

i

(log(h
i

) + log(1�⇡
i

))1−1�p in the notation of the lemma. The only additional
detail to verify is that, since it was assumed that c

i

≥ 1 for all i and since n ≥ 1 by definition, the
condition h

i

�⇡
i

≥ e required by Lemma 2 is satisfied.

Computational efficiency We briefly sketch how the min-max optimization problem in the
learner’s strategy can be computed efficiently. Recall that the optimization problem is

min

p∈�N

sup

gt∶�gt[i]�≤ci
������p, gt� + sup

i∈[N]�− t�
s=1�ei, gs� + 4 n�

s=t+1�s

[i]c
i

−B(i)������
= min

p∈�N

sup

i∈[N] sup

gt∶�gt[i]�≤ci��p, gt� −
t�

s=1�ei, gs� + 4 n�
s=t+1�s

[i]c
i

−B(i)�
Let G

t−1(i) = ∑t−1
s=1 gs[i]. Since the quantity in the brackets above is linear in g

t

and there are no
interactions between coordinates, we can verify that conditioned on i the max over g

t

is obtained via

= min

p∈�N

sup

i∈[N]��p, c� + (1 − 2p[i])ci −Gt−1(i) + 4 n�
s=t+1�s

[i]c
i

−B(i)�
= min

p∈�N

sup

i∈[N][�p, c� + �a, ei� − 2�p,diag(c)ei�],
where a[i] = c

i

−G
t−1(i) + 4∑n

s=t+1 �s

[i]c
i

−B(i). We can now employ a standard reduction from
saddle point optimization to linear programming, i.e.

minimize �p, c� + s
subject to s ≥ �a, e

i

� − 2�p,diag(c)e
i

� ∀i.
p ∈�

N

.

Assuming that min

i

c
i

≥ 1, this linear program can be solved to accuracy ✏ by interior point methods
(e.g. [35]) in time O(N3.5

log(✏−1max

i

c
i

)) or by Mirror-Prox [28] in time O(N✏−1max

i

c
i

). Since
our rates scale as

√
n we can set ✏ = 1�(√nmax

i

c
i

) to conclude the result.

As a final implementation detail, we remark that similar to the FTPL algorithm in [34] one can draw
each perturbation �

t

[i], from the distributionN (0,1) instead of using Rademacher random variables.
This allows one to replace each sum ∑n

s=t �s

[i] with a draw from N (0, n − t) and therefore avoid
spending O(n) time per step sampling perturbations. We have omitted the details because — for
most values of c and N used in our applications, at least — the time required to solve the saddle point
optimization problem dominates the runtime, not the time to sample perturbations.

Theorem 10. For any w ∈ RN , any c ∈ RN+ ,

sup

�∈{±1}N E
✏∈{±1}max

i∈[N]{wi

+ 2✏�
i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+ 4�
i

c
i

}. (11)

Proof of Theorem 10. Fix any � ∈ {±1}N . Let i
1

= argmax

i∈[N]{wi

+ 2�
i

c
i

} and i−1 =
argmax

i∈[N]{wi

− 2�
i

c
i

}. Then it is easy to see that

E
✏

max

i∈[N]{wi

+ 2✏�
i

c
i

} = E
✏

max

i∈{i1,i−1}{wi

+ 2✏�
i

c
i

} ≤ E
�

′∈{±1}N max

i∈{i1,i−1}{wi

+ 4�′
i

c
i

} ≤ E
�

′∈{±1}N max

i∈[N]{wi

+ 4�′
i

c
i

}.
The central inequality above follows by Lemma 1 with the pair (w,2c). Since the above bound holds
for any �, we conclude that (11) holds.

14



Lemma 1. For any pair (w, c) where w ∈ RN any c ∈ RN+ , the inequality
sup

�∈{±1}N E
✏∈{±1}max

i∈[N]{wi

+ ✏�
i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+ 2�
i

c
i

}. (12)

holds when N = 2.

Proof of Lemma 1. In this proof we adopt the notation that for any element j ∈ [2], −j denote the
other element. Say the pair (w, c) is dominated if there exists j for which w

j

− c
j

≥ w−j + c−j . Note
that this of course implies w

j

+ c
j

≥ w−j + c−j as well, since c is non-negative.

Dominated case Suppose (w, c) is dominated by index j. Then (12) holds trivially for any K ∈ R
by

sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

} = w
j

= max

i∈[N]{wi

+K E
�∈{±1}N �

i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+K�
i

c
i

}.
We now focus on the trickier “not dominated” case.

Rescaling doesn’t induce domination We first observe that if (w, c) does is not dominated,(w,Bc) is not dominated either for any B ≥ 1. Let j be the index for which w
j

+ c
j

≥ w−j + c−j
which implies w

j

− c
j

≤ w−j + c−j because (w, c) is not dominated. Observe that if (w,Bc) is
dominated we either have w

j

−Bc
j

≥ w−j +Bc−j or w−j −Bc−j ≥ wj

+Bc
j

. The first case cannot
hold because B ≥ 1 and we already know that (w, c) is not dominated. The second case in particular
implies w−j ≥ wj

, so we must have had c
j

≥ c−j to begin with. But in that case we will still have
w

j

+Bc
j

≥ w−j +Bc−j which contradicts the domination.

Note: It is good to keep in mind that while rescaling does not induce domination, it may not be the
case in general that w

j

+Bc
j

≥ w−j +Bc−j even though w
j

+ c
j

≥ w−j + c−j . That is, the “leader”
may change after rescaling.

LHS of (12) for (w, c) not dominated When (w, c) is not dominated we have

sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

} = 1

2

(w
1

+ c
1

) + 1

2

(w
2

+ c
2

).
RHS of (12) for (w, c) not dominated We will consider the RHS of (12) for (w, c′) � (w,Bc)
for some B ≥ 1 to be decided. By the argument above, the pair (w, c′) is also not dominated. For
the remainder of the proof, 1 will denote the index for which w

1

+ c′
1

≥ w
2

+ c′
2

. Because the pair is
not dominated, the value the RHS takes can be classified into two cases based on the relationship
between c′ and w.

• Case 1: w
1

− c′
1

≤ w
2

− c′
2

:
In this case there is equal probability that the process takes on value w

2

− c′
2

or w
2

+ c′
2

conditioned on the event that �
1

= −1, so we have the equality:

E
�∈{±1}N max

i∈[N]{wi

+ �
i

c′
i

} = 1

2

(w
1

+w
2

) + 1

2

c′
1

Furthermore, Case 1 implies c′
1

≥ c′
2

, which leads to an inequality:

≥ 1

2

(w
1

+w
2

) + 1

4

(c′
1

+ c′
2

).
• Case 2: w

1

− c′
1

≥ w
2

− c′
2

:
In this case, conditioned on the event that �

1

= −1, there is equal probability that the process
takes on value w

2

+ c′
2

or w
1

− c′
1

, so the equality becomes:

E
�∈{±1}N max

i∈[N]{wi

+ �
i

c′
i

} = 1

2

(w
1

+ c′
1

) + 1

4

(w
2

+ c′
2

) + 1

4

(w
1

− c′
1

)
Case 2 implies that w

1

≥ w
2

, because we may add the inequalities w
1

+ c′
1

≥ w
2

+ c′
2

and
w

1

− c′
1

≥ w
2

− c′
2

. This gives an inequality:

≥ 1

2

(w
1

+w
2

) + 1

4

(c′
1

+ c′
2

).
15



Combining our results for the two cases, we have that for any vector c′, so long as (w, c′) is not
dominated,

E
�∈{±1}N max

i∈[N]{wi

+ �
i

c′
i

} ≥ 1

2

(w
1

+w
2

) + 1

4

(c′
1

+ c′
2

).
In particular, choosing B = 2 implies (12) in the non-dominated case:

E
�∈{±1}N max

i∈[N]{wi

+ 2�
i

c
i

} ≥ 1

2

(w
1

+w
2

) + 1

2

(c
1

+ c
2

)
= sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

}.
Final result Combining the dominated and non-dominated results we have that for any (w, c).

sup

�∈{±1}N E
✏

max

i∈[N]{wi

+ ✏�
i

c
i

} ≤ E
�∈{±1}N max

i∈[N]{wi

+ 2�
i

c
i

}.
Lemma 2 (Multi-scale maximal inequality). Let (X

i

)
i∈[N] be a real-valued random process for

which there exists a sequence (h
i

)
i∈[N] with h

i

> 0 such that the moment generating function bound
E e�Xi ≤ e�p

hi is satisfied for all � > 0 and some choice of p > 0. Then for any distribution ⇡ ∈�
N

for which h
i

�⇡
i

≥ e for all i ∈ [N] it holds that

E sup

i∈[N]�Xi

− (2 + 1�p)h1�p
i

(log(h
i

) + log(1�⇡
i

))1−1�p� ≤ �
i∈[N]

⇡
i

h
i

. (13)

Proof. Let B(i) = Ch
1�p
i

(log(h
i

) + log(1�⇡
i

))1−1�p for some constant C to be decided later. One
should verify that log(h

i

) + log(1�⇡
i

) is always non-negative by the assumption that h
i

�⇡
i

≥ e,
which will be used repeatedly. To begin, observe that

E sup

i∈[N]{Xi

−B(i)} ≤ E sup

i∈[N][Xi

−B(i)]+,
where [x]+ =max{x,0}. By non-negativity of [x]+ it further holds that≤ E �

i∈[N][Xi

−B(i)]+.
Fixing an arbitrary sequence (�

i

)
i∈[N] with �

i

> 0, the basic inequality max{a, b} ≤ 1

�

log(e�a+e�b)
implies the following upper bound:

≤ E �
i∈[N]

1

�
i

log

�
1 + e�i(Xi−B(i))�.

Apply Jensen’s inequality:

≤ �
i∈[N]

1

�
i

log

�
1 +E e�i(Xi−B(i))�.

Now use the moment bound assumed in the lemma statement:

≤ �
i∈[N]

1

�
i

log�1 + e��p
i hi−�iB(i)��.

Lastly, apply the inequality log(1 + x) ≤ x for x ≥ 0:≤ �
i∈[N] exp��p

i

h
i

− �
i

B(i) + log(1��
i

)�.
We now take �

i

= � log(hi)+log(1�⇡i)
hi

�1�p and bound each exponent in the sum above. Using the
definition of B(i):

�p

i

h
i

− �
i

B(i) + log(1��
i

) = log(1��
i

) − (C − 1)(log(1�⇡
i

) + log(h
i

)).
16



Next observe that

log(1��
i

) = 1

p
log� h

i

log(h
i

�⇡
i

)� ≤ 1

p
log(h

i

),
where we have used that h

i

�⇡
i

≥ e. With this, and using that log(1�⇡
i

) ≥ 0, we have

�p

i

h
i

− �
i

B(i) + log(1��
i

) ≤ − (C − 1 − 1�p)(log(1�⇡
i

) + log(h
i

)).
Taking C ≥ 2 + 1�p and using this bound in the summation over i yields the result:

E sup

i∈[N]{Xi

−B(i)} ≤ �
i∈[N]

⇡
i

h
i

.

A.2 Proofs for Section 2.2

Proof of Theorem 2. First, we verify that the loss sequence (g
t

)
t≤n is such that the regret bound

derived for MULTISCALEFTPL applies. In particular, we need to verify that �g
t

[i]� ≤ c
i

for each i.
To this end, fix an index i ∈ [N], and note that since f

t

is L
i

-Lipschitz onW
i

with respect to the
norm �⋅�(i) we have

�g
t

[i]� = �f
t

(wi

t

) − f
t

(0)� ≤ L
i

�wi

t

− 0�(i) ≤ Li

R
i

≤ L
i

R
i

= c
i

,

as required. Also, it was assumed that c
i

= L
i

R
i

≥ 1, as required for Theorem 1.

Now, recall that (p
t

) is the sequence of distributions produced by the meta-algorithm. The algorithm’s
total loss with respect to the centered iterates (f̃

t

) is given by

n�
t=1 f̃t(wit

t

) = n�
t=1�eit , gt�,

where this equality is due to the construction of the losses (g
t

)
t≤n given to MULTISCALEFTPL. The

regret bound for MULTISCALEFTPL now implies that

E� n�
t=1�eit , gt� − min

i∈[N]� n�
t=1 gt[i] +O�Ri

L
i

�
n log(R

i

L
i

n�⇡
i

)��� ≤ 0,
where we have obtained this inequality by substituting the value of the vector c constructed by
MULTISCALEOCO into the regret bound (4) for MULTISCALEFTPL. Now, observe that for each i
we have

n�
t=1 gt[i] = n�

t=1 f̃t(wi

t

) ≤ inf

w∈Wi

n�
t=1 f̃t(w) +Reg

n

(i),
where we have used the definition of g

t

and the regret bound assumed on the sub-algorithm. Combin-
ing these inequalities, we have

E� n�
t=1 f̃t(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 f̃t(w) +Reg

n

(i) +O�R
i

L
i

�
n log(R

i

L
i

n�⇡
i

)��� ≤ 0.
Finally, observe that since f̃

t

(w) = f
t

(w) − f
t

(0), the above is equivalent to

E� n�
t=1 ft(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 ft(w) +Reg

n

(i) +O�R
i

L
i

�
n log(R

i

L
i

n�⇡
i

)��� ≤ 0.

17



Mirror Descent Online Mirror Descent is the standard algorithm for online linear optimization over
convex sets. It is parameterized by a convex setW , learning rate ⌘, and strongly convex regularizerR ∶W → R. We define the update MIRRORDESCENT(⌘,W ,R) as follows.
First, set w

1

= argmin

w∈W R(w). Then, for each time t ∈ [n]:
• Receive gradient g

t

and let w̃
t+1 satisfy ∇R(w̃

t+1) = ∇R(wt

) − ⌘g
t

.

• Set w
t+1 = argmin

w∈W DR(w � w̃t+1).
Fact 1 (Mirror Descent (e.g. [15])). Let (w

t

) be the iterates produced by
MIRRORDESCENT(⌘,W ,R) on a sequence of vectors (g

t

)
t≤n. If R is �-strongly convex

with respect to a norm �⋅�R, the iterates satisfy
n�
t=1�wt

−w, g
t

� ≤ ⌘

2�

n�
t=1�gt�2R,� + 1

⌘
R(w) ∀w ∈W . (14)

Proof of Theorem 3. Recall that each sub-algorithm ALG
i

runs Mirror Descent over a ball in(B, �⋅�) of radius R
i

using the regularizer R(w) = 1

2

�w�2. From the regret bound for Mirror
Descent (Fact 1), the meta-algorithm’s choice of Mirror Descent parameters for ALG

i

(in particular,
the choice ⌘

i

= Ri

L

�
�

n

) guarantees that

n�
t=1 ft(wi

t

) − inf

w∈Wi

n�
t=1 ft(w) ≤ O(Ri

L
�
n��).

Combined with the regret bound for MULTISCALEOCO (Theorem 2, noting that R
i

L
i

= R
i

L ≥ 1),
this implies that the meta-algorithm’s regret satisfies

E� n�
t=1 ft(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 ft(w) +O(Ri

L
�
n��) +O�R

i

L
�
n log(R

i

Ln�⇡
i

)��� ≤ 0.
Which, using that ⇡

i

= 1�(n + 1) and combining terms, further implies

E� n�
t=1 ft(wit

t

) − min

i∈[N]� inf

w∈Wi

n�
t=1 ft(w) +O�Ri

L
�
n log(R

i

Ln)����� ≤ 0.
Now, recall that i ∈ [n + 1], and that R

i

= ei−1. Consider the algorithm’s regret against a comparator
w. For now, assume that w satisfies 1 ≤ �w� ≤ en — we will see shortly that this is without loss of
generality. Let i�(w) =min{i � w ∈W

i

}. Then the regret bound above implies

E� n�
t=1 ft(wit

t

) − � n�
t=1 ft(w) +O�Ri

�(w)L�n log�R
i

�(w)Ln������ ≤ 0.
Furthermore, since R

i

= ei−1, we have that R
i

�(w) ≤ e�w�, and so

E� n�
t=1 ft(wit

t

) − � n�
t=1 ft(w) +O��w�L�n log(�w�Ln�)���� ≤ 0.

This is exactly the regret bound we wanted. Now, the case where �w� ≤ 1 is handled by simply noting
i�(w) = 1 and writing R

1

= 1 ≤ 1 + �w�, which gives the �w� + 1 factor as follows:

E� n�
t=1 ft(wit

t

) − � n�
t=1 ft(w) +O�(�w� + 1)L�n log((�w� + 1)Ln�)���� ≤ 0.

To handle the case where �w� ≥ en we appeal to Corollary 1 with c = L
√
n and � = 1�2, which

shows that it suffices to consider only �w� ≤ exp��Ln

c

�1��� = en. Note that the constants appearing

in the regret bound above, both inside the O(⋅) and inside the
�
log(⋅) are worse than those with

which we instantiate Corollary 1. This is not an issue because worse constants only reduce the radius
that must be considered in the corollary.

18



Lemma 3. Let F ∶ R+ → R+ be given. Suppose the loss sequence (f
t

)
t≤n is L-Lipschitz with respect

to �⋅��. Then a regret bound of the form
n�
t=1 ft(wt

) − n�
t=1 ft(w) ≤ F (�w�) ∀w ∈B (15)

holds if the restricted regret bound
n�
t=1 ft(wt

) − n�
t=1 ft(w) ≤ F (�w�) ∀f ∶ �f� ≤ ↵�, (16)

holds, where ↵� is the greatest non-negative number for which F (↵�) − ↵�Ln ≥ F (0).
Proof of Lemma 3. Assume wlog that f

t

(0) = 0 for each t. This is possible because
n�
t=1 ft(wt

) − n�
t=1 ft(w) = n�

t=1(ft(wt

) − f
t

(0)) − n�
t=1(ft(w) − ft(0)).

To begin, observe that (15) is equivalent to
n�
t=1 ft(wt

) ≤ inf

w∈B� n�
t=1 ft(w) + F (�w�)�.

By selecting w = 0, f
t

(0) = 0 implies that the infimum on the right is always upper bounded in value
by F (0). In the other direction, Lipschitzness of the losses along with f

t

(0) = 0 implies that the
infimum is lower bounded as

inf

w∈B� n�
t=1 ft(w) + F (�w�)� ≥ inf

w∈B{−L�w�n + F (�w�)} = inf↵≥0{−↵Ln + F (↵)}.
Therefore if ↵ ≥ ↵�, the lower bound −↵Ln + F (↵) will be sub-optimal compared to the upper
bound of F (0) obtained by choosing ↵ = 0.

Corollary 1. When F (r) = c ⋅ (r + 1) log(r + 1)� for � > 0, it is sufficient to consider
n�
t=1 ft(wt

) − n�
t=1 ft(w) ≤ F (�w�) ∀w ∶ �w� ≤ exp��Ln

c
�1���. (17)

Proof of Corollary 1. Note that F (0) = 0. Let r denote the minimizer of F (↵) − ↵ ⋅ a (where
a = Ln). Differentiating this expression yields

a = c�log(r + 1)� + � log(r + 1)�−1�,
which further implies

log(r + 1)� = a

c
⋅ 1

1 + �� log(r + 1) ≤ a

c
.

Rearranging, we have r ≤ exp((a�c)1��) − 1. Since F (↵) − ↵ ⋅ a is strictly convex, this function is
increasing above r. To conclude, we guess an upper bound on the value of ↵�: ↵ ∶= exp((a�c)1��)−1.
Substituting this value in, we have

F (↵) − ↵ ⋅ a ≥ a exp((a�c)1��) − a ⋅ exp((a�c)1��) = 0 = F (0),
which yields the result.

Proof of Theorem 4. We only sketch the details of this proof as it follows Theorem 3 very closely.

We first describe sub-algorithm configuration for MULTISCALEOCO that achieves the claimed
regret bound. Our strategy will be to take a discretization the range of p values [1 + �,2], and
produce a set of sub-algorithms for each p in this discrete set. For a fixed p, the construction of
the set of sub-algorithms will be exactly is in Theorem 3. The discrete set of ps will have the form
p
k

= 1+�+min{(k − 1) ⋅ ✏, (1 − �)}, for ✏ = 1� log(d) and k ∈ [1, . . . ,K], where K = �(1 − �)�✏�+1
(in particular k ≤ log(d) + 1).

For a fixed k, the norm �⋅�
pk

has that 1

2

�⋅�2
pk

is (p
k

− 1)-strongly convex with respect to itself [19].
With this in mind, we create a set of N ∶= K(n + 1) sub-algorithms, which we will index by pairs(k, j) ∈ [K] × [n + 1] instead of i ∈ [K(n + 1)] for notational convenience.

19



• For each k ∈ [K]:
– L

k

= L
pk .

– For each j ∈ {1, . . . , n + 1}:
* Set R

j

= ej−1.

* TakeW(k,j) = �w ∈B � �w�
pk
≤ R

j

�, ⌘(k,j) = Rj

Lk

�
�pk

n

, where �
pk = (pk − 1).

* Let ALG
j

= MIRRORDESCENT(⌘(k,j),W(k,j), �⋅�2
pk
).

• ⇡ = Uniform([K] × [n + 1]).
Clearly the total number of sub-algorithms and hence the running time scales as O(n ⋅ log(d)).
Referring back to the proof of Theorem 3, and letting (k

t

, j
t

) denote the index pair chosen by
MULTISCALEOCO in round t, it is clear that for a fixed k, the algorithm satisfies for all w ∈ Rd

E� n�
t=1 ft(w(kt,jt)

t

) − � n�
t=1 ft(w) +O�(�w�pk + 1)Lpk

�
n log((�w�

pk + 1)Lpkn log(d))�(pk − 1)��� ≤ 0.
In fact, the regret guarantee for MULTISCALEOCO implies that

E� n�
t=1 ft(w(kt,jt)

t

) − min

k∈[N]� n�
t=1 ft(w) +O�(�w�pk + 1)Lpk

�
n log((�w�

pk + 1)Lpkn log(d))�(pk − 1)��� ≤ 0.
(18)

We now appeal to the choice of discretization to deduce that

E� n�
t=1 ft(w(kt,jt)

t

) − min

p∈[1+�,2]� n�
t=1 ft(w) +O�(�w�p + 1)Lp

�
n log((�w�

p

+ 1)L
p

log(d)n)�(p − 1)��� ≤ 0.
Suppose there is some p ∈ [1 + �,2] of interest. Let k be the greatest integer for which p

k

≤ p. We
claim that the bound

E� n�
t=1 ft(w(kt,jt)

t

) − � n�
t=1 ft(w) +O�(�w�pk + 1)Lpk

�
n log((�w�

pk + 1)Lpkn log(d))�(pk − 1)��� ≤ 0,
implies the desired result. By duality we have that �w�

pk
≥ �w�

p

and L
pk ≤ Lp

. To conclude, observe
that �w�

pk��w�p ≤ �w�pk��w�pk+1 ≤ d✏ = d1� log(d) = O(1), so the norm terms in the bound above
are within constant factors of the desired bound.

Proof of Theorem 5. Recall that for fixed k, the learner predicts from a classW
k

= �W ∈ Rd×d �W � 0, �W �
�

≤ 1, �W,I� = k�,
and experiences affine losses f

t

(W
t

) = �I −W
t

, Y
t

�, where Y
t

∈ Y ∶= �Y ∈ Rd×d � Y � 0, �Y �
�

≤ 1�.
The regret for this game is given by

sup

W ∈Wk

� n�
t=1�I −Wt

, Y
t

� − n�
t=1�I −W,Y

t

��. (19)

From [29], we have that for fixed k the strategy MATRIX EXPONENTIATED GRADIENT has regret
bounded by

O�min��nk2 log(n�k),�n(d − k)2 log(n�(d − k))�� = Õ��nmin{k, d − k}2�.
Note: The variant of MATRIX EXPONENTIATED GRADIENT that obtains this strategy uses either
losses or gains depending on the value of k. See [29] for more details.

The configuration with which we invoke MULTISCALEOCO is:

• For each i ∈ [�log(d�2)� + 1]:
– Set R

i

= ei−1, L
i

= 1.

20



– W
i

= �W ∈ Rd×d �W � 0, �W �
�

≤ 1, �W,I� = R
i

�
– Take ALG

i

= MATRIX EXPONENTIATED GRADIENT(W
i

) as described in [29].

• ⇡ = Uniform([�log(d�2)� + 1]).
As in Theorem 3 and Theorem 4, choosing R

i

to be spaced exponentially is sufficient to guarantee
that there is a sub-algorithm whose regret is within a constant factor e of Õ�k√n� for any choice of
the rank k.

All that remains is that the losses of the sub-algorithms satisfy the claimed upper bound R
i

. Observe
that MULTISCALEOCO works with centered loss f̃

t

(W ) = −�W,Y
t

�. For any W ∈W
k

, we have��W,Y
t

�� ≤ �Y
t

�
�

�W �
⌃

≤ 1 ⋅R
k

,

so the condition is satisfied.

Proof of Theorem 6. We will use a meta-algorithm strategy closely resembling that of the smooth
Banach space setting. The only difference is that �⋅�

⌃

is not smooth, so MATRIX MULTIPLICATIVE
WEIGHTS, which uses the log-trace-exponential function as a surrogate for �⋅�

⌃

, is used as the
sub-algorithm instead of working with �⋅�

⌃

directly.

We use the version of MATRIX MULTIPLICATIVE WEIGHTS stated in [18] Theorem 13, which uses
classes of the formW

r

= �W ∈ Rd×d �W � 0, �W �
⌃

≤ r� and has regret againstW
r

bounded by
O(r√n log d) whenever each loss matrix Y

t

has �Y
t

�
�

≤ 1. Using this strategy for fixed r as a
sub-algorithm for MULTISCALEOCO, we achieve the following oracle inequality efficiently:

For each i ∈ [n + 1]:
• Set R

i

= 2i−1
• L

i

= 1 (we are assuming �Y
t

�
�

≤ 1).

• W
i

= �W ∈ Rd×d �W � 0, �W �
⌃

≤ R
i

�
• ALG

i

= MATRIX MULTIPLICATIVE WEIGHTS(W
i

)
Finally, we set ⇡ = Uniform([n + 1]). That this configuration is sufficient follows from the dou-
bling analysis given in the proof of Theorem 3. Losses are once again bounded via ��W,Y

t

�� ≤�W �
⌃

�Y
t

�
�

≤ R
i

for W ∈W
i

.

A.3 Proofs from Section 2.3

Algorithm 5
procedure MULTISCALELEARNING({ALGi,Ri, Li}i∈[N], ⇡) ▷ Collection of sub-algorithms, prior ⇡.

c← (Ri ⋅Li)i∈[N] ▷ Sub-algorithm scale parameters.
Define ˜`(ŷ, y) = `(ŷ, y) − `(0, y). ▷ Center the loss function.
for t = 1, . . . , n do

Receive context xt

ŷi
t ← ALGi((x1

, y
1

), . . . , (xt−1, yt−1), xt) for each i ∈ [N].
it ← MULTISCALEFTPL[c,⇡](g

1

, . . . , gt−1).
Play ŷt = ŷit

t .
Observe yt and let gt = �˜`t(ŷi

t, yt)�i∈[N].
end for

end procedure

Proof of Theorem 7. This theorem is an immediate consequence of Theorem 2, using the absolute
value �⋅� as the norm. The only significant detail one must check is that the proof of Theorem 2 uses
the regret statement for each sub-algorithm as a black box, and so the nonlinearity of the comparatorF does not change the analysis.

21



Proof of Theorem 8. This is a corollary of Theorem 7. That theorem, configured with one sub-
algorithm for each class F

k

and with L
k

= L, R
k

= R
k

, and ⇡
k

= 1�k2, implies

E� n�
t=1 `(ŷit, yt) − inf

f∈Fk

n�
t=1 `(f(xt

), y
t

)� ≤ E[Rad

n

(F
k

)] +O�R
k

L
�
n log(R

k

Lnk)� ∀i ∈ [N].
(20)

The final regret bounded stated follows from the assumed growth rate on Rad(F
k

).
Proof of Theorem 9. We briefly sketch the construction as follows:

1. For eachH
k

, construct a sequence of nested subclasses (norm balls) as precisely as in the
proof of Theorem 3. There will be O(n) sub-algorithms for each such class.

2. For each sub-algorithm in class k, take the prior weight ⇡ proportional to 1�nk2.

Using the analysis from Theorem 3 — namely that for each norm �⋅�Hk
it is sufficient to only consider

predictors with norm bounded by en — , one can see that the result follows from Theorem 7.

22


	Introduction
	Preliminaries

	Online Model Selection
	The need for multi-scale aggregation
	Online convex optimization
	Supervised learning

	Discussion and Further Directions
	Proofs
	Multi-scale FTPL algorithm
	Proofs for Section 2.2
	Proofs from Section 2.3


