A Proofs

A.1 Multi-scale FTPL algorithm

Proof of Theorem 1. Recall that B(i) = 5ci\/n(log(1/7ri)+10g(4c§n)). Let C =

{geRN ||gi| <c; Vie[N]}. For a regret bound of the form B(i) + K to be achievable by a
randomized algorithm such as Algorithm 3 we need

Vné« inf sup E E >> sup [Z (€15 9t) Z e, gt)—B(i)| < K,
=1

PieA(AN) geeC Pe~Prie~pe o1 te[N]Lt=1
where ((x));-, denotes interleaving of the operator » from ¢ = 1 to n. In the context of Algorithm 3,
the distributions p; above refer to the strategy p;(o¢+1.) selected by the algorithm and P; refers to

the distribution over this strategy induced by sampling the random variables o, 1.,. See [14] for a
more extensive introduction to this type of minimax analysis for comparator-dependent regret bounds.

We will develop an algorithm to certify this bound for K = 1 using the framework of adaptive
relaxations proposed by [14]. Define a relaxation Rel : U}, C* — R via

t
Rel(g1:t) = E Sup Z eiygs) +4 Z oslilei— B(i)|.

crr1me{£1}Y ie[N s=t+1

The proof structure is as follows: We show that playing p; as suggested by Algorithm 3 with Rel
satisfies the initial condition and admissibility condition for adaptive relaxations from [14], which
implies that if we play p; we will have Reg, (i) < B(¢) + Rel(:). Then as a final step we bound
Rel(-) using a probabilistic maximal inequality, Lemma 2.

Initial condition This condition asks that the initial value of the relaxation Rel upper bound the
worst-case value of the negative benchmark minus the bound B(%) (in other words, the inner part of
V,, with the learner’s loss removed). This is holds by definition and is trivial to verify:

Rel(g1:n) = sup |- Z(%%) - B(7) |.
€[N]L ¢=1
Admissibility For this step we must show that the inequality

inf sup E E [(e;,,0:)+Rel(g1:+)] <Rel(gr:-
PteA(AN)gtegpwPMtp[(9t) (g1:4)] (91:4-1)

holds for each timestep ¢, and further that the inequality is certified by the strategy of Algorithm 3.
We begin by expanding the definition of Rel:

inf ~ sup E K [{e;,,g:) + Rel(g1.
fEA(AN)ntIéPtNPt 1g~Dt [< gt) (glt)]
t n
= inf sup E E [(emgt) E sup[Z €i,gs)+4 Z Us[i]cz‘—B(i)H.

PieA(AN) grec Pe~Prie~pe orprme{x1}Y s=t+1

Now plug in the randomized strategy given by Algorithm 3, with E 3N taking the place of

Ut+1:n,5{il
Ept"‘Pt:

t n
< sup E E €i,, g] E 5up[€i,gs) +4 O'SZ'C7;—B7;:|:|.
gtecl:otﬂ nE{il}N[ltht(Ut+l n)(’ t> et {1}V ie[N 522:1 s) S:Zt_:,.l [] ()
Grouping expectations and applying Jensen’s inequality:
t n

< E sup[E (ei,,9¢) + sup[Z €i,gs) +4 Z Us[i]ci—B(i):H.

orr1ime{x1} giec| it~pe (Ttr1:n) ie[s=1 s=t+1
Expanding the definition of p, (using its optimality in particular):

- E _inf sup[<pt,gt + sup[iez,gsw 5 os[z‘]ci—Bm”.

cerrme{x1}N PLEAN g, eC 1€[N] s=t+1

12

Now apply a somewhat standard sequential symmetrization procedure. Begin by using the minimax

theorem to swap the order of inf, and sup,,. To do so, we allow the g; player to randomize, and
denote their distribution by Q; € A(C)

E sup inf E [(pt,gt + sup[
orr1me{£1}N QueA(C) PreAN Gt~Qy ie[N] set+1

Z €i,gs)+4 Zn: os[i]ci—B(i):H.

Since the supremum over 7 does not directly depend on p;, we can rewrite this expression by
introducing a (conditionally) IID copy of g which we will denote as g;

t n
= E sup E sup[inf E [(pe,9r) €i,gs) +4 osli]e; B(z)“
orr1me{£1}N Q.eA(C) gf"‘Qt|:ze[N]LPteAN g1~Q: oo s; s=tZ£1 2
Choosing p; to match e;:
t—1 n
< E sup E sup[E [(ei,gé)]—(ei,gt)—Z(ei,gs>+4 Z Us[i]c,;—B(i)].
orrne{£1}N Qen(C) 9t~ Qt ie[N]L9i~Qt s=1 s=t+1
Applying Jensen’s inequality:
< E

sup E sup [(ei7gt ewgt Z ezags>+4 Z Us[i]ci _B(Z):I
cre1me{£1}N Q,eA(C) 91:91~Qt ie[N] s=1 s=t+1
of g;

At this point we can introduce a new Rademacher random variable €; without changing the distribution
— g4, thereby not changing the value of the game

E

O't+1:n€{i1}N

sup E E sup |:€t<€iv 9 = 9t) -
Qren(C) ere{=1} 91,9;~Q1 je[N]

Z;: eugs>+4 ﬁ:las[i]ci_B(i))]
+ sup [et(ez, (i €i,gs) +4 i o [z]cl—B(z))]
€[N] s=1

s=t+1

:§<ei,gs> +4 Z oslilei - B(i)]
el

E S E

1
E ie[N] T2
up

orerme{£1}V Q+eA(C) ere{£1} g¢,9;~Q¢

I\D\H

-1
E sup E E sup |:2€ €i,g €i,gs) +4 osli]le; — B(4]
O'f+17,€{:t1}N QtEA(C) EtE{il} Qt"‘Qt Ze[] t(t> Z() Z [] ()

s=1 s=t+1

The above expression is now linear in (), so it may be replaced with a pure strategy

= E sup E sup|2efe;, ei,gs)+4 oslile; — B(7
orrrme{x1}Y gtecste{il}ze[][! gt Z: g> Z [] ()]

s=t+1

This expression is also convex in g;, which means that the supremum will be obtained at a vertex of
C:
t-1 n
= E sup E sup |:2€t0't[Z]C Y{eings)+4 > oslile; - B(z)]
Ot41: ne{il} ote{il}N Ete{il}ze[N] s=1 s=t+1

Now apply Theorem 10 conditioned on ¢4 1.y, With w; =

— 2 e gs) + 4% 0u[ile; - B(i).

<

5| T 4430l 5O |
ot,Le{il} i€[s=1 s=t

= Rel(gl:t—1)~

Final value The final value of the relaxation is

Rel(-)=2 E sup [2 > oulile - 5ci\/n(log(1/7ri) +log(4c?n)) | < Ti
orne{£1}V ie[N]| =1

<2) <L
i dein
To show the first inequality we have applied a maximal inequality, Lemma 2, by recognizing

that Rel(+) is a supremum of a random process

Namely, we can write Rel(+) in the form

13

Esup;n){X: - B(i)} with X; = 257, 0¢[i]c;. The standard mgf bound of Ee*X < X" (0-)*/8
for mean-zero random variables X with a < X < b [6], along with independence of the Rademacher
random variables in X, implies that X; enjoys an mgf bound of

2
R Xi ¢ o263 °n

So to prove the result it suffices to take h; = 4ci n and p = 2 in the statement of Lemma 2 and note that
B(i) > (2 + 1/p)h"? (log(h;) +log(1/m;))* /7 in the notation of the lemma. The only additional
detail to verify is that, since it was assumed that ¢; > 1 for all ¢ and since n > 1 by definition, the
condition h;/m; > e required by Lemma 2 is satisfied.

Computational efficiency We briefly sketch how the min-max optimization problem in the
learner’s strategy can be computed efficiently. Recall that the optimization problem is

min sup [(p,gt)+ sup[iewgs i Us[i]ci_B(i):H

PEAN g,lg,[i]]<ci ie[N]

t
= min sup sup D, gt) €i,Js) osi]ei B(Z)]
peANze[N]ge: |gf[]|<cz[Z '

Let Gy_1(i) = X'Z] gs[4]. Since the quantity in the brackets above is linear in g; and there are no
interactions between coordinates, we can verify that conditioned on ¢ the max over g is obtained via

= min sup][(c)+ (1-2p[i])e; — Gi1 (i) +4 Z osi —B(i)]

PEAN je[N s=t+l

= min sup [(p,c) + (a,) - 2(p, diag(c)es)],
" pedw ie[N]

where a[i] = ¢; - Gi-1 (i) +4 Y51 0s[i]c; — B(i). We can now employ a standard reduction from

saddle point optimization to linear programming, i.e.

minimize (p,c) + s
subjectto s > (a,e;) — 2(p, diag(c)e;) Vi.
pE AN

Assuming that min; ¢; > 1, this linear program can be solved to accuracy ¢ by interior point methods
(e.g. [35]) in time O(N3-log(e~! max; ¢;)) or by Mirror-Prox [28] in time O(Ne™! max; ¢;). Since
our rates scale as \/n we can set € = 1/(y/nmax; ¢;) to conclude the result.

As a final implementation detail, we remark that similar to the FTPL algorithm in [34] one can draw
each perturbation o[4], from the distribution A'(0, 1) instead of using Rademacher random variables.
This allows one to replace each sum Y7, o5[¢] with a draw from N (0, n —t) and therefore avoid
spending O(n) time per step sampling perturbations. We have omitted the details because — for
most values of ¢ and IV used in our applications, at least — the time required to solve the saddle point
optimization problem dominates the runtime, not the time to sample perturbations.

O
Theorem 10. For any w € RY, any c e RY,
sup E max{wl +2e0ic;} < E max{wl +40;c;}. (11)
oe{s1}N ee{x1} te[N oe{£1} €[N
Proof of Theorem 10. Fix any o ¢ {+1}". Leti; = arg max;e yj{w; +20;¢;} and iy =
arg max;e y]{w; — 20;¢; }. Then it is easy to see that
Emax{wz +2e0;¢;} =E max {w;+2e0;c;} < E max {w; +4ojc;} < E max{w; +40jc;}.

€ ie[N € ie{iri1} ole{x1}N ie{ir i} o'e{+1}N i€[N]

The central inequality above follows by Lemma 1 with the pair (w, 2¢). Since the above bound holds
for any o, we conclude that (11) holds.

O

14

Lemma 1. For any pair (w, c) where w € RV any ¢ € RY, the inequality

sup E max{wl +ecicit < E max{wl +20;¢;}- (12)
oe{s1}V ce{+1} ie[N oe{x1} NV €[N

holds when N = 2.

Proof of Lemma 1. In this proof we adopt the notation that for any element j € [2], —j denote the
other element. Say the pair (w, ¢) is dominated if there exists j for which w; — ¢; > w_; + c_;. Note
that this of course implies w; + ¢; > w_; + c_; as well, since c is non-negative.

Dominated case Suppose (w, ¢) is dominated by index j. Then (12) holds trivially for any K € R
by

sup Emax{w; +eo;c;} =w; = max{wz +K E oi;}< E max{wl + Koic;}.
oe{x1}N € i€[N] i€ oe{=1}V oe{+1}V €[N

‘We now focus on the trickier “not dominated” case.

Rescaling doesn’t induce domination We first observe that if (w,c) does is not dominated,
(w, Bc) is not dominated either for any B > 1. Let j be the index for which w; + ¢; > w_; + c_;
which implies w; — ¢; < w_; + c_; because (w, c) is not dominated. Observe that if (w, Bc) is
dominated we either have w; — Be;j > w_; + Be_j or w_j — Be_j > w; + Bej. The first case cannot
hold because B > 1 and we already know that (w, ¢) is not dominated. The second case in particular
implies w_; > w;, so we must have had c; > c_; to begin with. But in that case we will still have
wj + Bej > w_j + Be_; which contradicts the domination.

Note: It is good to keep in mind that while rescaling does not induce domination, it may not be the
case in general that w; + Bec; > w_; + Be_j even though w; + ¢; > w_j + c_;. That is, the “leader”
may change after rescaling.

LHS of (12) for (w, c) not dominated When (w, ¢) is not dominated we have

sup Emax{w; +ec;c;} = f(wl +e1)+ = (w2 +c2).
oe{s1}N € €[N]

RHS of (12) for (w, c) not dominated We will consider the RHS of (12) for (w,c") = (w, Bc)
for some B > 1 to be decided. By the argument above, the pair (w, ¢’) is also not dominated. For
the remainder of the proof, 1 will denote the index for which wq + ¢} > ws + c5. Because the pair is
not dominated, the value the RHS takes can be classified into two cases based on the relationship
between ¢’ and w.
e Case 1: wy —¢] Swgy —ch:
In this case there is equal probability that the process takes on value wq — ¢ or wa + ¢
conditioned on the event that 0; = —1, so we have the equality:

1
E i+ 0C == + +
ey B+) 3o+ v) 54

Furthermore, Case 1 implies ¢j > ¢4, which leads to an inequality:

1 1
> §(w1 +wsy) + i(c’1 +ch).

» Case2: wy — ¢ 2wy — ch:
In this case, conditioned on the event that o1 = —1, there is equal probability that the process
takes on value wsq + ¢, or wy — ¢} , so the equality becomes:

1 1
E max{wz+azc} (w1 +cp) +—(wa +c5) +—(wy —c})
oe{+1}V i€ 4 4

Case 2 implies that w; > ws, because we may add the inequalities wy + ¢} > wa + ¢}, and
wy — ¢} > ws — ch. This gives an inequality:

1
> 5(11)1 +wy) + Z(c’1 +ch).

15

Combining our results for the two cases, we have that for any vector ¢/, so long as (w,¢’) is not
dominated,

E max{wz +oici} > = (w1 +wy) + — (Cl +¢5).
oe{+1}N i€[N]

In particular, choosing B = 2 implies (12) in the non-dominated case:
1 1
E max{w; +20;c;} > = (w1 +ws) + =(c1 + ¢
UE{H}M[N]{ 32 5w +ws) + 5 (1 +e2)

= sup Emax{wz +€0iC;).
UE{il}N € 7,E[N

Final result Combining the dominated and non-dominated results we have that for any (w, ¢).

sup Emax{w; +eoic;}< E max{w, +205¢;).
ce{s1}NV € i€[N] oe{£1}N ie[N

O

Lemma 2 (Multi-scale maximal inequality). Let (X;);e[n] be a real-valued random process for
which there exists a sequence (h;);c[n] With h; > 0 such that the moment generating function bound

E e < NP s satisfied for all A > O and some choice of p > 0. Then for any distribution 7 € Ay
for which h;/m; > e for all i € [V] it holds that

E sup {Xl- -(2+ 1/p)h11/11(10g(hi) + log(l/m))l‘l/p} <
i€[N]

i (13)
ie[N] hi

Proof. Let B(i) = C’hg/p(log(hi) +log(1/m;))' /P for some constant C' to be decided later. One
should verify that log(h;) + log(1/m;) is always non-negative by the assumption that h;/m; > e,
which will be used repeatedly. To begin, observe that

E Sup {X; -B(i)} < E sup [X; - B(7)],,
ie[N i€[N]

where [z], = max{x, 0}. By non-negativity of [x], it further holds that

<E) [Xi-B(i)],.
€[N]
Fixing an arbitrary sequence (\;);e[n] With A; > 0, the basic inequality max{a, b} < ; log(e**+e*?)
implies the following upper bound:

1 .
<E > —log(1+e’\'i(Xi_B(’))).
ie[N] "M
Apply Jensen’s inequality:
< Z ilog(l+I['Ee’\’i(Xi_B(i))).
i€[N] "M

Now use the moment bound assumed in the lemma statement:

- ilog(lJre(Afm—AiB(i))).
ie[N] M

Lastly, apply the inequality log(1 + x) < « for z > 0:

< Y exp(APh; - NMB(i) +log(1/A:)).
i€[N]

v 1/
We now take \; = (log(h’ﬁhw) : and bound each exponent in the sum above. Using the
definition of B(i):
Avhi = \iB(i) +1log(1/X;) =log(1/A;) = (C' = 1)(log(1/m;) +log(hs)).

16

Next observe that
N
log(hi/m;)

where we have used that h;/7; > e. With this, and using that log(1/7;) > 0, we have

log(1/A;) = ;log() <~ log(h).

AThi = AiB(i) +log(1/A;) < = (C = 1-1/p)(log(1/m;) +log(hi)).
Taking C' > 2 + 1/p and using this bound in the summation over 4 yields the result:
0w

E sup (X, ~ B(i)) <
ie[N] ie[N] hi

A.2 Proofs for Section 2.2

Proof of Theorem 2. First, we verify that the loss sequence (g;)¢y is such that the regret bound
derived for MULTISCALEFTPL applies. In particular, we need to verify that |g+[7]] < ¢; for each 1.
To this end, fix an index ¢ € [IN], and note that since f; is L;-Lipschitz on W; with respect to the
norm |- ;) we have

l9¢[2]] = |fe(w;) = f1(0)] < LifJwi = 0] ;) < LiR; < LiR; = c;,

as required. Also, it was assumed that ¢; = L; R; > 1, as required for Theorem 1.

Now, recall that (p,) is the sequence of distributions produced by the meta-algorithm. The algorithm’s
total loss with respect to the centered iterates (f;) is given by

zil: (wtt) Z eltvgt

where this equality is due to the construction of the losses (g;)<y given to MULTISCALEFTPL. The
regret bound for MULTISCALEFTPL now implies that

[i €iys Jt) m1n{z ge[i] + O(R L; nlog(RiLm/m))}] <0,

where we have obtained this inequality by substituting the value of the vector ¢ constructed by
MULTISCALEOCO into the regret bound (4) for MULTISCALEFTPL. Now, observe that for each @
we have

Sl =3 Fuwi) < jnt 3 Filw) + Re,)

= ‘tl

where we have used the definition of g, and the regret bound assumed on the sub-algorithm. Combin-
ing these inequalities, we have

E| S Fr(wit) - mln{ inf. Z (w) + Reg, (i) + O(RiL; nlog(RiLm/m))} <0.
[t=1 we)

Finally, observe that since f;(w) = fi(w) — f;(0), the above is equivalent to

E|> fi(wit) — miny inf > fi(w) + Reg, (i) + O(RiLi nlog(RiLin/m)) <0.
= ie[N] | wew: &]

17

Mirror Descent Online Mirror Descent is the standard algorithm for online linear optimization over
convex sets. It is parameterized by a convex set WV, learning rate 7, and strongly convex regularizer
R : W — R. We define the update MIRRORDESCENT (7, W, R) as follows.

First, set wy = arg min, ., R(w). Then, for each time ¢ € [n]:

* Receive gradient g; and let W, satisfy VR (W;11) = VR(w;) — ngy.

* Set w4 = argmin, .y Dr(w | Wis1).
Fact 1 (Mirror Descent (e.g. [15])). Let (w;) be the iterates produced by
MIRRORDESCENT(n, W, R) on a sequence of vectors (g¢)i<n. If R is A-strongly convex
with respect to a norm |-| &, the iterates satisfy

M=

n 1
(wg —w, g¢) i/\ Z \gt”%,* + ;R(w) YweW. (14)
1 -1

t

Proof of Theorem 3. Recall that each sub-algorithm ALG; runs Mirror Descent over a ball in

(B, |-|) of radius R; using the regularizer R(w) = %Hsz From the regret bound for Mirror
Descent (Fact 1), the meta-algorithm’s choice of Mirror Descent parameters for ALG; (in particular,

the choice 7; = %\/%) guarantees that

i fi(wp) —11nf th(w <O(R; L\/_)

Z151

Combined with the regret bound for MULTISCALEOCO (Theorem 2, noting that R;L; = R;L > 1),
this implies that the meta-algorithm’s regret satisfies

E| Y. fiwi) - mind inf 3 fu(w) + O(RiLy/n/A) + O(RiLy/nlog(RiLnjm;)) | <0
i=1 i€[N] (weWi i
Which, using that 7; = 1/(n + 1) and combining terms, further implies
E wit) - min
|52 i) -

Now, recall that i € [n + 1], and that R; = e*~1. Consider the algorithm’s regret against a comparator
w. For now, assume that w satisfies 1 < |w|| < €™ — we will see shortly that this is without loss of
generality. Let " (w) = min{i | w € W; }. Then the regret bound above implies

E[Z Fr(wit) - {Z fr(w) + O(Ri*(u,)L\/n log(Ri*(w)Ln)/)\)}] <0.
=1 =1
Furthermore, since R; = e'~!, we have that R;: (., < e|w/, and so
|3 i)~ {32 w) + Ol el o) || <
t=1 t=1

This is exactly the regret bound we wanted. Now, the case where |w]|| < 1 is handled by simply noting
i*(w) =1 and writing Ry =1 <1+ |w|, which gives the |w]|| + 1 factor as follows:

inf Zn:ft(w) + O(RiL nlog(RiLn)/)\)}] <0.
st

we

B 3 At {32 i) + Ol + Dot Tl + DER) | <0

To handle the case where ||w| > ¢ we appeal to Corollary 1 with ¢ = L/n and v = 1/2, which

shows that it suffices to consider only |w| < exp(() /7) ", Note that the constants appearing

in the regret bound above, both inside the O(-) and inside the \/log(-) are worse than those with
which we instantiate Corollary 1. This is not an issue because worse constants only reduce the radius
that must be considered in the corollary. O

18

Lemma 3. Let F': R, — R, be given. Suppose the loss sequence (f;):<r is L-Lipschitz with respect
to |||, . Then a regret bound of the form

3 Sulw) = 32 fiw) < F(Ju]) vuwes (1s)
holds if the restricted regret b_ound _
3 i) = 32 fw) < F(lul) VS Il sa (16)
holds, where «* is the greatest non-negative number for which F'(a*) - a*Ln > F(0).

Proof of Lemma 3. Assume wlog that f;(0) = 0 for each ¢. This is possible because

t_ilfxwt) —;z:ftw) _ i(ft(wt) ~ 1,(0)) - g(ft(w) ~ 1,(0)).

To begin, observe that (15) is equivalent to

52w s g {3 w)+ Pl |
t=1 t=1

By selecting w = 0, f;(0) = 0 implies that the infimum on the right is always upper bounded in value
by F(0). In the other direction, Lipschitzness of the losses along with f;(0) = 0 implies that the
infimum is lower bounded as

;g;{g fi(w) + F<||w|>} > inf (~L|wln+ F(Jw])} = inf {-aLn+ F(a)}.

Therefore if a > o, the lower bound —aLn + F(«) will be sub-optimal compared to the upper
bound of F'(0) obtained by choosing « = 0.

Corollary 1. When F(r) =c- (r + 1) log(r + 1)7 for v > 0, it is sufficient to consider
n n Ln 1/~
3) - 3 sy < Pl v ol s el (2)), an)
=1 =1

Proof of Corollary 1. Note that F'(0) = 0. Let r denote the minimizer of F(«) — « - a (where
a = Ln). Differentiating this expression yields

a= c(log(r +1)7 +ylog(r + 1)'7‘1),
which further implies

1
log(r+1)7 = a e
¢

B
¢ l+vflog(r+1)
Rearranging, we have r < exp((a/c)*/?) - 1. Since F'(a) — a - a is strictly convex, this function is

increasing above 7. To conclude, we guess an upper bound on the value of a*: a := exp((a/c)*/?)-1.
Substituting this value in, we have

F(a)-a-a>aexp((a/c)!) —a- exp((a/c)t?) = 0= F(0),
which yields the result. O

Proof of Theorem 4. We only sketch the details of this proof as it follows Theorem 3 very closely.

We first describe sub-algorithm configuration for MULTISCALEOCO that achieves the claimed
regret bound. Our strategy will be to take a discretization the range of p values [1 + ¢,2], and
produce a set of sub-algorithms for each p in this discrete set. For a fixed p, the construction of
the set of sub-algorithms will be exactly is in Theorem 3. The discrete set of ps will have the form
pr=1+6+min{(k-1)-¢,(1-0)},fore =1/log(d) andk € [1,..., K], where K = [(1-9)/e]+1
(in particular k < log(d) + 1).

For a fixed k, the norm ||, has that %HHik is (px — 1)-strongly convex with respect to itself [19].

With this in mind, we create a set of N := K (n + 1) sub-algorithms, which we will index by pairs
(k,j) € [K] x[n+1] instead of i € [K (n + 1)] for notational convenience.

19

» Foreach k e [K]:
= Ly =Ly,
— Foreachje{l,...,n+1}:
* Set Rj =el™L.

« Take Wiy = {w € B | [w],, < Ri}. ey = 221/ 2, where Ay, = (pi — 1).
* Let ALG; = MIRRORDESCENT(7(k,jy, W(k.j)5 H-H;k).
e 1 =Uniform([K] x [n +1]).
Clearly the total number of sub-algorithms and hence the running time scales as O(n - log(d)).

Referring back to the proof of Theorem 3, and letting (k¢,j;) denote the index pair chosen by
MULTISCALEOCO in round t, it is clear that for a fixed k, the algorithm satisfies for all w € R4

E tilft(wﬁ’“’ﬁh - {Z fow) + O((lwly, + 1)Ly, /nlog(([wl, + DLy, nlog(d)) [(pr - 1))}] <0

In fact, the regret guarantee for MULTISCALEOCO implies that

) (18)
We now appeal to the choice of discretization to deduce that

n

B2 A9 = in {3 fw) - O((luly = Dy /aoa(Tal, + DE, @) G- D) | <0.

-1 pe[1+6,2]

Suppose there is some p € [1 + §, 2] of interest. Let k be the greatest integer for which py < p. We
claim that the bound

B 2 19 {3)+ O((sl + 1y WToR((Tily + DL s~ 1) <0

implies the desired result. By duality we have that |w|,, > |w], and L, < L,. To conclude, observe

that |w],, /|w]p < [w]pe/|0]py., <d€=d°8@ = (1), so the norm terms in the bound above
are within constant factors of the desired bound. O

Proof of Theorem 5. Recall that for fixed k, the learner predicts from a class
Wy = {W eR® | W >0, |W|, <1,(W,I)=k},

and experiences affine losses f;(W;) = (I - W;,Y;), where V; € Y := {Y e R* | Y > 0, |V, < 1}.
The regret for this game is given by

n

sup | > (I - We, V) - ZI WYt] (19)
WeWg | t=1 t=1

From [29], we have that for fixed k the strategy MATRIX EXPONENTIATED GRADIENT has regret
bounded by

(mln{\/nkQIOg n/k),\/n(d - k)2log(n/(d - k:))}) (\/nmln{kd k})

Note: The variant of MATRIX EXPONENTIATED GRADIENT that obtains this strategy uses either
losses or gains depending on the value of k. See [29] for more details.

The configuration with which we invoke MULTISCALEOCO is:
* Foreach i € [[log(d/2)] +1]:
- Set R; = ei_l, L;=1.

20

B 37l 9) - i {32 0) Ol + 1)y T0BCTuTy + DL o)~ 1) | <0

- Wi ={WeR™ | W >0,|W|, <1,(W,I)=R;}
— Take ALG; = MATRIX EXPONENTIATED GRADIENT(W;) as described in [29].
» 1 = Uniform([[log(d/2)] + 1]).

As in Theorem 3 and Theorem 4, choosing R; to be spaced exponentially is sufficient to guarantee

that there is a sub-algorithm whose regret is within a constant factor e of 9] (k\/ﬁ) for any choice of
the rank £.

All that remains is that the losses of the sub-algorithms satisfy the claimed upper bound R;. Observe
that MULTISCALEOCO works with centered loss f;(W) = —(W,Y;). For any W € Wy, we have

(WYl < Vil W5 <1- Ry,

so the condition is satisfied. O

Proof of Theorem 6. We will use a meta-algorithm strategy closely resembling that of the smooth
Banach space setting. The only difference is that |-||5; is not smooth, so MATRIX MULTIPLICATIVE
WEIGHTS, which uses the log-trace-exponential function as a surrogate for |-y, is used as the
sub-algorithm instead of working with |-, directly.

We use the version of MATRIX MULTIPLICATIVE WEIGHTS stated in [18] Theorem 13, which uses
classes of the form W, = {W e R*? | W > 0, |W|x < r} and has regret against W, bounded by

O(r+/nlogd) whenever each loss matrix Y; has [|Y;|, < 1. Using this strategy for fixed r as a
sub-algorithm for MULTISCALEOCO, we achieve the following oracle inequality efficiently:

For eachi € [n+1]:
o SetR; =21
* L; =1 (we are assuming |Y;|, <1).
e W, ={W eR™ | W >0, |W|s <R}
¢ ALG; = MATRIX MULTIPLICATIVE WEIGHTS(W;)

Finally, we set 7 = Uniform([n + 1]). That this configuration is sufficient follows from the dou-
bling analysis given in the proof of Theorem 3. Losses are once again bounded via [{(W,Y;)| <
W [Yz], < R; for W eW;.

A.3 Proofs from Section 2.3

Algorithm 5
procedure MULTISCALELEARNING({ALG;, R;, L; } e[N]) > Collection of sub-algorithms, prior 7.
¢ (Ri-Li)ien) > Sub-algorithm scale parameters.
Define £(9,v) = £(4,y) — £(0,). > Center the loss function.

fort=1,...,ndo
Receive context x4
9; < ALG;((z1,y1), .-, (T4-1,yt-1), ¢) foreach i € [N].
it < MULTISCALEFTPL[c¢, 7](g1,. .., Gt-1)-
Play §: = 9"
Observe y; and let g; = (Zt(y;, yz))

end for

end procedure

ie[N]"

Proof of Theorem 7. This theorem is an immediate consequence of Theorem 2, using the absolute
value |-| as the norm. The only significant detail one must check is that the proof of Theorem 2 uses
the regret statement for each sub-algorithm as a black box, and so the nonlinearity of the comparator
JF does not change the analysis. O

21

Proof of Theorem 8. This is a corollary of Theorem 7. That theorem, configured with one sub-
algorithm for each class Fj, and with Ly, = L, Ry, = Ry, and 7, = l/kQ, implies

E| 048, ui) - nf Y (f(@),m) | < E[Rada ()] + O(RL/nlog(RxLnk)) ¥ie[N],
t=1 k=1
(20)
The final regret bounded stated follows from the assumed growth rate on Rad(Fy). O
Proof of Theorem 9. We briefly sketch the construction as follows:

1. For each Hy, construct a sequence of nested subclasses (norm balls) as precisely as in the
proof of Theorem 3. There will be O(n) sub-algorithms for each such class.

2. For each sub-algorithm in class k, take the prior weight 7 proportional to 1/nk?.

Using the analysis from Theorem 3 — namely that for each norm |-|,, it is sufficient to only consider
predictors with norm bounded by e — , one can see that the result follows from Theorem 7. O

22

	Introduction
	Preliminaries

	Online Model Selection
	The need for multi-scale aggregation
	Online convex optimization
	Supervised learning

	Discussion and Further Directions
	Proofs
	Multi-scale FTPL algorithm
	Proofs for Section 2.2
	Proofs from Section 2.3

