
Appendix

A Algorithm for estimating Schatten k-norm for k ≥ 8

The collection of pseudographs Hk is partitioned into sets {Hiso
k,i}1≤i≤r, for some r ≤ k!. The

partitionsHiso
k,i are defined such that the pseudographs in one partition are isomorphic to each other

when multi-edges are condensed into one. This is useful since all the pseudographs in one partition are
observed together in G([d],Ω) for any fixed subgraph in G. The underlying simple graph (including
self loops) for each partitionHiso

k,i is denoted by Fk,i.

The main idea is to enumerate a list L` of all connected `-vertex induced subgraphs (possibly
with loops) of the graph G([d],Ω), for each 1 ≤ ` ≤ k. The unbiased weighted count of all
pseudographsHk for each of these vertex induced subgraphs g ∈ L` is computed. This is achieved
by further enumerating a list Sg,` of all `-vertex subgraphs for each g. Then the unbiased weight of
all pseudographs H ∈ Hk that exist in the subgraph h is computed and is summed over to get the
estimate of the k-th Schatten norm. Recall the notation PΩ(M) which is used to denote the partially
observed matrix corresponding to the index set Ω with the unobserved entries being replaced by zero.
We abuse this notation and use h(M) to represent the matrix M restricted to the subgraph h of the
observed graph G([d],Ω).

Each connected induced subgraphs of size k in a graph can be enumerated in time polynomial in d
and k [5]. The number of connected induced subgraphs of size k in a graph is upper bounded by
(e∆)k/((∆− 1)k) where ∆ is the maximum degree of the graph [19]. Therefore, Algorithm 2 runs
in time, super exponential in k, polynomial in d and the number of k connected induced subgraphs in
the observed graph G([d],Ω).

Algorithm 2 Schatten k-norm estimator

Require: PΩ(M), k,Hk, p(H) for all H ∈ Hk
Ensure: Θ̂k(PΩ(M))

1: Θ̂k(PΩ(M))← 0
2: for 1 ≤ ` ≤ k do
3: Enumerate a list, L`, of all connected `-vertex induced subgraphs (possibly with loops) of the

graph G([d],Ω)
4: for all g ∈ L` do
5: Enumerate a list Sg,` of all connected `-vertex subgraphs of the graph g by removing one or

more edges
6: for all h ∈ Sg,` do
7: for 1 ≤ i ≤ r do
8: if h is isomorphic to Fk,i then
9: Θ̂k(PΩ(M))← Θ̂k(PΩ(M)) +

∑
H∈Hiso

k,i

1
p(H)ωh(M)(H)c(H)

10: end if
11: end for
12: end for
13: end for
14: end for
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B From Schatten norms to spectrum and generalized rank

Schatten norms by themselves are rarely of practical interest in real applications, but they provide a
popular means to approximate functions of singular values, which are often of great practical interest
[4, 20, 13]. In this section, we consider two such applications using the first few Schatten norms
explicitly: estimating the generalized rank in Section B.1 and estimating the singular values in Section
B.2.

B.1 Estimating the generalized rank

For a matrixM ∈ Rd×d and a given constant c ≥ 0, its generalized rank of order c is given by

rank(M, c) =
d∑

i=1

I
[
σi(M) > c

]
. (11)

This recovers the standard rank as a special case when c = 0. Without loss of generality, we assume
that σmax(M) ≤ 1. For any given 0 ≤ c2 < c1 ≤ 1, and δ ∈ [0, 1), our goal is to get an estimate
r̂(PΩ(M)) from sampled entries PΩ(M) such that

(1− δ) rank(M, c1) ≤ r̂(PΩ(M)) ≤ (1 + δ) rank(M, c2) . (12)

The reason we take two different constants c1, c2 is to handle the ambiguous case when the matrix
M has many eigenvalues smaller but very close to c1. If we were to set c2 = c1, then any estimator
r̂(M) would be strictly prohibited from counting these eigenvalues. However, since these eigenvalues
are so close to the threshold, distinguishing them from other eigenvalues just above the threshold
is difficult. Setting c2 < c1 allows us to avoid this difficulty and focus on the more fundamental
challenges of the problem.

Consider the function Hc1,c2 : R→ [0, 1] given by

Hc1,c2(x) =





1 if x > c1
0 if x < c2
x−c2
c1−c2 otherwise.

(13)

It is a piecewise linear approximation of a step function and satisfies the following:

rank(M, c1) ≤ ∑d
i=1Hc1,c2(σi(M)) ≤ rank(M, c2) . (14)

We exploit this sandwich relation and estimate the generalized rank. Given a polynomial function
f : R → R of finite degree m such that f(x) ≈ Hc1,c2(x) for all x, such that f(x) = a0 + a1x +
· · ·+ amx

m, we immediately have the following relation, which extends to a function on the cone of
PSD matrices in the standard way:

d∑

i=1

f(σi(M)) = a0d+
m∑

k=1

ak‖M‖kk . (15)

Using this equality, we propose the estimator:

r̂(PΩ(M); c1, c2) ≡ a0d+

m∑

k=1

akΘ̂k(PΩ(M)) , (16)

where we use the first several Θ̂k(PΩ(M))’s obtained by the estimator (3). Note that function f
depends upon c1, c2. The remaining task is to obtain the coefficients of the polynomials in f that is a
suitable approximation of the function Hc1,c2 . In a similar context of estimating the generalized rank
from approximate Schatten norms, [20] propose to use a composite function f = qs ◦ q where q is a
finite-degree Chebyshev polynomial of the first kind such that supx∈[0,1] |q(x)−Hc1,c2(x)| ≤ 0.1,
and qs is a polynomial of degree 2s+ 1 given by

qs(x) =
1

B(s+ 1, s+ 1)

∫ x

0

ts(1− t)sdt , where B(·, ·) is the Beta function. (17)
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Algorithm 3 Generalized rank estimator (a variation of [20])

Require: PΩ(M), c1, c2, s
Ensure: r̂(PΩ(M); c1, c2)

1: For given c1 and c2, find a Chebyshev polynomial of the first kind q(x) satisfying [Appendix C]

sup
x∈[0,1]

|q(x)−Hc1,c2(x)| < 0.1

2: Let Cb denote the degree of q(x)

3: Find the degree (2s+ 1)Cb polynomial expansion of qs ◦ q(x) =
∑(2s+1)Cb
k=0 akx

k

4: r̂(PΩ(M); c1, c2)← a0d+
∑(2s+1)Cb
k=1 akΘ̂k(PΩ(M)) [Algorithm 1]

Note that, since Hc1,c2 is a continuous function with bounded variation, classical theory in [17],
Theorem 5.7, guarantees existence of the Chebyshev polynomial q of a finite constant degree, say
Cb, that depends upon c1 and c2. Concretely, for a given choice of thresholds 0 ≤ c1 < c2 ≤ 1
and degree of the beta approximation s, the estimator r̂(PΩ(M); c1, c2) in (16) can be computed as
follows.

The approximation of Hc1,c2 with f = qs ◦ q and our upper bound on estimated Schatten norms
Θ̂k(PΩ(M)) translate into the following guarantee on generalized rank estimator r̂(PΩ(M); c1, c2)
given in (16).

Corollary 2 Suppose ‖M‖2 ≤ 1. Under the hypotheses of Theorem 1, for any given 1 ≥ c1 > c2 ≥
0, there exists a constant Cb, such that for any s ≥ 0 and any γ > 0, the estimate in (16) with the
choice of f = qs ◦ q satisfies

(1− δ)(rank(M, c1)− 2−sd) ≤ r̂(PΩ(M); c1, c2) ≤ (1 + δ)(rank(M, c2) + 2−sd) ,(18)

with probability at least 1− γCb(2s+ 1), where δ ≡ max1≤k≤Cb(2s+1)

{√
ρ2

γ (max{1,r1−2/k}
dp )k

}
.

The proof follows immediately using Theorem 1 and the following lemma which gives a uniform
bound on the approximation error between Hc1,c2 and f = qs ◦ q. Lemma 5, together with Equa-
tions. (14) and (15), provides a (deterministic) functional approximation guarantee of

rank(M, c1)− d 2−s ≤
d∑

i=1

f(σi(M)) ≤ rank(M, c1) + d 2−s , (19)

for any c1 < c2 and any choice of s, as long as Cb is large enough to guarantee 0.1 uniform error
bound on the Chebyshev polynomial approximation. Since we can achieve 1± δ approximation on
each polynomial in f(σi(x)), Theorem 1 implies the desired Corollary 2. Note that using Remarks 3
and 4, the bounds in (10) hold for k ∈ [1,∞) with r1−2/k replaced by max{1, r1−2/k}.
Lemma 5 ([20], Lemma 1) Consider the composite polynomial f(x) = qs(q(x)). Then f(x) ∈
[0, 1] for all x ∈ [0, 1], and moreover

|f(x)−Hc1,c2(x)| ≤ 2−s , for all x ∈ [0, c2] ∪ [c1, 1] . (20)

In Figure 6, we evaluate the performance of estimator (16) numerically. We construct a symmetric
matrix M of size d = 1000 and rank r = 200. σi ∼ Uni(0, 0.4) for 1 ≤ i ≤ r/2, and σi ∼
Uni(0.6, 1) for r/2 + 1 ≤ i ≤ r. We estimate r̂(PΩ(M); c1, c2) for Erdös-Rényi sampling Ω, and a
choice of c2 = 0.5 and c1 = 0.6, which is motivated by the distribution of σi. We use Chebyshev
polynomial of degree Cb = 2, and s = 1 for qs. That is function f is of degree 6. Accuracy of the
estimator can be improved by increasing Cb and s, however that would require estimating higher
Schatten norms.

B.2 Estimating the spectrum

Given accurate estimates of first K Schatten norms of a matrix M , we can estimate singular values
of M using a linear programming based algorithm given in [13]. In particular, we get the following
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Figure 6: The left panel shows a histogram of singular values of M chosen for the experiment. The
right panel compares absolute error in estimation r̂(PΩ(M); c1 = 0.5, c2 = 0.6) for two choices of

the Schatten norm estimates ‖̂M‖kk: first the proposed estimator Θ̂k(PΩ(M)) in (3), and second the
Schatten norm of the completed matrix, M̃ = AltMin(PΩ(M)) from [10].

guarantees on the estimated singular values, whose proof follows directly using the analysis techniques
in the proof of [13, Theorem 2]. The main idea is that given the rank, the maximum support size of
the true spectrum, and an estimate of its first K moments, one can find r singular values whose K
first moments are close to the estimated Schatten norms.

Algorithm 4 Spectrum estimator (a variation of [13])

Require: PΩ(M), K, ε, target rank r, lower bound a and upper bound b on the positive singular
values

Ensure: estimated singular values (σ̂1, σ̂2, . . . , σ̂r)

1: L ∈ RK : Lk = Θ̂k(PΩ(M)) for k ∈ [K] [Algorithm 1]
2: t = d(b− a)/εe+ 1, x ∈ Rt: xi = a+ ε(i− 1), for i ∈ [t],
3: V ∈ RK×t : Vij = xij for i ∈ [K], j ∈ [t]

4: p∗ ≡ {minp∈Rt |V p− L|1 : 1>t p = 1, p ≥ 0}
5: σ̂i = min{xj :

∑
`≤j p

∗
` ≥ i

r+1}, ith (r + 1)st-quantile of distribution corresponding to p∗

Further, our upper bound on the first K moments can be translated into an upper bound on the
Wasserstein distance between those two distributions, which in turn gives the following bound
on the singular values. With small enough ε and large enough K and r, we need sample size
d2p > Cr,K,ε,γdr

1−2/k to achieve arbitrary small error.

Corollary 3 Under the hypotheses of Theorem 1, given rank r, constants 0 ≤ a < b such that
σmin ≥ a, σmax ≤ b, and estimates of the first K Schatten norms of M , {Θ̂k(PΩ(M))}k∈[K]

obtained by the estimator (3), for any 0 < ε � (b − a), and γ > 0, Algorithm 4 runs in time
poly(r,K, (b− a)/ε) and returns {σ̂i}i∈[r] an estimate of {σi(M)}i∈[r] such that

1

r

r∑

i=1

|σ̂i − σi| ≤
C(b− a)

K
+
b− a
r

+ g(K)(b− a)

(
εKbK−1 +

K∑

k=1

σkmax

√
ρ2

γ

(
max{1, r1−2/k}

dp

)k)
,

(21)

with probability at least 1− γK, where C is an absolute constant and g(K) only depends on K.

In Figure 7, we evaluate the performance of the proposed estimator (3), in recovering the true spectrum
using Algorithm 4. We compare the results with the case when Schatten norms are estimated using
matrix completion. We consider two distributions on singular values, one peak and two peaks. More
general distributions of spectrum can be recovered accurately, however that would require estimating
higher Schatten norms. For both cases, the proposed estimator outperforms matrix completion
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approaches, and achieves better accuracy as sample size increases with α. In each graph, the black
solid line depicts the empirical Cumulative Distribution Function (CDF) of the ground truths {σi}i∈[r]

for those r strictly positive singular values. On the left, there are r singular values at one peak σi = 1,
and on the right there are r/2 singular values at each of the two peaks at σi = 1 and σi = 2. Each
blue line and the orange line depicts the empirical CDF of {σ̂i}i∈[d] and {σ̃i}i∈[d] respectively for
each trial, over three independent trials. σ̂i’s are estimated using {Θ̂k(PΩ(M))}k∈[K] obtained
by the estimator (3), and σ̃i’s are estimated using {‖M̃‖kk}k∈[K] where M̃ = AltMin(PΩ(M)),
along with Algorithm 2 in [13], for K = 7. M is a symmetric matrix of size d = 1000 and rank
r ∈ {50, 200, 500} with singular values {σi}i∈[d]. Ω is generated using Erdös-Rényi sampling with
probability p = (α/d)r1−2/7 for α ∈ {3, 5, 8, 10}.
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Figure 7: The proposed estimator (in blue solid lines) outperforms matrix completion approaches (in
orange solid lines) in estimating the ground truths empirical cumulative distribution function of the r
strictly positive singular values (in black solid line) for two examples: one peak at σi = 1 on the left
and two peaks at σi = 1 or σi = 2 on the right. Both approaches achieve better accuracy as sample
size increases with α, where p = (α/d)r1−2/7.

C Algorithm for computing the Chebyshev polynomial

Algorithm 5 Chebyshev polynomial of the first kind approximating Hc1,c2(x)

Require: Hc1,c2 , c1, c2, and target accuracy δ = 0.1
Ensure: Chebyshev polynomial q(x) of first kind

1: g(x) ≡ x−c2
c1−c2

2: T0(x) ≡ 1, T1(x) ≡ x
3: q(x)← 1

π

∫ c1
c2

(1− x2)−1/2g(x)T0(x)dx+ 1
π

∫ 1

c1
(1− x2)−1/2T0(x)dx

4: i = 1
5: while supx∈[0,1] |q(x)−Hc1,c2(x)| ≥ δ do
6: q(x)← q(x) + 2Ti(x)

π

∫ c1
c2

(1− x2)−1/2g(x)Ti(x)dx+ 2Ti(x)
π

∫ 1

c1
(1− x2)−1/2Ti(x)dx

7: i← i+ 1
8: Ti(x) ≡ 2xTi−1(x)− Ti−2(x)
9: end while
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D Proofs

We provide proofs for main results and technical lemmas.

D.1 Proof of Theorem 1

Consider W̃ to be the collection of all length k closed walks on a complete graph of d vertices. Here
we slightly overload the notion of complete graph to refer to an undirected graph with not only all the
d(d− 1)/2 simple edges but also with d self loops as well. Construct the largest possible collection
W from W̃ wherein each walk has distinct weights that is ω(w) 6= ω(w′) for all w,w′ ∈ W . We
partition W according to the pattern among k-cyclic pseudographs, which are further partitioned into
four groups. The estimator (3) can be re-written as

Θ̂k(PΩ(M)) =
∑

w∈W

c(H(w))

p(H(w))
ωPΩ(M)(w)

=
∑

H∈Hk

{ c(H)

p(H)

∑

w:H(w)=H

ωM (w) I(w ⊆ Ω)
}

(22)

=
4∑

i=1

∑

H∈Hk,i

{ c(H)

p(H)

∑

w:H(w)=H

ωM (w) I(w ⊆ Ω)
}
, (23)

where we write w ⊆ Ω to denote the event that all the edges in the walk w are sampled, and we
define

• Hk,1 ≡ {Ck} is just a (set of a) simple cycle of length k and there are total |{w ∈ W :

H(w) ∈ Hk,1}| =
(
d
k

)
(k!/2k) ≤ (dk/2k) corresponding walks to this set, and c(Ck) = 2k.

• Hk,2 ≡ {H(VH , EH) ∈ Hk : |VH | ≤ k − 1 and no self loops}, and there are total
|{w ∈W : H(w) ∈ Hk,2| ≤ dk−1 corresponding walks to this set.

• Hk,3 ≡
⋃k−1
s=1 Hk,3,s whereHk,3,s = {H ∈ Hk with s self loops}, and there are total

|{w ∈W : H(w) ∈ Hk,3}| ≤ dk−s corresponding walks in this set.

• Hk,4 ≡ {H(VH , EH) ∈ Hk : |VH | = 1} is a (set of a) graph with k self loops and there
are total |{w ∈W : H(w) ∈ Hk,4}| = d corresponding walks to this set.

Given this unbiased estimator, we provide an upper bound on the variance of each of the partitions to
prove concentration with Chebyshev’s inequality. For any walk w ∈W , let |w| denote the number
of unique edges (including self loops) that the walk w traverses. Let |w ∩ w′| denote the number of
unique overlapping edges (including self loops) of walks w and w′. We have,

Var
(
Θ̂k(PΩ(M))) = 2

k−1∑

`=1

∑

w 6=w′∈W̃
|w∩w′|=`

Covar

(
I(w ⊆ Ω)ωM (w)c(H(w))

p(H(w))
,
I(w′ ⊆ Ω)ωM (w′)c(H(w′))

p(H(w′))

)

+

4∑

i=1

∑

H∈Hk,i

{ c(H)2

p(H)2

∑

w:H(w)=H

ωM (w)2Var
(
I(w ⊆ Ω)

)}
(24)

< 4
k−1∑

`=1

∑

w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

](∣∣ωM (w)ωM (w′)
∣∣c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

+
4∑

i=1

∑

H∈Hk,i

∑

w:H(w)=H

c(H)2ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
. (25)

Recall from the definition of incoherence that |Mii| ≤ σ1(M)µr/d and |Mij | = σ1(M)µr1/2/d,
and let α = σ1(M)µr1/2/d denote the maximum off-diagonal entry, such that |Mij | ≤ α and
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|Mii| ≤ α
√
r for all i, j ∈ [d]. Let Ap,k,α,d = dkα2k/pk denote the target scaling of the variance,

then ∑

H∈Hk,i

∑

w:H(w)=H

c(H)2 ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤





dk

2k

(2k)2α2k

pk
= 2kAp,k,α,d , for i = 1 , (26)

dk−1 f(k)2α2k

pk
=
f(k)2

d
Ap,k,α,d , for i = 2 , (27)

d
rkα2k

p
=
rkpk−1

dk−1
Ap,k,α,d , for i = 4 , (28)

and for i = 3 and for 1 ≤ s ≤ k − 1, we have

∑

H∈Hk,3,s

∑

w:H(w)=H

c(H)2 ωM (w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤ dk−s

f(k)2α2krs

pk
=
f(k)2rs

ds
Ap,k,α,d , (29)

where c(H) is defined as the multiplicity of walks with the same weight satisfying c(H) ≤ f(k). For
w 6= w′ and |w ∩ w′| = `, where the range of ` varies across equations depending upon the set to
which w,w′ belongs, we have the following:

∑

w 6=w′∈W
|w∩w′|=`,H(w)∈Hk,i,s,H(w′)∈Hk,i′,s′

E
[
I(w ∈ Ω)I(w′ ∈ Ω)

]
∣∣ωM (H(w))ωM (H(w′))

∣∣ c(H(w))c(H(w′))

p(H(w))p(H(w′))
≤





dkdk−(`+1)

2k

α2k(2k)2

p`
=

(dp)k−`

d
2kAp,k,α,d, for i = i′ = 1 (30)

f(k)2dk−1dk−1−(`+1)α2k

p`
≤ f(k)2(dp)k−`

d3
Ap,k,α,d for i = i′ = 2 (31)

f(k)2dk−sdk−s
′−`α2k−s−s′(α

√
r)s+s

′

p`
≤ f(k)2(dp)k−`

(d/
√
r)s+s′

Ap,k,α,d , for i = i′ = 3 (32)

f(k)2dkdk−1−(`+1)α2k

p`
≤ f(k)2(dp)k−`

d2
Ap,k,α,d for i = 1, i′ = 2(33)

f(k)2dkdk−s−(`+1)α2k−s(α
√
r)s

p`
≤ f(k)2(dp)k−`

d(d/
√
r)s

Ap,k,α,d for i = 1, i′ = 3(34)

f(k)2dk−1dk−s−(`+1)α2k−s(α
√
r)s

p`
≤ f(k)2(dp)k−`

d2(d/
√
r)s

Ap,k,α,d for i = 2, i′ = 3(35)

f(k)2ddk−s−`αk−s(α
√
r)k+s

p`
≤ f(k)2(dp)k−`

dk−1(d/
√
r)k+s

Ap,k,α,d for i = 3, i′ = 4 ,(36)

where (36) is valid only for ` = 1. Note that for any w with H(w) ∈ Hk,1
⋃Hk,2, it has no overlap

with w′ such that H(w′) ∈ Hk,4.

Observe that Var
(
Θ̂k(PΩ(M))) as bounded in (25) is upper bounded by the sum of quantities in

(26)-(36), summating over all possible values of 1 ≤ ` ≤ k − 1, and 1 ≤ s, s′ ≤ k − 1. Let
h(k) ≡ f(k)2Ap,k,α,d. Observe that quantities in (26),(27), and (29) are upper bounded by h(k).
Quantities in (30)-(36) are upper bounded by h1(k) ≡ h(k)(dp)k−1/d. Quantity in (28) is upper
bounded by h2(k) ≡ h(k)rkpk−1/dk−1.

Given ‖M‖kk ≥ r(σmin)k, recall a bound on off diagonals of matrixM by |Mij | ≤ α = µσmax
√
r/d

and Ap,k,α,d = dkα2k/pk. This gives

Ap,k,α,d
‖M‖2kk

≤ κ2kµ2krk−2

dkpk
. (37)
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Using Chebyshev’s inequality and collecting all terms in the upper bound on the variance, we have
for sufficiently large d, the following bound:

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤ (κµ)2kf(k)2rk−2

δ2(dp)k
max

{
1,

(dp)k−1

d
,
rkpk−1

dk−1

}
,(38)

where the second and the third term in the max expression follow by evaluating h1(k) and h2(k).
If sampling probability p is small enough such that dp ≤ Cd1/(k−1) for some constant C, then the
second and the third terms are smaller than the first term. Hence, the desired result in Theorem 1
follows.

D.2 Proof of Theorem 2

We can prove a Bernstien-type bound on accuracy of the estimator. The estimator (3) can be re-written
as a multi-linear polynomial function of d(d+ 1)/2 i.i.d. Bernoulli(p) random variables.

Θ̂k(PΩ(M)) =
∑

w∈W

{
c(H(w))

p(H(w))
ωM (w)

∏

(i,j)∈unique(w)

I((i, j) ∈ Ω)

}
, (39)

where I((i, j) ⊆ Ω) is a random variable that takes value 1 if the (i, j)th entry of the matrix M is
sampled, and unique(w) denotes the set of the unique edges (and self loops) that the walk w traverses.
Let q denote the power of the polynomial function that is the maximum number of unique edges in
the walk w, that is q = k.

We use the following Bernstien-type concentration results of [18] for the polynomials of independent
random variables.

Lemma 6 ([18],Theorem 1.3) We are given d(d+ 1)/2 independent central moment bounded ran-
dom variables {I((i, j) ∈ Ω)}1≤i≤j≤d with same parameter L. We are given a multilinear polyno-
mial Θ̂k(PΩ(M)) of power q, then

P
[∣∣∣Θ̂k(PΩ(M))− E

[
Θ̂k(PΩ(M))

]∣∣∣ ≥ λ
]
≤ e2 max

{
e

−λ2

Var[Θ̂k(PΩ(M))]Rq ,max
t∈[q]

e
−( λ

µtL
tRq

)1/t
}
,(40)

where R is some absolute constant and µt is defined as follows:

µt = max
S⊆{(i,j):i,j∈[d]}

|S|=t

( ∑

w∈W |w⊇S

c(H(w))

p(H(w))
|ωM (w)|

∏

(i,j)∈unique(w)\S
E[I((i, j) ∈ Ω)]

)
,(41)

where w ⊇ S denotes that the walk w comprises edges(and self loops) contained in the set S. L
is defined as follows: A random variable Z is called central moment bounded with real parameter
L > 0, if for any integer i ≥ 1 we have

E
[
|Z − E[Z]|i

]
≤ i LE[|Z − E[Z]|i−1] . (42)

For Bernoulli random variables L ∈ [1/4, 1]. In the following, we show that µt ≤
(µσmax)kg(k)rk/(d(dp)t), for t ∈ [k]. Using Lemma 6, along with ‖M‖kk ≥ r(σmin)k, the bound
in (10) follows immediately.

To compute µt, define a set of walks W`,s,ŝ such that w ∈ W`,s,ŝ has 0 ≤ ` ≤ k unique edges and
0 ≤ s ≤ k unique self loops, and ŝ total self loops with `+ ŝ ≤ k. For the set S as required in (41),
let S˜̀,s̃ be a set of ˜̀unique edges and s̃ unique self loops, with |S˜̀,s̃| = ˜̀+ s̃ where 1 ≤ ˜̀+ s̃ ≤ k.
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Therefore, we have

µt = max
S˜̀,s̃

:˜̀+s̃=t

( ∑

0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k

∑

w∈W`,s,ŝ

:w⊇S˜̀,s̃

c(H(w))

p(H(w))
|ωM (w)|

∏

(i,j)∈unique(w)\S˜̀,s̃

E[I((i, j) ⊆ Ω)]

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

( ∑

0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k

∑

w∈W`,s,ŝ

:w⊇S˜̀,s̃

f(k)

p`+s
αkrŝ/2p`+s−(˜̀+s̃)

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

( ∑

0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k,s̃≤s

d`−(1+˜̀)f(k)

p`+s
(µσmax)kr(k+ŝ)/2

dk
p`+s−(˜̀+s̃)

)

= max
S˜̀,s̃

:˜̀+s̃=t

( ∑

0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k,s̃≤s

f(k)(µσmax)kr(k+ŝ)/2

dd(k−`−s̃)(dp)(˜̀+s̃)

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

(
k3f(k)(µσmax)kr(k+ŝ)/2

dd(k−`−s̃)(dp)(˜̀+s̃)

)
≤ (µσmax)kg(k)rk

d(dp)t
.
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B1 B2 B3 B4 B5 B6 B7

Figure 8: The 4-cyclic pseudographsH4.

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

Figure 9: The 5-cyclic pseudographsH5.

E k-cyclic pseudographs
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D1 D2 D3 D4

D5 D6 D7 D8

D9 D10 D11 D12

D13 D14 D15 D16

D17 D18 D19 D20

D21 D22 D23 D24

D25 D26 D27 D28

D29 D30 D31 D32

Figure 10: The 6-cyclic pseudographsH6.
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E1 E2 E3 E4

E5 E6 E7 E8

E9 E10 E11 E12

E13 E14 E15 E16

E17 E18 E19 E20

E21 E22 E23 E24

E25 E26 E27 E28

E29 E30 E31 E32

Figure 11: The 7-cyclic pseudographsH7
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E33 E34 E35 E36

E37 E38 E39 E40

E41 E42 E43 E44

E45 E46 E47 E48

E49 E50 E51 E52

E53 E54 E55 E56

E57 E58 E59 E60

Figure 12: The 7-cyclic pseudographsH7
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E61 E62 E63 E64 E65

E66 E67 E68 E69

Figure 13: The 7-cyclic pseudographsH7.

F Efficient computation of ωM(H) for k ∈ {4, 5, 6, 7}
In this section we provide the complete matrix oeprations for copmuting γM (H)’s. Equations (43) -
(49) give expressions to compute γM (H) for H ∈ H4 as labeled in Figure 8. Equations (50) - (61)
give expressions to compute γM (H) for H ∈ H5 as labeled in Figure 9. Equations (62) - (93) give
expressions to compute γM (H) for H ∈ H6 as labeled in Figure 10. Equations (94) - (186) give
expressions to compute γM (H) for H ∈ H7 as labeled in Figure 13.

For brevity of notations and readability, we define the following additional notations. Let A�B
denote the Hadamard product. For A ∈ Rd×d, let sum(A) denote a vector v ∈ Rd such that
vi =

∑
j∈[d]Ai,j . With a slight abuse of notation, for v ∈ Rd, let sum(v) denote sum of all

elements of v that is sum(v) =
∑
i∈[d] vi. Let sum(γM (Hi) : γM (Hj)) ≡

∑j
i′=i γM (Hi′). Define

R ≡ 1d×d−diag(1d×d), that is R is an all-ones matrix except on diagonals which are zeros. Further,
for brevity, we omit the subscript M from the notations γM (H), OM and DM .
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γ(B1) = sum(sum(D�D�D�D)) (43)
γ(B2) = sum(sum(O�O�O�O)) (44)
γ(B3) = 4 tr(O∗O∗D∗D) (45)
γ(B4) = 2 sum(sum((O�O)∗(O�O)�R)) (46)
γ(B5) = 2 tr(O∗D∗O∗D) (47)
γ(B6) = tr(O∗O∗O∗O)− sum(γ(B2) : γ(B4)) (48)
γ(B7) = tr(M∗M∗M∗M)− sum(γ(B1) : γ(B6)) (49)

γ(C1) = tr(D�D�D�D�D) (50)
γ(C2) = 5 sum(sum(D∗O�O�O�O)) (51)
γ(C3) = 5 sum(sum((D�D�D)∗(O�O))) (52)
γ(C4) = 5 tr((O�O�O)∗O∗O) (53)
γ(C5) = 5 sum(sum(D∗(O�O)∗(D�D))) (54)
γ(C6) = 5 sum(sum(((O�O)∗D∗(O�O))�R)) (55)
γ(C7) = 5 sum(sum((D∗(O�O)∗(O�O))�R)) (56)
γ(C8) = 5 tr(O∗O∗O∗(D�D)) (57)
γ(C9) = 5 sum(diag(O�O�O)�sum(O�O))− 10 tr((O�O�O)∗O∗O)) (58)
γ(C10) = tr(O∗O∗O∗O∗O)− γ(C4)− γ(C9) (59)
γ(C11) = 5 tr(O∗D∗O∗D∗O) (60)
γ(C12) = tr(M∗M∗M∗M∗M)− sum(γ(C1) : γ(C11)) (61)
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γ(D1) = sum(sum(D�D�D�D�D�D)) (62)
γ(D2) = sum(sum(O�O�O�O�O�O)) (63)
γ(D3) = 6 sum(sum(((O�O)∗(O�O�O�O))�R)) (64)
γ(D4) = 6 sum(sum(((O�O)∗(D�D�D�D))�R)) (65)
γ(D5) = 9 sum(sum(((D�D)∗(O�O�O�O))�R)) (66)
γ(D6) = 3 sum(sum(((D�D)∗(O�O)∗(D�D))�R)) (67)
γ(D7) = 6 sum(sum(((D�D)∗(O�O)∗(O�O))�R)) (68)
γ(D8) = 9 sum(sum(((O�O)∗(D�D)∗(O�O))�R)) (69)
γ(D9) = 6 sum(sum(((D�D�D)∗(O�O)∗D)�R)) (70)
γ(D10) = 6 sum(sum((D∗(O�O�O�O)∗D)�R)) (71)

γ(D11) = 3 sum
((

sum(((O�O)∗(O�O))�R)
)
�
(
sum(O�O)

)
− sum

((
(O�O�O�O)∗(O�O)

)
�R
)

−diag((O�O)∗(O�O)∗(O�O))
)

(72)

γ(D12) = 4 tr((O�O)∗(O�O)∗(O�O)) (73)

γ(D13) = 2 sum
(

(sum(O�O))�(sum(O�O))�(sum(O�O))− sum((O�O�O�O�O�O))

−3
(
(sum(O�O�O�O))�(sum(O�O))− (sum(O�O�O�O�O�O))

))
(74)

γ(D14) = 3 sum(sum((D∗(O�O)∗(O�O)∗D)�R)) (75)
γ(D15) = 12 sum(sum((D∗(O�O)∗D∗(O�O))�R)) (76)

γ(D16) = 6 sum
(

sum(((O�O�O)∗O)�R�(O∗O))− sum(((O�O�O�O)∗(O�O))�R)
)

(77)

γ(D17) = 6 tr((D�D�D)∗O∗O∗O) (78)
γ(D18) = 24 tr(D∗(O�O�O)∗O∗O) (79)
γ(D19) = 6 tr(D∗O∗(O�O�O)∗O) (80)

γ(D20) = 6
(

sum(sum((O∗O)�((O∗(D�D)∗O)�R)))− sum(sum(((O�O)∗(D�D)∗(O�O))�R))
)

(81)
γ(D21) = 12 tr(O∗(D�D)∗O∗D∗O) (82)

γ(D22) = 6
(

sum
(

sum
(
((O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R)

)
�sum(O�O)

)

−2 sum
(

sum((((O�O�O)∗O)�R�(O∗O)− ((O�O�O�O)∗(O�O))�R))
)

−sum
(

sum
((

(O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R
)
�(O�O)

))))
(83)

γ(D23) = 9 sum(sum(((O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R)�((O�O)))) (84)
γ(D24) = 12 sum(diag(O∗D∗O∗O)�sum((O�O))− diag((O�O�O)∗D∗O∗O)

−diag((O�O�O)∗O∗D∗O)) (85)
γ(D25) = 6 sum(diag(O∗O∗O)�sum((O�O)∗D)− 2 diag((O�O�O)∗D∗O∗O)) (86)
γ(D26) = 12 sum(diag(O∗O∗O)�diag(D)�sum((O�O))− diag((O�O�O)∗O∗O)�diag(D)) (87)

γ(D27) = 3 sum
(

diag(O∗O∗O)�diag(O∗O∗O)− 2 diag((O�O)∗(O�O)∗(O�O))
)

−(4/3)γ(D23) (88)
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γ(D28) = tr(O∗O∗O∗O∗O∗O)− γ(D2)− γ(D3)− γ(D11)− γ(D12)− γ(D13)

−γ(D16)− γ(D22)− γ(D23)− γ(D27) (89)
γ(D29) = 2 tr(D∗O∗D∗O∗D∗O) (90)
γ(D30) = 3 sum(sum((O∗D∗O)�R�(O∗D∗O))− sum(((O�O)∗(D�D)∗(O�O))�R))

(91)
γ(D31) = 6 sum(sum((O∗D∗O∗D)�R�(O∗O))− sum(((O�O)∗D∗(O�O)∗D)�R)) (92)
γ(D32) = tr(M∗M∗M∗M∗M∗M)− tr(O∗O∗O∗O∗O∗O)− sum(γ(D1) : γ(D26)) + γ(D2) + γ(D3) +

γ(D11) + γ(D12) + γ(D13) + γ(D16) + γ(D22) + γ(D23)− γ(D29)− γ(D30)− γ(D31) (93)

γ(E1) = sum(diag((D�D�D�D�D�D�D))) (94)
γ(E2) = 7 sum(sum((O�O)∗(D�D�D�D�D))) (95)
γ(E3) = 7 sum(sum(((D�D)∗(O�O)∗(D�D�D))�R)) (96)
γ(E4) = 14 sum(sum((O�O�O�O)∗(D�D�D))) (97)
γ(E5) = 7 sum(sum((O�O�O�O�O�O)∗D)) (98)
γ(E6) = 7 sum(sum((D∗(O�O)∗(D�D�D�D))�R)) (99)
γ(E7) = 21 sum(sum((D∗(O�O�O�O)∗(D�D))�R)) (100)
γ(E8) = 7 sum(sum(((O�O)∗(O�O)∗(D�D�D))�R)) (101)
γ(E9) = 14 sum(sum(((O�O)∗(D�D�D)∗(O�O))�R)) (102)
γ(E10) = 7 sum(sum(((O�O�O�O)∗(O�O)∗D)�R)) (103)
γ(E11) = 21 sum(sum(((O�O�O�O)∗D∗(O�O))�R)) (104)
γ(E12) = 14 sum(sum((D∗(O�O�O�O)∗(O�O))�R)) (105)
γ(E13) = 7 tr((O�O�O�O�O)∗O∗O) (106)
γ(E14) = 14 tr((O�O�O)∗O∗(O�O�O)) (107)
γ(E15) = 7 sum(sum(((O�O)∗(O�O))�R)�sum((O�O)∗D)− sum(((O�O�O�O)∗D∗(O�O))�R)

−diag(((O�O)∗D∗(O�O)∗(O�O)))) (108)
γ(E16) = 14 sum((sum(((O�O)∗(O�O))�R)�sum((O�O))− sum(((O�O�O�O)∗(O�O))�R)

−diag(((O�O)∗(O�O)∗(O�O))))�diag(D)) (109)
γ(E17) = 7 sum(((sum(O�O)�sum(O�O)�sum(O�O))− sum((O�O�O�O�O�O))

−3 (sum((O�O�O�O))�sum((O�O))− sum((O�O�O�O�O�O))))�diag(D)) (110)
Z1 ≡ 0.5 ((sum(O�O)�sum(O�O))− sum((O�O�O�O)))

γ(E18) = 14 sum(sum((O�O)∗D)�Z1 − sum((O�O�O�O)∗D)�sum((O�O))

+ sum((O�O�O�O�O�O)∗D)) (111)
γ(E19) = 28 sum(diag((O�O)∗(O�O)∗(O�O))�diag(D)) (112)
γ(E20) = 21 sum(sum((D∗(O�O)∗(D�D)∗(O�O))�R)) (113)
γ(E21) = 14 sum(sum(((D�D)∗(O�O)∗D∗(O�O))�R)) (114)
γ(E22) = 7 sum(sum((D∗(O�O)∗(O�O)∗(D�D))�R)) (115)
γ(E23) = 7 sum(diag(O∗O∗O)�diag((D�D�D�D))) (116)
γ(E24) = 28 sum(diag((O�O�O)∗O∗O)�sum((O�O))− diag((O�O�O�O�O)∗O∗O)

−diag((O�O�O)∗O∗(O�O�O))) (117)
γ(E25) = 7 sum(diag(O∗(O�O�O)∗O)�sum((O�O))− 2 diag((O�O�O)∗(O�O�O)∗O)) (118)
γ(E26) = 7 sum(diag(O∗(O�O�O)∗O)�diag((D�D))) (119)
γ(E27) = 42 sum(diag((O�O�O)∗O∗O)�diag((D�D))) (120)
γ(E28) = 7 sum(diag(O∗O∗O)�sum((O�O�O�O))− 2 diag((O�O�O�O�O)∗O∗O)) (121)
γ(E29) = 7 sum(sum((D∗(O�O)∗D∗(O�O)∗D)�R)) (122)
γ(E30) = 28 sum(diag(O∗D∗(O�O�O)∗O)�diag(D)) (123)
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γ(E31) = 28 tr(O∗D∗(O�O�O)∗D∗O) (124)
γ(E32) = 14 sum(diag(O∗(D�D)∗O∗O)�sum((O�O))− diag((O�O�O)∗O∗(D�D)∗O)

−diag((O�O�O)∗(D�D)∗O∗O)) (125)
γ(E33) = 14 sum(diag(O∗D∗O∗O)�diag((D�D�D))) (126)
γ(E34) = 7tr(O∗(D�D)∗O∗(D�D)∗O) (127)
γ(E35) = 7(sum(sum((((O∗O)�R)�((O∗(D�D�D)∗O)�R))))

−sum(sum(((O�O)∗(D�D�D)∗(O�O))�R))) (128)
γ(E36) = 14 sum(sum(((O�O�O)∗O)�R�(O∗D∗O))

−sum(((O�O�O�O)∗D∗(O�O))�R)) (129)
γ(E37) = 28 sum(sum(((O�O�O)∗D∗O)�R�(O∗O))

−sum(((O�O�O�O)∗D∗(O�O))�R)) (130)

Z2 ≡ (((O∗O)�R)∗O −O�(1d×1∗(sum((O�O)>))> − (O�O)))�R (131)
Z3 ≡ (O�((O∗O)�R))�R (132)
Z4 ≡ (O�(((O�O�O�O�O)∗O)�R))�R (133)
Z6 ≡ ((O�O�O)�((O∗O)�R))�R (134)
Z7 ≡ (O�(((O�O�O)∗(O�O�O))�R))�R (135)

γ(E38) = 7 sum(sum((((O�O�O)∗O)�R�Z2 − (((O�O�O�O)∗Z3)�R− Z4)

−((Z6∗(O�O))�R− Z7)))) (136)
Z7 ≡ 0.5 sum(sum(O�(((O�O)∗(O�O))�R)�((O∗O)�R)

−O�(((O�O�O)∗(O�O�O))�R))) (137)
γ(E39) = 7 (sum(sum((O�((O∗O)�R)�(sum((O�O))∗11×d

−(O�O))�(1d×1∗(sum((O�O)>))> − (O�O)))))

−sum(sum((O�(((O�O�O)∗O)�R)�(1d×1∗(sum((O�O)>))> − (O�O)))))

−sum(sum((O�((O∗(O�O�O))�R)�(sum((O�O))∗11×d − (O�O)))))

+sum(sum((O�(((O�O�O)∗(O�O�O))�R)))))− 14 Z7 (138)
γ(E40) = 21 sum(diag((D�D)∗O∗O∗O)�sum((O�O))− 2 diag((D�D)∗(O�O�O)∗O∗O))(139)
γ(E41) = 7 sum(diag(O∗O∗O)�sum((O�O)∗(D�D))− 2 diag((O�O�O)∗(D�D)∗O∗O)) (140)
γ(E42) = 7 (sum(diag(O∗O∗O)�sum(((O�O)∗(O�O))�R)− 2 diag((O�O�O)∗(O�O�O)∗O))

−2 sum(diag((O�O�O)∗O∗O)�sum((O�O))− diag((O�O�O�O�O)∗O∗O)

−diag((O�O�O)∗O∗(O�O�O))))− 28 Z7 (141)
γ(E43) = 14 sum(diag(O∗O∗O)�Z1 − 2 (diag((O�O�O)∗O∗O)�sum((O�O))

−diag((O�O�O�O�O)∗O∗O)− 0.5 diag((O�O�O)∗O∗(O�O�O)))) (142)
γ(E44) = 56 Z7 (143)

Z8 ≡ (O�(((O�O�O)∗O)�R))�R (144)
Z9 ≡ (O�((O∗O)�R))�R (145)
Z10 ≡ (O�((O∗(O�O�O))�R))�R (146)
Z11 ≡ ((O∗O)�R�Z2 − (((O�O)∗Z3)�R− Z8)− ((Z9∗(O�O))�R− Z10)) (147)

γ(E45) = 14 (sum(0.5 sum(Z11)�sum((O�O)))− (1/7) γ(E38)− sum(sum(((O�O))�Z11)))(148)
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γ(E46) = 21 sum(sum(((O�O))�Z11)) (149)
γ(E47) = 7 sum(sum(Z11)�diag((D�D))) (150)
γ(E48) = 7 tr((D�D)∗O∗D∗O∗D∗O) (151)
γ(E49) = 14 sum(diag(D∗O∗O∗O)�sum((O�O)∗D)− 2 diag(D∗(O�O�O)∗D∗O∗O))(152)
γ(E50) = 14 sum(diag(O∗O∗D∗O)�sum((O�O)∗D)− diag((O�O�O)∗D∗O∗D∗O)

−diag((O�O�O)∗(D�D)∗O∗O)) (153)
γ(E51) = 28 sum(diag(D∗O∗D∗O∗O)�sum((O�O))− diag(D∗(O�O�O)∗D∗O∗O)

−diag(D∗(O�O�O)∗O∗D∗O)) (154)
γ(E52) = 7 sum(diag(O∗D∗O∗D∗O)�sum((O�O))− 2 diag((O�O�O)∗D∗O∗D∗O))(155)
γ(E53) = 14 sum((sum(((((O∗O)�R)�((O∗D∗O)�R))

−((O�O)∗D∗(O�O))�R)))�diag((D�D))) (156)
γ(E54) = 7 sum(sum(((((O∗D∗O)�R)�((O∗(D�D)∗O)�R))

−((O�O)∗(D�D�D)∗(O�O))�R))) (157)
Z12 ≡ sum(0.5 sum(((((O∗O)�R)�((O∗O)�R))

−(((O�O)∗(O�O))�R))�((O�O)∗D))) (158)
Z13 ≡ sum(sum((((((O�O�O)∗D∗O)�R)�((O∗O)�R))

−((O�O�O�O)∗D∗(O�O))�R))) (159)
Z14 ≡ 0.5 sum(sum(((((O∗D∗O)�R)�((O∗O)�R))

−(((O�O)∗D∗(O�O))�R))�((O�O)))) (160)
Z15 ≡ sum(sum((((((O�O�O)∗O)�R)�((O∗D∗O)�R))

−((O�O�O�O)∗D∗(O�O))�R))) (161)
γ(E55) = 14 (sum(0.5 (sum(((((O∗O)�R)�(((O∗O))�R))

−((O�O)∗(O�O))�R)))�sum((O�O)∗D))− Z13 − Z12) (162)
γ(E56) = 28 (sum(0.5 (sum(((((O∗O)�R)�(((O∗O))�R))

−((O�O)∗(O�O))�R)))�sum(D∗(O�O)))− Z13 − Z12) (163)
γ(E57) = 14 (sum((sum(((((O∗D∗O)�R)�(((O∗O))�R))

−((O�O)∗D∗(O�O))�R)))�sum((O�O)))− Z13 − Z15 − 2 Z14) (164)
γ(E58) = 14 (sum(0.5 sum((((((O∗O)�R)�((O∗O)�R))

−(((O�O)∗(O�O))�R))∗D))�sum((O�O)))− Z15 − Z12) (165)
γ(E59) = 84 Z12 (166)
γ(E60) = 42 Z14 (167)

Z25 = tr(M∗M∗M∗M∗M∗M∗M)− sum(γ(E1) : γ(E60)) (168)
Z26 = tr(O∗O∗O∗O∗O∗O∗O)− γ(E13)− γ(E14)− γ(E24)

−γ(E25)− γ(E28)− γ(E38)− γ(E39)− sum(γ(E42) : γ(E46)) (169)
Z16 ≡ (1/6) ((O∗O�R)�(O∗O�R)�(O∗O�R)− ((O�O�O)∗(O�O�O)�R)

−3 (((O�O)∗(O�O)�R)�(O∗O�R)− ((O�O�O)∗(O�O�O)�R))) (170)
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γ(E61) = 42 sum(sum(Z16�O)) (171)
Z17 ≡ sum(sum(0.5 ((O∗O�R)�(O∗O�R)

−((O�O)∗(O�O)�R)))�(0.5 diag(O∗O∗O))) (172)
γ(E62) = 28 (Z17 − (6/84) γ(E61)− (2/42) γ(E46)− (3/56) γ(E44) (173)
γ(E63) = Z26 − γ(E61)− γ(E62) (174)
γ(E64) = 7 sum(sum((D∗O∗D∗O∗D�R)�(O∗O�R)))

−7 sum(sum(D∗(O�O)∗D∗(O�O)∗D�R)) (175)
γ(E65) = 7 sum(sum(D∗Z11∗D)) (176)

Z18 ≡ sum(((O∗O)�R�(O∗O)− ((O�O)∗(O�O))�R)�((O�O))) (177)
γ(E66) = 7 sum(((diag(O∗O∗O)�diag(O∗O∗O))

−2 diag((O�O)∗(O�O)∗(O�O))− 4 Z18)�diag(D)) (178)
Z20 ≡ 0.5 sum(sum(((O∗O�R)�(O∗D∗O�R)− ((O�O)∗D∗(O�O)))�(O�O))) (179)

γ(E67) = 14 (sum(diag(O∗O∗O)�diag(O∗O∗D∗O)− 2 diag((O�O)∗(O�O)∗D∗(O�O)))

−2 sum(Z18�diag(D))− 4 Z20) (180)
Z21 ≡ (((O∗D∗O∗D)�R)∗O −O�(1d×1∗sum(D∗(O�O)∗D, 1)

−D∗(O�O)∗D))�R (181)
Z22 ≡ (O�((O∗D∗O)�R))�R (182)
Z23 ≡ (O�((D∗(O�O�O)∗D∗O)�R))�R (183)
Z24 ≡ (O�((O∗D∗(O�O�O)∗D)�R))�R (184)

γ(E68) = 7 sum(sum(((O∗O)�R�Z21 − (((O�O)∗D∗Z22)�R− Z23)

−((Z22∗D∗(O�O))�R− Z24)))) (185)
γ(E69) = Z25 − Z26 − sum(γ(E64) : γ(E68)) (186)
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