
Multiresolution Kernel Approximation for
Gaussian Process Regression:

Supplementary Material

Yi Ding∗, Risi Kondor∗†, Jonathan Eskreis-Winkler†
∗Department of Computer Science, †Department of Statistics

The University of Chicago, Chicago, IL, 60637
{dingy,risi,eskreiswinkler}@uchicago.edu

1 Block structure for different hierarchical matrix approximations

(a) (b) (c)

Figure 1: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray),
whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal
blocks form a hierarchical structure leading to a much more compact representation. (c)H2 matrices
are a refinement of this idea.

2 Proofs

Proof of Proposition 1. Assume that K`−1 is spsd. Stage ` transforms K`−1 to H` = K` ⊕ D`.
Here K` is a submatrix of H` = Q`K`−1Q`

>
, therefore it is spsd. D` is a diagonal matrix that is

just the concatenation of the diagonal parts of the local compressions, therefore it is also spsd. By
induction, if K0 = K, then all K` and D` matrices are spsd, and therefore the entire factorization
(8) is spsd. �

Proof of Proposition 2. The cost of computing the compressions in a given stage is at most
bmaxsccompm

αcomp
max . However, since bmaxmmax ≤ n, this is upper bounded by sccompm

αcomp−1
max n. The

other component is the number of operations required to perform the rotations in each stage. The
matrix K`−1 has to be rotated from both the right and the left by Q` =

⊕
Q`i , but since each row of

these matrices is csp sparse, the total per-stage complexity is bounded by 2cspn. �

Proof of Proposition 3. The final core-diagonal matrix Hs has a core of size dcore. Along with the
remaining terms along the diagonal, this factor requires d2core + n − dcore storage. For each of the s
levels of the MKA, each factor Q` has n rows, each of which is csp-sparse, so each of the s factors
has at most cspn nonzero entries. Adding everything up yields an upper bound of (scsp+1)n+d2core.

�

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Table 1: Summary of the datasets used in our experiments

Dataset Size Dimensions
housing 506 13
rupture 2066 30
wine 4898 11
pageblocks 5473 10
compAct 8192 21
pendigit 10992 16

Proof of Proposition 5. As explained above each Q`i from an MMF-compression is a product of at
most bγmc Givens rotations, requiring 2bγmc storage. All the Q`i matrices in a given stage add up
to

∑
i 2bγm`

ic ≤ 2n storage. The size of Hs is the same as in Proposition 3. �

Proof of Proposition 6 (sketch). K̃z is computed by multplying z by each of the factors in (8),
from right to left. Since each Q`i is the product of at most m Givens rotations, multiplying the
corresponding block of a vector by Q`i has complexity 2m. Thus the complexity of multiplying a
vector by Q` =

⊕
Q`i is at most 2n. There are s stages on the right of Hs and s stages on the left,

leading to a bound of 2sn. Multiplying a vector by H itself has complexity at most d2core + n. �

Proof of Proposition 7. All of the matrix operations described in this procedure can boil down to
computing a complete eigenvector decomposition (EVD) of K̃ and performing matrix operations on
the resulting eigenvalues of the decomposition.

1. K̃α =
∑n
i=1 λ

α
i viv

T
i where {vi}ni=1 is an orthonormal basis of K̃. Since K̃ =

QT1Q
T
2 · · ·QTs HQs · · ·Q2Q1, it suffices to compute an EVD of H which is dcore-core-

diagonal. To compute the EVD it suffices to compute the EVD of [H][dcore],[dcore], which
requires d3core operations. Once the EVD is computed, to take the power of the eigenvalues
requires only n operations. All together, this is O(n+ d3core) operations.

2. exp(βK̃) =
∑n
i=1 exp(βλi)viv

T
i with notation as in K̃α. Again, the calculation of the

EVD of K̃ costs d3core operations and the additional procedure of exponentiating β times
the eigenvalues takes 2n operations. Together this costs O(n+ d3core) operations.

3. det(K̃) =
∏n
i=1 λi. Every rotation matrix has a determinant equal to one, so the Ql terms

which are block-rotation matrices, will also have determinant equal to one. Computing the
determinant of H again boils down to computing the EVD and then taking the product of
the eigenvalues. This will also have O(n+ d3core).

�

3 Algorithm

The pseudocode of the proposed Multiresolution Kernel Approximation (MKA) algorithm is
shown in Algorithm 1. MKA is a meta-algorithm, in the sense that it can be used in conjunction
with different core-diagonal compressors.

4 Experiments

4.1 Datasets

We used six data sets in our experiments, of which, rupture is from Materials algorithms project
program 1 and the others are from UCI machine learning repository 2. The detailed summary of the
datasets is in Table 1.

1https://www.phase-trans.msm.cam.ac.uk/map/map.html
2https://archive.ics.uci.edu/ml/datasets.html

2



Algorithm 1 The MKA algorithm. COMPRESS is any suitable core/diagonal compression routine,
e.g., a Jacobi MMF.

Input: an spsd kernel matrix K ∈Rn×n
K0←K
for (`=1 to s) {

cluster the columns of K`−1 into (C`1, . . . , C`p`)
permute the rows/columns of K`−1 according to (C`1, . . . , C`p`) to get K`−1
for (i=1 to p` ) {
(Q`i , c

`
i)← COMPRESS([K`−1]i,i)

}
Q` ←

⊕
iQ

`
i

H` ← Q`K`−1Q
>
`

c` =
∑pi
i=1 c

`
i

permute the rows/columns of H` so that the cores appear in the top left c` × c` submatrix to
get H`

K` ← [H`]1:c`,1:c` // this is the “core” part of H`

D` ← diag(diag([H`]c`+1:,c`+1,:)) // this is the “diagonal” part of H`

}
Output: (Q1, . . . , Qs, D1, D2, . . . , Ds,Ks)

wine

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
M

S
E

Full
SOR
FITC
PITC
MKA

wine

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

M
N

L
P

Full
SOR
FITC
PITC
MKA

pageblocks

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
M

S
E

Full
SOR
FITC
PITC
MKA

pageblocks

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

M
N

L
P

Full
SOR
FITC
PITC
MKA

compAct

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
M

S
E

Full
SOR
FITC
PITC
MKA

compAct

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

M
N

L
P

Full
SOR
FITC
PITC
MKA

pendigit

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
M

S
E

Full
SOR
FITC
PITC
MKA

pendigit

4 4.5 5 5.5 6 6.5 7 7.5 8

Log
2
 # pseudo-inputs

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

M
N

L
P

Full
SOR
FITC
PITC
MKA

Figure 2: SMSE and MNLP as a function of the number of pseudo-inputs/dcore on the rest four
datasets. In the given range MKA clearly outperforms the other methods in both error measures.

4.2 Evaluation as a function of number of pseudo-inputs/dcore

We compare regression results in terms of both the predictive mean and variance (i.e. SMSE/MNLP)
as a function of the number of pseudo-inputs/ dcore, which represents the approximation/compression
level of the kernel matrix. Across the range of pseudo-inputs/dcore considered in Figure 2 for selected
data sets in this supplementary material , MKA outperformed other methods in terms of both pre-
diction accuracy (SMSE) and variance assessment (MNLP), whereas for other methods more error
was accumulated as fewer pseudo-inputs were used. These results on additional data sets to those
illustrated in the main paper confirm the position that MKA is in many cases a superior method for
kernel matrix compression. In these four data sets, as well, MKA’s performance was nearly constant
across different sizes of dcore – likely due to the information preserved along the main diagonal in
the c-core diagonal matrix of MKAs kernel matrix approximation. Moreover, the results for MEKA
on the selected data sets are absent due to the fact that the approximate kernel matrix found by
MEKA for these data sets loses the spsd property, and thus fails to show prediction results in the
experiments.

3


	Block structure for different hierarchical matrix approximations
	Proofs
	Algorithm
	Experiments
	Datasets
	Evaluation as a function of number of pseudo-inputs/ dcore 


